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Abstract

Geologic maps, seismic lines, and data from a dry exploration well were used to develop a new structural
model for a segment of the eastern foothills of the Eastern Cordillera of Colombia, emphasizing the role of salt
tectonics. Milestones in the deformation history of the Guatiquía foothills were studied by sequential section
restoration to selected steps. Uncommon structural geometries and sparse salt occurrences were interpreted
in terms of a kinematic evolution in which Cretaceous salt migration in extension produced a diapiric salt
wall, which was subsequently welded during the main episodes of the Andean compression, when the salt wall
was squeezed generating a large overturned flap. Salt-weld strain hardening resulted in breakthrough thrust-
ing across the overturned flap in late deformation stages. We have evaluated a pattern of salt tectonics pre-
viously unrecognized in the foothills thrust belt, which may be significant in other parts of the external
Colombian Andes.

Introduction
The prolific thrust belt of the eastern foothills of the

Eastern Cordillera (EC) of Colombia has been inten-
sively investigated since the discovery of the Cusiana
giant oil field in 1992. Diverse authors have illustrated
via structural cross sections, and kinematic restoration
models the foothills structure as consisting of an east-
verging thrust system with imbricate fans and duplexes,
conforming to ramp-flat geometries (Dengo and Covey,
1993; Cazier et al., 1995; Cooper et al., 1995; Rowan and
Linares, 2000; Toro et al., 2004; Martinez, 2006; Mora
et al., 2006, 2010, 2013; Tesón et al., 2013; Teixell et al.,
2015). These works emphasize tectonic inversion of for-
mer extensional faults, giving rise to either basement-
involved or thin-skinned thrusts.

Within the south-central part of the eastern foothills,
the Guatiquía area (Figure 1) shows features that differ
from the more standard ramp-flat, fault-related folding
reported for other segments of the thrust belt. A large
overturned panel of Cretaceous rocks is exposed in the
frontal thrust sheet and was crossed by the Anaconda-1
exploration well. The well targeted a subthrust play
with fault-bend antiformal culminations comparable to
Cusiana, which was not encountered. Rather, the foot-
wall of the emergent Mirador thrust comprised the in-
verted limb of a complex syncline (Kammer et al., 2005;
Mora et al., 2008).

We aim to provide an explanation for differences in
structural style in the EC external thrust belt. Based on
seismic lines, maps, the occurrences of salt in old
mines, and a detailed analysis of the postdrilling infor-
mation from the Anaconda-1 well, we propose a new
kinematic model for the Guatiquía segment, which em-
phasizes the influence of long-lived salt tectonics, espe-
cially during early deformation stages (Cretaceous
extension and early Cenozoic contraction), which has
been masked by the later stages of the Andean com-
pression. The model accounts for early layer tilting, di-
apir squeezing, and the formation of an overturned flap,
with similarities to other remarkable recumbent folds in
thrust settings recently interpreted as salt related (e.g.,
Graham et al., 2012; Rowan et al., 2014), and it bears
implications for other compressional areas in which the
role of salt can be overlooked due to diapir welding and/
or dissolution.

Geologic setting
The EC is the easternmost branch of the northern

Andes of Colombia (Figure 1). It is a 110–200-km-wide
intracontinental mountain belt related to transmission
of stresses to the South American plate by the accretion
of arcs in the northwestern Andes and appears as a dou-
bly verging thrust system that formed during the Ceno-
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zoic by the inversion of a Mesozoic back-arc rift (Colletta
et al., 1990; Cooper et al., 1995).

The rifting history of the EC had a main phase during
the early Cretaceous when a graben system approxi-
mately coincident with the present Cordillera formed
(Etayo et al., 1969; Cooper et al., 1995; Sarmiento-Rojas,
2001). Cretaceous sediments (up to 8–10 km thick) are
dominantly marine. Terrestrial deposits indicative of an
overfilled basin appear in the late Maastrichtian-Paleo-
cene. Uplift of the EC was associated with a progressive
emersion of the former rift due to tectonic inversion
and with subsidence in the adjacent foreland basins
such as the Llanos basin in the eastern side (Figure 1).

The study area is located in the eastern foothills of
the EC between the Guatiquía and Guamal rivers (Fig-
ure 1), in which the thrust belt overrides the Llanos ba-
sin and is associated with a topographic increase from
400 to 1700 m above sea level (asl).

Tectonostratigraphic evolution
The stratigraphy of the study area is sketched in Fig-

ure 2. We refer the reader to Renzoni (1968), Etayo et al.
(1969), Mora et al. (2006), and Mora and Parra (2008)
for detailed references. Basement, which crops out in
the Quetame massif and in the Mirador thrust hanging
wall (Figure 1), consists of lower Paleozoic metamorphic
rocks (Quetame Group), and the overlying Devonian-
Carboniferous Farallones Group, that accumulated in ex-
tensional grabens (Mora et al., 2006).

The Mesozoic synrift sequences start with the Bue-
navista breccia, which contains Tithonian-Berriasian
ammonite fauna (Dorado, 1990). In the outcrop, the
breccia often passes gradually upward into black shale
forming the thick Macanal Formation and subsequent
sandstone-shale formations (Figure 2). In between,
early Berriasian evaporitic layers (halite, gypsum) were
locally deposited (Hubach, 1957), which are now very

Figure 1. Geologic map of the Guatiquía-Guamal segment of the eastern foothills of the EC of Colombia, showing the principal
faults, the Anaconda well, the main oil fields and the interpreted cross sections of (location map inset to the left; WC, western
Cordillera; CC, central Cordillera; and EC). The map was constructed on the basis of published maps by Mora et al. (2006, 2013)
and Mora and Parra (2008), locally supplemented by the INGEOMINAS 1:100,000 national map (Pulido et al., 1998). AA, Apiay
anticline; BA, Buenavista anticline; BT, Boa thrust; MT, Mirador thrust; MzT, Manzanares thrust; NF, Naranjal fault; QM, Quetame
massif; SF, Servitá fault; VT, Villavicencio thrust. Well names: An-1, Anaconda-1; Ap-1, Apiay-1; Ca-12, Castilla-12; CN-2, Castilla
Norte-12; Ch-1, Chichimene-1; Ch-2, Chichimene-2; Re-1, Reforma-1; and Ya-1, Yacare-1.

SAA18 Interpretation / November 2015

D
ow

nl
oa

de
d 

09
/1

0/
15

 to
 1

61
.1

16
.8

6.
97

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



restricted in outcrop (e.g., in the Upín salt mine and La
Campana salt layers west of Restrepo, Figure 1, and the
emerald-bearing evaporitic layers of Chivor, Gachala
and El Toro; Cheilletz and Giuliani, 1996; Branquet et al.,
2002; Mora et al., 2009).

The early Cretaceous depositional settings were
highly variable and disparate over short distances, due
to extensional tectonism (Mora et al., 2006, 2009). In
paleogeographic reconstructions (e.g., Sarmiento-Rojas
et al., 2006), the early Cretaceous graben does not reach
the southernmost part of the EC foothills, being limited
by the Naranjal transfer paleofault, south of which the
Albian overlies directly the Paleozoic (Figure 1). During
the Albian-Late Cretaceous, the basin became domi-
nated by thermal subsidence, with laterally expansive

deltaic sandstones and deeper water shales (Une, Chi-
paque, and Gualdalupe Formations; Figure 2).

Toward the end of the Cretaceous, the EC became
part of a large basin in front of the Central Cordillera,
disrupted by growing folds that controlled the deposi-
tion of fluvial to transitional Paleogene units (Gomez
et al., 2005) (Figure 2). The foreland basin megase-
quence in the eastern foothills and Llanos basin started
in the mid-late Oligocene, as indicated by subsidence,
exhumation, and provenance analysis in the fluvial Car-
bonera Formation (Parra et al., 2009a, 2009b; Horton
et al., 2010). Coarse clastic influx by mid-Miocene times
of the Guayabo conglomerate into the Llanos basin re-
cords the “Andean” main growth of the EC (Cooper
et al., 1995; Hoorn et al., 1995; Branquet et al., 2002;
Toro et al., 2004), continuing until recent times as re-
corded by synsedimentary deformation and very young
apatite fission track ages (Mora et al., 2008).

Data and methods
Geologic maps available included the national quad-

rangle at 1:100,000 scale (Pulido et al., 1998) and those
in Mora et al. (2006, 2013) and Mora and Parra (2008).
Based on these maps and our own structural data, we
generate a newmap synthesis presented in Figure 1. We
analyzed 1271 km of seismic profiles across the area
provided by ICP-Ecopetrol. Synthetic seismograms of
the Anaconda-1 well were generated for seismic-well
calibration. In addition, the formational tops and data
from the Anaconda well (Figure 3) were used to con-
strain the cross sections.

The seismic quality in the foothills is typically poor;
stratigraphic horizons are irregularly imaged, but fault
planes are often well imaged, suggesting distinctive
rocks formed or injected along the fault zones. In the
Llanos basin, reflectors are continuous and gently dip-
ping (Figure 4). Structural transects were constructed
with the goal to illustrate the lateral structural variation
and using the maximum available surface and subsur-
face data (Figure 5). Time-depth conversions used
replacement velocity of the seismic surveys and were
calibrated with the Anaconda-1 well. Cross-section
BB′ (Figure 1) is the most representative and was mod-
eled by kinematic restoration in sequential steps, hon-
oring available thermochronological data (Mora et al.,
2008; Jimenez et al., 2013).

Structural elements of the foothills in the Guatiquia
and Guamal areas

The innermost element of the area is the Quetame
massif, a prominent basement uplift that is bounded
by the Servitá fault (Figure 1 and 5). In front of it,
the foothills can be divided into two segments by the
Naranjal transfer fault (Figure 1). North of this fault
(Guatiquía area), the Cretaceous displays an antiformal
structure (Buenavista anticline) cut by the northwest-
dipping Mirador thrust along its core, which separates
a normal limb region with gentle folds and a basement
exposure from a large overturned limb that forms the
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Figure 2. Simplified stratigraphy of the eastern flank of the
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mountain front (Kammer et al., 2005; Mora et al., 2006,
2008). The Anaconda-1 well indicated the existence of
several splays of the Mirador thrust segmenting the
footwall overturned panel (Figures 3 and 5). South of
the Naranjal fault (Guamal area), the structure consists
of a system of open folds related to imbricate thrusts
(Toro et al., 2004; Mora and Parra, 2008; Mora et al.,
2010). The Llanos basin is less deformed except
in the vicinity of the mountain front, and a tabular late
Cretaceous to Neogene succession is cut by blind
thrusts and relict normal faults visible on seismic data
(Figure 4b). The thrusts that are basement involved and

steeply dipping, and in the case of the Chichimene oil
field (Figure 1), demonstrably derive from the inversion
of previous extensional faults (Kluth et al., 1997).

Evidence for salt tectonics
The long overturned limb of the Guatiquía foothills

suggests folding mechanisms that differ from simple
fault-bend folding. The northern end of the Buenavista
anticline is the locus of the Upín and La Campana salt
mines, which have produced since the sixteenth century.
The salt deposits of these mines are found within the ear-
liest Cretaceous shales (Wokittel, 1960). In the Upín
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mine, salt has a stratiform pattern consisting of alternat-
ing slightly argillaceous and highly argillaceous halite
layers (McLaughlin, 1972). Salt layers are disturbed, with
variable attitude from moderately to steeply dipping, in
response to regional tectonism and possibly diapirism
(McLaughlin, 1972).

The fact that neither overturned Buenavista breccia
nor basement is found in the surface or the subsurface
is consistent with a detachment level for the overturned
panel coinciding in stratigraphic position with the evap-
orites of the salt mines. On the other hand, numerous
salt springs are found in the region (e.g., Salinas de Cu-
maral, 20 km north of Villavicencio).

In the Guateque-Medina area, north of the study area,
a brecciated evaporitic layer below the Macanal Forma-
tion hosts emeralds and gypsum deposits (Figure 6)
(Cheilletz and Giuliani, 1996; Branquet et al., 2002),
in which fluid-inclusion studies revealed Na-Ca-K-bearing
hypersaline chlorine brines responsible for emerald and
pyrite crystallization by deep-seated formation waters
heated by burial, thereafter dissolving evaporites by inter-
action with salt diapirs (Giuliani et al., 1995).

The Anaconda-1 well reported high concentrations
of chlorides in the mud system at a fault zone above
the Villavicencio-Mirador thrust (see Figure 3), attrib-
uted to salty water of crystalline salt (Chevron Petroleum

Figure 4. Selected seismic profiles for cross section B-B′ (Figures 1 and 5). (a) Interpreted seismic line CHVRB-1993-105, with
continuous reflections characterizing the basin, chaotic reflections in the foothills, and high-amplitude reflections for the deep
Villavicencio-Mirador fault plane and minor faults above (b) Interpreted seismic line V-1988-1065 from the Llanos basin, showing
very continuous and subhorizontal reflectors. In general, the sedimentary sequence thins to the east, although a more detailed
interpretation shows that some late Cretaceous-early Paleogene reflectors onlap underlying ones and are restricted to the proxi-
mal foredeep. In the distal foredeep, the molasse sediments are folded over blind thrusts that affect the Cretaceous-Paleogene
succession.

Interpretation / November 2015 SAA21

D
ow

nl
oa

de
d 

09
/1

0/
15

 to
 1

61
.1

16
.8

6.
97

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



co. of Colombia, 1996, Anaconda-1 — Final Geological
Report). In the light of this, high reflectivity of fault zones
in seismic profiles may be due to their content of salt. It
is noteworthy that the southern end of the overturned
panel coincides with the limit of the Lower Cretaceous
basin at the Naranjal transfer fault, which reinforces its
stratigraphic control, likely the occurrence of the early
Cretaceous evaporitic formation.

We thus interpret that the association of an over-
turned panel and salt in the Buenavista anticline area

is not accidental but indicative of a causal relationship.
Strongly overturned fold limbs associated to salt diapir
squeezing have been reported elsewhere (Graham et al.,
2012; Rowan et al., 2014). Salt tectonic influences have
never been reported in the foothills of the EC, but dou-
bly verging folds and systematic limb overturning in the
Sabana de Bogotá have been recently associated by
Teixell et al. (2015) with salt-related detachment folding
preceded by early diapirism of Cretaceous salt. Explan-
ations for the association of thrust ramps and asymmetric

Figure 5. Cross sections A-A′, B-B′, and C-C′ across the Guatiquía and Guamal segments of the EC foothills (see Figure 1 for
location). Note the structural variation and the significant thickness change of the Cretaceous sequence from the north to south.
Cross section B-B′ (the Villavicencio section) is kinematically restored in Figure 7.
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overturned folds are not unique and alternatives include
fault-propagation or trishear folding (e.g., Allmendinger,
1998), but on the basis of the indicators described above,
we favor and will explore a model combining thrust fault-
ing and diapirism.

Kinematic modeling of the Villavicencio section
Section B-B’ (Villavicencio transect) was selected for

kinematic modeling to illustrate our proposed model for
the evolution of the Guatiquía foothills (Figure 7). The
modeling includes extensional faulting, salt diapirism,
and tectonic inversion. In the proposed model, the Cre-
taceous salt is assumed to start moving very early dur-
ing the extensional episode (Figure 7f), as is common
in salt-bearing basins (Jackson and Vendeville, 1994).
Comparison of outcrop data and the Anaconda-1 well
reveals marked thickness variations in the Lower
Cretaceous across the Mirador and Servitá faults,
which indicates former extensional faulting. In the
hanging wall of the Mirador thrust, zircon (U-Th)/He
ages are reset but zircon fission-track ages are not
(Parra et al., 2009b; Jimenez et al., 2013), indicating
that the basement of this unit was buried to reach tem-
peratures between 180°C and 250°C from Cretaceous to
recent times. In contrast, zircon fission tracks are reset in
the hanging wall (HW) of the Servitá fault, which indi-
cates a greater burial in this unit. According to our resto-

ration, the maximum burial depths were probably
attained during Paleogene times (Figure 7e).

The Buenavista anticline may have originated as a salt
wall associated with an extensional fault (Figure 7), later
squeezed during the compression, so the salt formation
has been largely removed. The early activity of salt, to-
gether with the extension, may have contributed to the
change in thickness observed in the synrift sequences as
described above. Salt continued to rise into structurally
thinned zones during early Paleocene-Eocene times. The
Anaconda-1 well found upper Eocene sediments uncon-
formable over the Maastrichtian, potentially attesting for
uplift in the salt wall (Figure 7e), and the Mirador For-
mation drilled by the well showed a very high formation
of water salinity. Because this unit is attributed to fluvial-
shallow marine environments, the anomalous salinity
may be ascribed to a diapir growing at the surface and
being partially dissolved during early Eocene times.
Alternatively, the structure may have been originated
during the early Paleogene as an eroded, salt-cored de-
tachment fold, although compressional deformation as
old as that has never been recognized in the Guatiquía-
Guamal foothills (Toro et al., 2004; Jimenez et al., 2013).

During themain Andean orogeny episode, extensional
faults were reactivated and the Paleozoic basement
uplifted (Figure 7), as occurs all along the cordillera
(Mora et al., 2008). The squeezing of the diapir and
the inversion of the Servitá fault are interpreted to be
contemporaneous and attributed to the late Oligocene
to early Miocene (Figure 7d), in agreement with the zir-
con fission tracks (ZFT) and zircon Helium (ZHE)
ages that document an exhumation from approximately
180°C to 120°C from the mid Oligocene to the Pliocene
(Jimenez et al., 2013). Mid-Oligocene cooling ages
(29� 2.3 Ma; Jimenez et al., 2013) indicate that the An-
dean exhumation commenced immediately after the
maximum burial attained during the late Eocene-early
Oligocene (Figure 7d and 7e). Subsequently, with the
complete closure of the diapir stem by squeezing, it
could no longer accommodate shortening, and this
caused the initiation of new thrusts cross cutting the anti-
formal structure (Figure 7c). The basement-involved
reactivation of the salt weld gave rise to the present
Mirador thrust and a series of small imbrications in the
inverted flank of the former diapir.

For the restoration of the imbricate thrusts that seg-
ment the steep flank of the old diapir in front of Mirador
thrust, we assumed a break-back sequence of propaga-
tion (Figure 7a–7c) on the basis of (1) the leading
imbricate thrusts are fossilized under the molassic sedi-
ments and (2) in the restoration, the Mirador thrust, in-
terpreted as the reactivation of the salt weld, was
almost vertical prior to thrust imbrication of the steep
flank of the diapir. Displacement on this imbricate se-
quence is attributed to late Miocene to recent times, in
accordance with approximately 3-Ma apatite fission track
ages (Mora et al., 2008). The Mirador thrust is the last to
be formed within the system; late blind thrusting within
the foreland basin, in which seismic data show involved
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Cretaceous times, showing the extension of the Berriasian-
Valanginian sea, the extent of the Berriasian evaporitic dep-
ositional system, and the main active tectonic structures
(not restored for orogenic shortening). Also shown are the
present-day location of emerald mines (on Berriasian-Valangi-
nian layers), the Berriasian salt and gypsum mines, and saline
springs (constructed on the basis of data from Etayo et al.
(1969) and Sarmiento-Rojas et al. (2006).
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Figure 7. Kinematic restoration of the Villavicencio transect of the Guatiquía foothills (section B-B′ in Figures 1 and 5).
The section was restored to an initial state in early Cretaceous times. Restoration was made with 2DMove software using
the algorithm fault-parallel flow for compressional faults, the algorithm inclined shear for extensional faults, and the algorithm
flexural-slip unfolding for salt diapir unfolding. Each fault was moved back until the preslip stage, restoring the folds wherever
necessary. See the text for discussion of each stage of the model. MF, Mirador thrust; SF, Servitá fault; VF, Villavicencio thrust.
The final shortening along the section is of 16.8 km (23%), assuming a conservative original width of the diapir of approximately
700 m.
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the entire molassic sequence, is represented as contem-
poraneous (Figure 7a).

Conclusions
We suggest that the fault boundaries of the Meso-

zoic extensional basins as well as the mechanical
behavior of the infill (in particular weak evaporites)
played a major influence in the tectonic configuration
of the foothills of the EC. Cross sections across the
eastern foothills in the Guatiquía-Guamal segment
highlight a lateral variability in which from the north
to south, the structural style changes from thick-
skinned tectonic inversion and large-scale folding
producing an anomalous overturned forelimb (Guati-
quía area) to a simple thrust imbricate fan (Guamal
area), via a transfer fault inherited from the Mesozoic
extension.

The restoration of a regional transect through the Vil-
lavicencio area illustrates a complex kinematic evolu-
tion characterized by extensional, contractional, and
salt tectonics. This area constituted the western and
southern edge of the Cundinamarca extensional basin
during the early Cretaceous. The area accumulated
thick marine sediments including evaporitic layers that
markedly influenced the entire history of deformation.
The present-day Buenavista faulted anticline is inter-
preted as a former salt wall associated with the exten-
sional Mirador fault, later squeezed during continuous
shortening. The large overturned limb of the anticline is
compatible with this process. In late shortening stages,
welding of the diapir resulted in break-through thrust-
ing across the overturned flap.

We proposed a previously unrecognized pattern of
diapirism for the EC foothills. The new interpreta-
tion for the Guatiquía area leads to envisage that the
known salt occurrences in the EC may be signs of a
larger evaporitic depositional system, underestimated
in previous interpretations, whose influence in terms
of salt tectonics may cover wide parts of the EC of
Colombia.
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