Some Remarks on the Conditional
Independence and the Markov Property

Aureli Alabert and David Nualart

1. INTRODUCTION

Recently, there has been some work on stochastic differential equations
with boundary conditions (cf., for instance, [1,2,7,8,9]). This has been
possible thanks to the development of the extended stochastic calculus for
anticipating processes (see, for example, Nualart-Pardoux [6]), since the
solutions to stochastic boundary problems are not in general adapted to the
driving Brownian motion. In these papers, two types of problems have been
considered. First to prove the existence and uniqueness of a solution for
different kinds of equations, and secondly, to study the Markov properties
of the solution. S

Several kinds of Markov properties can be considered in connection
with stochastic differential equations with boundary conditions. Through-
out this paper, we will write

'.7:1'_][.:13_ fz

to mean that the o-fields F; and F, are conditionally independent given
Fs.

Let {X,,t € T} be a stochastic process indexed by a one-dimensional
interval T = [a,b] C IR . If S C T, denote by Fgs the o-field generated by
the random variables {X;,t € S}.

We say that {X;,t € T'} is a Markov process iff

V teT |, f[a,t]%—l{-l—;f[t,b]'

We say that {X;,t € T} is a Markov field iff

V s<t, s,teT, .77[3’,;] ]:__{U_} f[a,b]—]s,t[-

Finally, we say that {X;,t € T'} is a germ Markov field iff

V s<t, s;teT, Fsy g-(ﬂ--} Fla,b]-1s.,t[»
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where g{s,t} = ne>0 -ﬁs—e,s-{-e[u]t—-e,t-ke['

The above definitions can be adapted to the case of a finite parameter
set. In general, solutions to stochastic differential equations with boundary
conditions do not enjoy anyone of the properties listed above, except in
some particular situations, like the linear case. For example, this type of
negative results about the Markov property have been proved by Nualart
and Pardoux [7,8] for first and second order equations, and by C. Donati-
Martin [2] for first order equations with a linear diffusion coefficient. On
the other hand, in [9], Ocone and Pardoux have proved that the Markov
field property holds for almost all the quasi-linear equations (the general
case is open).

A common feature in all these papers is the method used to obtain
such negative results. This method can be described as follows. First
a particular equation is considered, where the nonlinear term is replaced
by zero or by a simple linear coefficient. For this equation, an explicit
solution can be calculated, and the Markov property is shown by direct
arguments. Then, an extended version of Girsanov theorem (cf. [4]) is
used to obtain a new equivalent probability under which the law of this
particular solution coincides with that of the original problem with.a general

“nonlinear coefficient. Finally, the Markov property is: translated- into a -

‘factorization property of the Radon-Nikodym density. One of the main
- difficulties involved in this procedure is the computation. of the Carleman—
Fredholm determinant of a certain integral operator.

This method can be applied as well to discuss the Markov properties .

of stochastic difference equations (see Donati-Martin [1]).

In this paper we present another possible approach to the investigation
of Markov properties for boundary value problems. The key point is the
translation of the Markov property into the conditional independence of
the white noise on two disjoint regions given the values of the process on
the common boundary of these regions. This problem can be considered in
an abstract form, and one can raise the following general question: Let Z;
and Z5 be two independent random variables; are Z, and Z; conditionally
independent given some function g(Z;, Z2)? In Section 2 we present some
sufficient conditions on the random variables Z; and Z, and on the function
g for having an affirmative answer to this question. The main criterion in
the absolutely continuous case is based on the computation of conditional
densities by means of the co-area formula (see [3]). This application of
the co—area formula has been inspired by the work of Ocone and Pardoux
[9,10].

In Section 3, we apply the results obtained in Section 2 to study the
Markov property of the second order stochastic difference equation with
Dirichlet boundary conditions:

A2Xn+f(»Xn+1)=£n ;, 0€n<N-2
X():O,.XN:O
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where A?2X,, = X,12 — 2X,41 + X,, and the random variables &, are
independent. This is the equation studied by C. Donati-Martin in [1],
under the assumption that the variables &, are standard Gaussian. With
our method we are able to recover the main result in [1], which says that the
solution is a Markov process if and only if the function f is affine, provided
the laws of the variables ,, are absolutely continuous and with a strictly
positive density. In the discrete case the Markov property always holds.

2. SUFFICIENT CONDITIONS FOR CONDITIONAL INDEPENDENCE

In this section we will present some general criteria for the conditional
independence of two independent random variables Z; and Z5 when some
function g(Z,,Z,) is given. For an arbitrary function g we cannot expect
this conditional independence to hold, but if g has the particular form
exhibited in the proposition below, and if the random variables we are
dealing with are discrete, then Z; and Z, are conditionally independent
given g(Z1, Z3).

Proposition 2.1." Let (M, M}), (M, M5), (A1, A;), (As, A3) be mea-

surable spaces and let g1: Ms x Ay — My, g3: M1 x Ay — M, be two
measurable functions such that the system of equations

e =a(ya) }

Ty = ga(w, 2)

2.1)

has a unique solution (z,y) € My x M, for any given (z1,23) € A; X As.
Suppose that Z; and Z, are two independent random variables, defined in
some probability space (Q, F, P) and taking values in A; and A, respec-
tively. Consider the random variables X and Y defined by

(22) X(w) = gl(y(w)’ Zl(w)) }
Y(w) =g2(X(w),22(w))
Then, if the random variables X and Y are discrete it holds that

z, AL 7,
XY

Proor: Fix sets By € Ay, B; € Ay, and points ¢ € M, y € M, such that
P{X ==z,Y =y} > 0. Using the uniqueness in the system (2.1), we have

P{Z1 € B1,Z5 € B3|X ==z,Y =y}
_ P{Zl €B1,7€ By, X =2,Y = y}
h P{X =z2,Y =y}
_ Pl{Z1 € B1,23 € By, z = g1(y, Z1), y = g2(=, Z2)}
B P{z = g1(y, Z1),y = g2(x, Z3)}




346 Nualart and Alabert

By the independence of Z; and Z,, this is equal to

P{Z; € By, = g1(y, 1)} P{Z2 € B2,y = g2(, Z)}
P{z = g1(y, Z1)} Ply = g2(z, Z2)}

Now if we take first B; = A; and then By = A, in the preceding equality,
we obtain that the above conditional probability is equal to the product

P{ZlEBI|XZm>Y:y}P{ZZEBZ‘X::L"Y:y} )

which completes the proof. O

Remark 1. In the above proposition it is sufficient to have the relation
(2.1) for all (21, 22) out of a set N of measure zero for the law of (Z1, Z2).
On the other hand, if the variables Z; and Z; are discrete, then X and Y
are also discrete and the proposition still holds.

Remark 2. If the system (2.1) has the particular form

z =g(n) }

y = g2z, 22)

then the requirement that the laws of the random variables X ‘and Y are
discrete is not necessary. Indeed, in this case we have

sz, =2l 2= 2 oz, , =

since we can always enlarge the conditioning o-field with events which be-
long to one of the o-fields 0(Z;) or 0(Z3) (see Rozanov [11, page 57]).

If the random variables we are dealing with are not discrete, the con-
ditional independence of Z; and Zs given X and Y is not true in general,
as we will see in the next proposition. The following example illustrates
this situation.

Example. Let A, B,C, D be independent random variables with the com-
mon law N(0,1). Define
X=AY+B, Y=CX+D.

Then the random vectors (A, B) and (C, D) are not conditionally indepen-
dent given X,Y. Indeed, the four-dimensional vector (A4,C,X,Y) has a
density given by

f(av C,il),y) = ¢(a)¢(c)¢(z - ‘13/)1/)(3/ - C.’E)“ - acl,

where 1 is the standard normal density. The above density cannot be
written in the form ¢;(z,y, a)p2(z,y,c), and the conditional independence
of A and C given X,Y is not true.
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If the random variables X and Y are not discrete the result is quite
different. The conditional independence does not hold unless the functions
g1 and gy verify some restrictive condition. In order to formulate this
condition we introduce the following technical hypothesis on the system
(2.1).

(H.1) Let A; and A be open sets in IR™ and IR™, respectively, with
n+m > 2. Consider C! functions g;: R x A — IR, g2:IR X Ay — IR,
such that the system

(2.3) z = g1(y, 21)}

y = 92(:’:’ 22)

has a unique solution (z,y) for each (z1,22) € V, where V' is an open subset
of A; x Ay. We also assume that for all (z1,22) € V, and for 2,y given by
the system (2.3) we have

(i) - ‘-‘vll—«—a—y—-(—?—; ?éOy
W VAl Ve o,

where Vg; and Vg, denote the gradients of the functions g and g, with
respect to the variables z; and z3, respectively.

Then we have:

Proposition 2.2. Let g; and g2 be functions satisfying the hypothesis
(H.1). Suppose that Z, and Z3 are independent random vectors with
absolutely continuous distributions such that P{(Z1,Z2) € V}=1 Let X
and Y be the random variables defined by

X(w) =gY(w),Z1(w))
(2.4) Y (w) :gQ(X(w),Zz(w))}

Then,
7z, A 7,
XY

if and only if there exist measurable functions Fi : R?x Ay — R, Fy :
IR? x Ay — IR, such that

(vX,Y,Zl,Zz) :Fl(X,Y,Zl)Fz(,X,Y, Zz), a.s.
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PRrROOF: Let ¢ : V — IR? be the function which maps (z1,22) € V into
the solution (z,y) of the system (2.3). Because of the Implicit Function
Theorem and condition (i) 9 is of class C!.
091 0 :
Set 6 = [1 - -—a-'-qyl—ang, 0; =|| Vg1 ||, and 82 =|| Vgz ||. Using the

formulas

0Pr _ 51901 01 _ 51091092

PR 024 ' 84 B 0y 8z
2 _ 51092091 0¥z _ s-1092
3zi Bm 6211' ’ 62;'; (9;;'% '

1/2
we get that the generalized Jacobian Jy = |det (< V);, V; >)1<i)j<2]

is equal to |6]~16,0,.

Fix two Borel sets By C A; and By C Ag, such that By x B, C V.
We will denote by H™ the Hausdorff measure of dimension m. Using the
co-area formula (see [3, 10]) we can obtain the following expression for the
conditional probability of {Z; € By, 7, € By} given X =z, Y =yt

(26) P{Z: € B1, %2 € Balw(Z1, %) = (w;9)}.= Uy (2, 1))
X/ 131><Bz(21722)‘6‘01_16;1le(Zl)fzz(zz)dHn-*-m*z(zl;Z?)a
P—1(z,y) _ o

for almost all (z,y) with respect to Pxy (law of (X,Y)), and where fz,,

[z, and fx y denote the densities of the random vectors Z;, Z3 and (X,Y),
respectively.

Observe that from (2.3) we deduce ¥~ !(z,y) = [Ri(z,y) x Ra(z,y)]N
V', where

Ri(z,y) ={z1 € A1 : 2 = g1(y,21)},
Ro(z,y) = {z2 € Ay : = g2(x,22)}.

Therefore, we can write
(2.7) P{Z1 € By, 2, € Ba|$(Z1, Z2) = (2,9)}
= Uxy(e)™ [ 1, xBa (1, 2)
Ry(z,y)X Ra(z,y)

x 16167105 f2,(21) fz,(22) dH Y7221, 22).

We claim that

(28) /}; [L (@.4)% Ra(.9) (lvclélgi—lg;lebsz) (:E?y? Zl;ZQ)
2 1(z,y)x Ra(z,y.

x dH”+m“2(z1,22)] dzdy = 0,
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with the convention 0-c0 = 0. In fact, fix (z,y) € IR®. On the set {(z1,22) €
Ay x A : 8(x,y,21,22) = 0} clearly the integrand in the expression (2.8)
vanishes. So it suffices to consider the integral on the set V¢ N {6 # 0},
and it is enough to show that for any fixed point (2°,4°,29,29) € R? x
A; x A, which verifies (2.3) and such that 6(z%,y°, 2, 29) # 0, there exists
a neighbourhood U of (°, y0, 2%, 23) such that

(2.9) /R [/R( - )(1VcnU(x,y)l5!9f19{1lefzg)($,y,Z1,Zz)
2 1z, y )X (2,

X d’H”+m'2(z1,22)] dzdy = 0,

where U(z,y) = {(21,22) € A1 x Az : (2,y,21,22) € U}. By the Implicit
Function Theorem, we can choose the neighbourhood U in such a way that
there exist neighbourhoods U, and U, of (z°,y°) and (29, 29), respectively,
and a continuously differentiable function ¢ : Uy — Ui, such that U =
U, x U, and for any (z,y,21,22) € U we have

2 20 tandonly it () = ol 7).

Now we can apply the co-area formula to the function ¢ and we obtain
that the left hand side of (2.9) is equal.to .

/U lvc(zl, Zz)le'(zul)f'zz(ZQ)dm dze =0,

and (2.8) holds. As a consequence, the equality (2.7) holds for any rectangle
By x B, C A} x Ay, not necessarily included in V.

Let us now turn to the proof of the proposition. Suppose first that the
factorization condition (2.5) holds. Then the equality (2.7) becomes

P{Z, €By,Zs € Bal¥(Z1,22) = (z,y)} = [fxy(z,y)™"
X (/ 1g,(z1)Fi(z, v, 21)07 ' (2,9, Zl)le(zl)Hnul(dzl)>
Ri(z,y)
(2.10)

X / ( )132(22)F2(17,y, 22)0;1(1’.71/)ZZ)sz(zz)Hm_l(dz2)>
Ro(z,y

for Px y-almost all (z,y). This factorization of the conditional probability
implies the conditional independence of Z; and Z, given X and Y.

Conversely, suppose Z; and Z3 are conditionally independent given X
and Y. Fix two Borel subsets By C A;, and By C A,. Using the co-area
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formula we arrive, in the same way as before, to

P{Zy € Bi|¢(Z1,22) = (z,9)} = [fx,y (2, y)]"!
X / 131(zl)l6(z,ya Zl,Zz)lgrl(lL’, v, 21)9;1(37; Y, Z2)
“Hzy)
X fz,(21)fz,(22) AH™ T2 (21,20) = [fxv (z,y)] 7!
x / lBl (21)9;1(:8, Y, zl)le(zl)Al(x, Yy, zl)Hn—-l(dzl),
Ry(z,y)

where Al((E,y,Zl) - ng(x,y) ez—l(m’y) Zz)fz2(22)l(5(1?,y, Zl)z2)|Hm~1(dZ2),
and

P{Z3 € B3|$(Z1, Z2) = (z,9)} = [fx,v (z,9)] "
x / 15, (22)[6(2, v, 21, 22) |07 (2,1, 20)05 M (2, 3, 22)
Y z,y)
S fZl(Zl)fZQ(ZZ) dan—i»m——Z(zl’ Zg) - [fX,Y(xa y)]—_l
X/ 132(32)051(3:’%ZQ)fZ:e(ZZ)A2(z»y’z2)Hm_1(d22)1
Rz(-"’ y) i .

where As(z,y,22) = [ (o, y) o7 (a: ¥, 21)fz,(21)16(z, y, 21, 22) | H" " (d21).
The product of these two. éxpressions must agree with (2.7) almost
surely with respect to Py y. 'I:hat means,

[Fx,y(z,y)]~? / 131(21)132(22)9 Yz,y,21)05 (z,y, 22)
Ri(z, )X Ry(z3y) ~

X fzx (Zl)fZQ(Zz)Al(IU, Y, Zl)Az(lE, Y, ZZ) Hn—.l(dzl)Hmml(dzZ) -

[fx,y(il?,y)]*l/ 1p,(21)1B,(22)07  (z,y,21)05 (2, ¥, 22)
Rx(m,y)sz(:c,y)

X fz,(21)fz,(22)|6(2, v, 21, 22)| H™ " (dz1 YH™ "1 (d22).

Therefore, fx v(z,y) " A1(z,y,21)A2(z,y, 22) and |6(z, y, 21, 22)| must
coincide on ¥~ !(z,y), a.e. with respect to the measure

fz,(21) fz,(22) - (M @ H™Y],

and in consequence with respect to the conditional law of (Z1,Z3) given
(X,Y) = (z,y). This happens with probability 1 with respect to Px y, and
the conclusion (2.5) follows. U

Notice that the variables z,y in the above proposition can also be
multidimensional (with the same dimension). In that case, the absolute
value in the factorization condition (2.5) has to be replaced by the absolute
value of the determinant of identity minus the product of two Jacobian
matrices.

In order to apply this result we need to characterize the functions g;
and g2 for which the factorization (2.5) holds. This is the objective of the
next lemma.
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Lemma 2.3. Let G; and G4 be continuously differentiable functions de-
fined in open subsets V; C IR™ and Vo C IR™, respectively. Let V be an
open subset of Vi x V3 such that V C {|| VG1 || + || VG2 ||# 0}. The
following two statements are equivalent:

(1) |1 = Gi(21)Ga(z2)| = Fi(21)Fa(22) for all (21,22) € V and for some

measurable functions Fy, and F.

(2) We have
%g%(zl)ZGz(zz) 0, forall i,j andforall (z1,22)€V.
z2

Proor: (1) = (2):

Suppose we have

0G4

5, L( (zz) # 0, for some fixed 1 <
21

i<mn,1<j<mand(z,22) € V. This 1mp11es that we can choose a small
open rectangle U C V, such that in U the above partial derivatives do not

vanish and in addition we have
Gi(z21)#0 , Ga(z2) #0 and fl-'—GI(:z“i")G:g.(zz)# 0.

Dlﬁerentlatmg with respect to z1 the expressmn in (1) in the set U

entiable in U), we obtain e

+9G: . _ OF
0# i Gy = 5—7F2 ;

which implies that 62— is in fact a constant C, since we can write
2

B _s06, (on"
Gy~ 024 \ 9zt

That means we have

1 -GGy = CF1Gy =>—(:,1-—-—G1+CF1,
T2

and G, cannot depend on zy which is in contradiction with the fact that

its partial derivative with respect to z} does not vanish in U.

(2) = (1) : Consider the open subsets of V' defined by

Ui ={(21,22) €V, %g;]'-(zl) # 0 for some i},
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Us = {(21,22) € V, Q’G—%(Zg) # 0 for some j}.

Condition (2) implies that U; and U, are disjoint and their union is the
whole set V because we have V C {|| VG1 || + || VG2 ||# 0}. Consequently,
if we define

Fl(zl) =] Gl(zl)Gg(Z2)1Ul, FQ(ZQ) =1~ Gl(zl)Gz(Zz)].Uz,

then the equality (1) will be true on V. 0O

Notice that for the implication (1) = (2) we do not need the condition
V CAI VGl + || VG2 |I# 0}
991 092

If we apply Lemma 2.3 to the functions G, = —a-- and G2 = By

where g; and g, satisfy hypothesis (H.1) we obtain the followmg result.

Lemma 2.4. Let g, and g, be two functions satisfying hypothesis (H. 1).
Assume moreover that the density of (Zy,Z,) verifies fz, z, > 0 a.e. on
V. Then condition (2.5) implies that for all 1 < i,k < n,k # i and
l<],l<ml¢jwehave '

o agl/azl) ENE
2.11 : =1 =0,
G (agl/azl, 9% \ 8,/07]

on the set

{a““ £0 and 092¢o}ﬂ

{(z,9,21,22) ER XV : = g1(y, 21), ¥y = ga(z, 23)} .

ProoF: Fix €% = (29,40, 29, 29) in the above set. The conditions g; (&%) /

=0 and g‘z;? (¢°) # 0 allow to apply the Implicit Function Theorem and to
2

write locally the system (2.3) in the form

Zi = hl(msy’ 2;) ,Z:J): = hZ(:L‘;y; 2%) ’

where
Z :(z%,...,zi‘l,z’i+1,...,z?),
and ‘ _
= (23,..., 27,27 )
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That means there exists neighbourhoods U; of (2°,3°), V; of z)*, V; of
2% Vg of 207, Vy of 29+, and functions
hliUl‘XV],—-*Vl, hzZUl)(Vz-—*Vz,

such that for any (z,y,z1,22) € Uy x V) X Vi x Vo x Vs

T =g1(y,21) : : Zi = h]\(iﬂ,y, 21) ’
Yy = 92(33,2'2)} if and only if {zj2 = (e, 2)
Set Ul =U; x V1 X Vg, and
Gl(l',y, ii - (ya 1)| ‘—h1(xy21)

and

69
G ,2) = , : .
2(17 Yy 22) (y 2)' 23 =ha(z,y,53)
Condition (2.5) says that for all (z,y, 2}, ) e Ul, _almost surely with re-
spect to the law of (XY, Zi, ZZ) we have : - B

(2.12) |1-Gi(z,4,%)Ga(e, 9, 8) . L

= Fi(z,y,21) .,

zy=hi(zy,2} )F 2(4,9, 2)I

2J-h2($vy 32)

We claim that on the set U; the law of W := (X, Y, Z1 73 ) is equivalent to
the Lebesgue measure. In fact the density of W on U, is given by

Hog|

(9Zj ((hl(x’y’2%),h2(x)y’2£)72i12g))'
2

0
lefzzlfsll—ﬂ-

Then using the change of variable formula and the fact that fz fz, 1s
strictly positive almost everywhere with respect to the Lebesgue measure,
we deduce that the Lebesgue measure of the set {(z,y,3%,7}) € U, :
fz.fz.(z,y, %, 8) = 0} is zero.

As a consequence we can assume that the equality (2.12) holds for all
(z, y,zl,zz) € U;. In fact, we can find two pomts C1 € Vi, and & € Vo
such that the equality (2.12) is satisfied for 5 = (,’1, # = Cs, and for almost
all (z,y) € Uy, and on the other hand, if we fix %= ¢i oor # = (5, then
the equality holds true for almost all (z,y, zf?) and for almost all (z,y, 5%),
respectively. Define

ﬁ’ 5 :F 1 I 1 iy
1(17’:9’ zl) 1(1‘ y Zl)lzi=h1(fb‘;y:5{)
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and

; 57 —
Fz(x‘, Y, 22) - Fz(l', Y zz)lzjzhz(fc,y,i;) .

Then is is not difficult to see that the equality (2.12) remains true a.s. if
we replace the functions F, and Fy by

FlO(x, y,éi) = ll - Gl(x7ya Ei)GZ(m)yaGZ)

and )
1 - Gi(z,y,(1)Go(z,y, )
1~ Gl(x;y,CI)GQ(x)yaCQ) .

By the continuity of the above functions, the equality (2.12) is satisfied
everywhere.

Then we can apply Lemma 2. 3 to the functions G, and Gy, for each
fixed (z,y), and to the variables 7{ and 2}, varying in Vi and Vs, respec-
tively. So we obtain

F(z,y,8) =

oG oG
6 kl( >yazl) ]2("1" Y,z ) 0,

for all k 76 7 l ;é Jj- Therefore it suffices to compute these derivatives and
to compare thelr values with the factors appearing in the left hand side of
(2.11). That means we claim that

8Gy, i (991 8 agl/azf>
(213) Bz{“ (m,y,21)"" ((‘323) ay (691/(92§ 5 ' )
zi=hi(z,y,2})
and
l
(2.14) 6G2(;,;, y,8) = (_923 A 592/6,2?
8z, | 0z \ Og,/02

ll;=h2(‘v:yv5:{)

h k
In fact, using the equality 0 891/0z;

1
- — - t
dzF dg1/02%’ e ge

0G, 0 (0gn >—
(215) 8 k( U, 1) a <6y (yﬂ l)lz;:h (:L‘,y,ii) =
Qg’}ls'(yvzl) 2
_ 691( )(9 +agl(z)
= ooy T o ey
FE R

Z;:hl(x,y,éi)
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The right hand side of (2.15) coincides with
(@91)"1 (_._?_ (Q@.) 991 0 (2@1) .‘?ﬁi)
ozt Oy \ 0zt ) 828 Oy \8zF ] 82
— (.‘1"1) (agl/azJ:)
9z dg1/07%

and this implies (2.13). The proof of (2.14) is analogous. O

3. APPLICATION TO A SECOND ORDER STOCHASTIC DIFFERENCE
EQUATION WITH BOUNDARY CONDITIONS

In this section we will make use of the preceding results to study the
Markov property of the solution to the one-dimensional second order dif-
ference equation

AzXn+f('Xn+1):£n ) OgnSN_Q)

with Dirichlet boundary conditions Xo = 0, Xy = 0.

Here A? is the second order difference operator A%2X,, = A(AX )
Xny2 — 2Xn+1 + X,, f is a real function and {{,, 0 < n < N — 2} is a
given “noise” process.

In [1], C. Donati-Martin has studied this equation in the case where
{€¢,, 0 < n < N—2}is asequence of independent N(0,1) random variables.
Using the method of change of measures, she proved that if the process
{(Xn,AX,),0<n< N -1} is a Markov process (or even only a Markov
field) and f is of class C?, then f must be affine, and conversely, if f is
affine, the solution is a Markov process.

We will prove the equivalence

{(Xn,AXn) ,0<n<N - 1} is a Markov process <& f s affine

for absolutely continuous variables &, whose support is the whole real line,
and that {(Xn,AXn) ,0<n<N - 1} is always a Markov process if they
are discrete.

We first recall the existence and uniqueness theorem for the above
equation given by Donati-Martin, which is a deterministic result and does
not depend on the law of {&,}n. Let {€,, 0 <n < N — 2} be a sequence
real numbers, and consider the following system of N + 1 equations on the
unknowns {X,, , 0<n< N}

(3.1) A’Xn+ f(Xnp1) =6 , 0<n<N-2
' XO:O,XNZO
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We have the following existence and uniqueness result.
Theorem 3.1. If f : R — IR is non-increasing, then (3.1) has a unique
solution {X,,0<n < N}.

ProoF: Denote by A the matrix

-2 1
( -2 1
1 -2 1

\ 1 -9
which is negative-definite, as it can be easily seen. Suppose that X! =
(X{,...,XN_1)and X2 = (X2,..., X%_,) are two solutions of (3.1). Write

f(XH) = (f (Xl),...,f(X}V_l)), i=1,2,and £ = (€o,...,€n_2). Then the

system (3.1) can be written in matricial form as
CAXT+ (X =€, i=1,2

Thué,
AX' =X+ F(XY) - f(X?) =0,

and, therefore, taking scalar products with X! — X2,
(AX'—X2), X' = X2) + (F(X") - fF(XH), X' = X% =0.

But f is non-increasing and A is negative-definite, so that both summands
must be nonpositive, and consequently equal to zero. Since the first one
can only be zero when X! = X2, we arrive to this conclusion.

To show the existence, fix a vector £ € RN ~! and define

¢E :RN—I >RN"1
X— s — (A+ F)(X)

We want to see that there exists a point X € IRN-1 such that
Ye(Xe¢) = 0. Using that —A is positive-definite and Schwarz inequality,

(¥e(X), X) = (£, X) — (AX, X) - (f(X), X)
= (=AX, X) + (£ - f(0), X) + (f(0) - f(X), X)
2 (—AX, X) + (£ - £(0), X)
> A IX 1 + (€ - £(0), X)
> A (IX117 = g = £ - 1X1) e T

X|| =400
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for some A > 0. Thus, we deduce the existence of p > 0 such that
VXX = p = (e(X), X) > 0

and, in this situation, Lemma 4.3. in Lions [5, page 53] applies and gives
us the existence of X, verifying v¢(X¢) = 0. O

Now let {£,,0 < n < N — 2} be a sequence of independent random
variables, and consider the sequence of random variables {X,, , 0 < n < N}
defined by the system (3.1). We want to investigate when the 2-dimensional
process {(Xn,AXn),0 < n < N — 1} is a Markov process. Actually we
will consider the process {(X,,Xn41),0 < n < N — 1} which generates
the same o—fields than the previous one. The Markov property for this
two—dimensional process means that for every p, 0 < p < N — 1,

(3.2) {Xn,0<n<p+1} JL {X.,p<n< N}

Pr P+1

Notice that for p = 0,1, N — 2, N — 1, the conditional independence

- (3.2) is obvious. Therefore, we will assume that pissuch that 2 < p. < N—=3.s5. . .- -
In order to apply Proposmons 2.1 and 2.2 we will show first the followmg»,.-;‘:j:j T

properties.
(1) It holds the equivalence

{Xn,0<n<p+l} _J.L {Xn,p<n<N} =

Xp, p+1

(g 0<n<p-1) M e p<n<N -2

p+1

(2) There exist functions g; and g3 such that

(33) Xp = gl(X}H-l,gO;"')Ep—l)}

Xp+1 - g?(Xp)épV")&N—-Z)
and this system has a unique solution (X,, Xp41) for any (€o,...,En=2)
€ RN-1.

Lemma 3.2. Let {£,,0 < n < N — 2} be a sequence of independent
random variables, and suppose that f is non-increasing. Let {X,,0 <
n < N} be the solution of (3.1). Then the above properties (1) and (2) are
true for all p, 2 < p < N -- 3. Moreover if f is of class C", with r > 1, then
g1 and g4 are also of class C".

ProoF: Fixp, 2 <p < N-3. Property (1) is immediate. Indeed, from the
system (3.1) it is clear that the random variables {X,,0<n < p+ 1} are

measurable with respect to the o—field generated by {fn ,0<n<p- 1}
and by X,, Xp+1, and similarly, the random variables {X,,p < n < N}
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are measurable with respect to the o-field generated by {En ,p < n <
N — 2} and by X,,X,;,. Consequently, by the elementary properties
of the conditional independence it follows that the implication <= in (1)
holds. The converse implication is proved by the same argument.

Let us turn to the proof of Property (2). Fix p, 2 < p < N — 3, and
consider the system of equations

A2~Xn+f(Xn+l):‘£n ) OSHSP'l
Xo=0 , Xp41 given

The equivalent system in the unknowns X,,..., X, is
-—-2X1+.X2+f(.X1) = o
X1=2X2 4+ X3+ f(X2) = 3!
(3.4) : :
Xp—-?"'Q»Xp—-l +-Xp + f(Xp—l) = €p—~2
Xp_1—2X, + f(Xp) = &1 — Xp41

and it can be treated exactly as in the proof of Theorem 3.1. That means
this system of equations has a unique solution,-and this implies that X, is
a function of (Xp41,&0,...,6p-1)-

On the other hand, from the existence of a unique solution for the
system e e :

—2Xp1+ Xpp2 + f(Xpp1) = & — X,
Xp+1 = 2Xpr2+ Xprz + f(Xpi2) = &
(3.5) : :
—2XN-1+ XN-2+ f(Xn-1) = Env-e
it follows that X,4, is a function of X,,&,,...,€n 2. Moreover, putting
together both systems we obtain (3.1), and this ensures the uniqueness of
(Xp) Xp+1)-

Finally, it is clear from the systems (3.4) and (3.5) and by the Implicit
Function Theorem that g; and g, have the same smoothness properties
than f. This completes the proof of the lemma. ]

Using this lemma we can now state the following result about the
Markov property.

Theorem 3.3. Suppose the variables {¢, , 0 < n < N~—2} are independent
and have discrete laws. Let {X, , 0 < n < N} be the solution to (3.1),
with f nonincreasing. Then, {(X,,AX,),0 < n < N — 1} is a Markov
process.

ProOF: In view of (1) of Lemma 3.2, we only need to apply Proposition
2.1 for each fixed p, 2 < p < N =3, and (Z{,...,27) = (&0, -, &p—1),
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(Z3,...,Z0) = (&, ..., En=2), X = Xp, Y = Xpy1. The random variables
X and Y are obviously discrete and the conclusion follows immediatly. []

Theorem 3.4. Suppose the variables {¢, , 0 < n < N—2} are independent
and have absolutely continuous distributions. Let {X,,0 < n < N} be the
solution to (3.1) with f nonincreasing and of class C?. Then if f is an affine
function, {(Xn,AXn),0< n < N -1} is a Markov process. Conversely, if
this process is Markovian and the densities of the variables &, are strictly
positive a.e., then we must have f" = 0.

Proor: Taking into account Property (1) in Lemma 3.2 the Markov prop-
erty for the process {(Xn, AX,)} is equivalent to the conditional indepen-
dence

36)  {&,0<n<p-1} AL {e,p<n<N -2},

erp+1

for all 2 < p < N — 3. Fix a value of p between 2 and N — 3. Now we
will apply Proposition 2.2 to (Z1,...,27) = (§o, -+ -, &p-1), (Z3,..., ZT") =
(&p, ..., En—2), X = X;, and Y = Xp41, and to the system (3.3). In view
of Lemma 3.2 this system has a-unique solution for all (&, . .. p-1) € IRP,
and (&,...,éN=2) ¢ IRN-P-1_ We have to show that hypothesis (H.1)
of Section 2 holds. To do this we first express the system (3.4), which
determines g1, as ‘ I ﬁ

X

1 f(Xl) fo

Ap + - E
: : §p—2

Xp F(Xp) -1+ Xptr
where
-2 1
1 -2 1
1 -2 1
Ap = _ .
1 -2 1
1 -2

Differentiating with respect to §;, 0 <i<p—1, we obtain

%)’g /f'(Xl)%%‘f' 0

Ap + =11
: : X :

2% ) \ 5% 0
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and we deduce that 6)6(-)0 is the element in the last row and (¢ 4+ 1)-th
column of the inverse matrix of
=24+ f'(X1) 1
1 -2+ f'(X2) 1
‘Bl,p pround * S . .
1 =24+ f(Xp-1) 1
1 =24 f(Xp)
That 1s,
—1)+! ~1)PH1+E Jet, .
(3.7) 0X, _ (-1) , 0X, _ (—1) detBl,,, i> 1.
0&o det Bl,p 0¢; det B-l‘,p
As a consequence we obtain
(3 8) 6Xp _ 6Xp _ det Bl,p-—-l
. 6Xp+1 N 661,_1 - det Bl,p )
We proceed similarly with the system ‘(3.5) gi?ing gs:
Xrr) [ Ias)\ - X\
: = “.7"'»,77?-‘ i p+1
AN-_p_l 1} + = . ~_:.
-XN-I/ f(Xn-1) EN-2
with
-2 1
1 -2 1
AN-p-—I = ) .. ..
1 -2 1
1 =2
Differentiating with respect to &, p < j < N — 2, we obtain
axX, 80X,
M\ POGZE\ 0
AN*—})—-]. ‘ + ‘ — -]- 3
OX - N .
e )\ p(xyo = ) \O
and ——'-(—9-?#—1— is the element in the (j — p+ 1)-th column and first row of the
J

inverse matrix of Bpy; y_1, where this matrix is defined as B; , but with
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the indexes of X running from p+ 1 to N — 1 in the main diagonal. That
is,

0Xpp1 _ (=1)N-?

Oén_2 det Bpyin-1’

aXp+1 __(—-1)]‘”? det -Bj+2,N—1
afj - det Bp+1,N-—-1 ’

(3.9) p<j<N-3.

As a consequence we obtain

a.Xp+1 — _B.Xp+1 — “det Bp+2,N-1

From (3.8) and (3.10) we get

_ 6Xp 6Xp+1 =1 + det Bl,p-l det Bp+2,N_1
8Xp+1 6Xp det Bi,p det Bp+1,N-1

0X, 0Xp41
, E; and 3,
p < j < N -2, which implies (H.1).
Suppose that f is an‘affine function. Then the expression appearing
in (3.11) is a constant.. Thus the factorization condition (2.5) holds, and,
by Proposition 2.2 the conditional independency (3.6) is true.
Suppose, conversely, that (3.6) holds. Then, from Lemma 2.4 this
implies, taking i =0, k=1,j =N —2and l = N = 3, that

(3.12) d [mnm&}'a PXHM&NJ]_O
' X141 10X,/060] 0X, |0Xpt1/06n_2f

almost surely. From (3.7) and (3.9) we deduce

0X, Q?S_>._ o
¢, (350 =2-f(%),

(3.10)

(3.11) 1

> 0,

and on the other hand

are non zero forall 0 <: < p—1,

and

0Xp+1 (5Xp+1)_1 ,
=2 f(XNn_-1)
Oén-3 \OEn—2 f(Xn-1)

Substituting these expressions into (3.12) we get

6,X1 aXN~1
1" , Lopmx y==At s,
) g K g=r = 0, as
0X, O0XnN-1

—21  and
Xppr 0 TBX,
proceding as before, one obtains
0X, _ (=1)p and 0XNn_1 _ (=1)P
8Xp+1 - det Bl,p’ B.Xp+1 det Bp+1,N-—l,.

Observe that the derivatives never vanish. Indeed,
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Consequently, we obtain that

(3.13) (X)) f"(Xn-1) =0,

a.s. If f is not affine we can find an interval Jt;,t5[C IR such that fr(t) #£0,
Vt €]ty,t5[. The mapping from (o, €Nn—2) to (X1,...Xy_1) is a C1-
diffeomorphism of RN-1, Consequently, from our hypothesis on the law of
the variables £, we deduce that the support of the law of (X7, .. . XnN-1) is
IRN-1. So, with positive probability, we have that X; €]t;,t;[ and Xny_; €
Jt1,t2[, which is in contradiction with (3.13). O
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