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Abstract

In this paper we show that the solution of a second-order stochastic differential equation with
diffusion coeflicient 6 X, and boundary conditions X, = O and X, = 1isa 2-Markov field if and
only if the drift is a linear function. The prooi is based on the method of change of probability
and makes use of the techniques of Malliavin calculus.
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1. Introduction

In this paper we study the stochastic differential equation with boundary conditions

X =f(X)+aX, W, 0<1<1, .
X() = 0, X1 = 1.

where {W,, t€[0, 1]} is a standard Wiener process, ¢ > G is a . .stant, and f:R - R
is a continuous function. Because of the condition on X, v : cannot expect to have
a solution to (1.1) adapted to the Wiener process W. We will use the following notion
of extended Stratonovich integral (cf. Nualart and Pardoux, 1988).

Definition 1.1. Let w = {u,,s€[0,T]} be a measurable process such that
fo lus]ds < oo with probability 1. Then we will say that u is Stratonovich integrable
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on [0, T ] if the following limit exists in probability:

T n—1 [
J ugodWy:= lim ) ( j usds)(W,m - W,).
0 ImiNO j=0 J+1 t; H

where m = {0 = t, < --- <1, = T} runs over all partitions of [0, T ].

By a solution to (1.1) we mean a real-valued process { X, s€ [0, 1]} of class C!such
that {oX,, se[0, 1]} is Stratonovich integrable on [0,¢] for each t€[0,1], and
satisfies the system

1 t
X,=X0+jf(Xs)ds+J‘ oX.dW. 0<r<1
0 0

(1.2)
Xo=0X, =1

The values 0 and | at the boundary do not play a special role, and they can be
replaced by any two constants a 5 b. In fact, if Z, is a solution to our equation with
Zo=ua, Z,=b, then X,=(Z, — a)/(b —a) solves (1.1) with f(x) replaced by
fix)=[1/b = a)] f(h — a)x + a).

Several types of stochastic differential equations with boundary conditions have
already been studied (see, for instance, Alabert, 1995 and the references therein). In
particular, equations involving second order derivatives have been considered in
Nualart and Pardoux (1991), Nualart (1991), Donati-Martin (1992), Donati-Martin
and Nualart (1993) and Nualart and Pardoux (1994). In all these cases, the perturba-
tion is in the form of an additive white noise, and the main result is that the solution
has a Markov property if and only if the drift is an affine function. The proofs make
use of an anticipating version of Girsanov Theorem

Our motivation to study boundary value problems of the form (1.1} is twofold. On
the one hand, we would like to test how the technique of the change of probability
behaves when the diffusion coeflicient is non-constant. For first-order equations with
a linear diffusion coeflicient, this has been done by Donati-Martin (1991). In our case,
we also consider a linear coefficient but depending only on X,.

On the other hand, an equation of the type (1.1) can be regarded as a one-
dimensiona! version of an elliptic s.p.d.e. of the form

AX.=f(X.)+VX. - W., zeDc Rk

Xﬁ),\,, = p(2),
k=123 Fovk > 1, this is a difficult problem; it is not even clear how to formulate
a notion of solution. The case of (1.3) with additive noise is studied in Donati-Martin
(1992) and Donati-Martin and Nualart (1994).

Concerning the Markov properties of the solution, recall that if we state an initial
condition (X, Xo), the adapted solution to (1.1) is 2-Markov in the sense of Russek
(1980); that is, {(X,, X)) 1[0, 1]} is a Markov process. Then, a natural question to ask
is what type of Markov property is satisfied by this process when we impose X, = 0,
X, = 1. We will consider the Markov field property, which can be stated as follows.

(1.3)

Definition 1.2. A stochastic process {Z,, uc[0, 1]} is a Markov field if and only if for
all 0 <s <t <1, the families {Z,. uels, 1]} and {Z,,ue]s t[¢) are conditionally
independent given Z, and Z,.
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We recall that this notion is weaker than the usual definition of Markov process.
Markov fields are also called reciprocal processes (see Krener et al., 1990). In the
particular cases of stochastic boundary value problems so far studied, the Markov
field property only holds under rather restrictive conditions on the coefficients. We
will prove in this paper that if Eq. (1.1) gives rise to a Markov field, then f must be an
affine function, and that in such a case the solution is in fact a Markov process. The
method employed to prove this result is based in a change of measure in Wiener space
induced by a transformation of the form

T(w)=w+ J. . us(w)ds. (14)
0

The same transformation is used to obtain an existence and uniqueness result for (1.1),
starting from the solution when f'= 0. We refer to Alabert (1995) for a survey of the
main features of this change of probability method. Another alternative procedure has
been suggested in Alabert et al. (1995), but it does not seem to be suitable for the
equation considered here.

Section 2 is devoted to some preliminaries on the analysis in Wiener space. In
Section 3 we tackle the problem of existence and uniqueness of a solution to (1.1).
A unique solution exists under monotonicity conditions on f. Section 4 is concerned
with the Markov field property for the process {(X,, X,), te[0, 1]}, where X, is the
solution to (1.1) found in Section 3.

2. Preliminaries

Let (2, Hy. P) be the classical Wiener space: Q = Cy([0, 1]) is the Banach space of
continuous functions on [0, 1] vanishing at zero, equipped with the supremum norm
and the associated Borel a-licld; H,, is the Hilbert space of functions in £ with
derivatives in L2[0, 1), with the inner product (I, gdy, == <h g5 and P is the
standard Wiener measure. We will denote H = L*([0, 1]).

Let E be a real separable Hilbert space. A smooth E-valued functional on Q is
a random variable F:Q — E of the form

m 1
Z i,(f h()dw,, ..., J h,,(:)dw,)e,-.
4]

where h,Ac:-H, ¢;je E, and f; are C* functions on R” which have polynomial growth,
together with all their derivatives. Denote by #'(E) the set of these functionals.

For F e ¥ (E), we define its derivative DF as the stochastic process {D,F.0 <t < 1}
given by

m n 1 1
DF=73% Y (“,/,(f h(s)dw,, ... J h,,(s)dW.\)hi(I)c_,-.
j=li=1 0 0

It can be shown that Fe %(E) implies Fe L?(Q; E) and DF e L"(Q; H ® E), for all
p = 1, and that (E) is dense in LP(€; E) (see Ikeda and Watanabe, 1989, Remark 8.2).
Moreover, the operator

D: LY E) - L?(8; H® E),
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with domain ¥(E), is closable. Denoting by D!*?(E) the closure of & (E) under the
graph norm

I Fllgreey := I Fllerge) + | DF | tnon @ £y

we obtain a continuous mapping D:D"?(E) - L?(2; H ® E), called the derivative
operator.

The operator D is local in the following sense: 1=y DF =0, for all Fe D2(E).
This fact justifies the following definition: A random variable F:Q — E belongs to
DL2(E) if there exists an increasing sequence {Q,}, of measurable sets converging to
Q almost surely, and a sequence {F,}, < D! 2(E) such that F,=F on Q,. For
F e DL2(E), the derivative DF is defined as DF(w) = DF (), if we Q,.

Forall p > 1, define L''? = L?([0, 1]; D':?). We denote by L& the set of processes
uel!? such that:

(1) The set of LP()-valued functions {s +— D,ug, s€[0, t]},c 0.1 is €quicontinuous for
some version of Du, and similarly, the set of functions {s > Dju,, s € [t, 1]},c0.1; 15 also
equicontinuous for some (possibly different) version of Du.

(2) ess sup.pero.1y ELIDitg|?] < oc.

The adjoint of the unbounded operator D: L*(Q) —» L*(€; H) is called the Skorohod
integral and denoted by d. It satisfies the following local property: 1, :q: =0y 0(ut) = 0,
forallueL!?, p > 1. We can introduce as before the local spaces L5 and (L¢P, for
p > 1. Then we have (cf. Theorem 7.3 of Nualart and Pardoux, 1988):

Propusition 2.1, If ue(IL¢ ). then:
(1) The limits D) ug = limy, .o Dy and Dy u, = lim, ., Dy, exist in probability.
(2) u belongs 1o the domain of the operator & and is Stratonovich integrable,

i i ] i
(3) j u, dW, = o) + i;f (D, u, + D, u)ds.
[¢) = g
We also need the following different concept of differentiability:

Definition 2.2. A mapping :Q—H is H — C' if there exists a random kernel
Du(w)e L([0, 1]°) such that:

(1) Tulew + fyheds) = w(e) = [Du(@))(W gy = ol k) as [ hi g -0, as.

(2) The mapping i — Du(w + {, hyds) is continuous from H into L*([0. 1]%), as.

Ifuis H — C', thenue L), and the kernel verifying the above conditions (1) and (2)
is precisely the derivative Du.

For any Hilbert-Schmidt operator % on a Hilbert space H, its Carleman-
Fredholm determinant, denoted by det,(Iy + ), is defined by

d&tg(!u + ) n “ + i“

where {4; ]/, is the family of eigenvalues of %", countd with their multiplicity. For the

properties of this quantity and its role in the theory of integral equations see, for
instance, Cochran (1972).
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The following is a Girsanov-type theorem for anticipating transformations. It will
be our main tool in Section 4.

Theorem 2.3. (Ramer, 1974; Kusuoka, 1982). Let u:Q — H be H — C*. Suppose that:
(@) The transformation T:Q — Q given by T(w), = o, + [y u(w)ds is bijective.
(b) The operator 1 + Du:H — H is invertible, a.s.
Then, Q := P~ T (the image of the W iener measure through T ') is equivalent to P and
G

T |dets(I + Du)|exp{ — o(u) — 3 ullZ}. (2.1

Remarks 2.4. There exist stronger versions of Theorem 2.3, but we will not make use
of them. Particularly, Ustiinel and Zakai (1993, 1994) have obtained representations
for the density of Q without hypothesis (a) and with less regularity on F.

The whole of this section can be stated in the context of abstract Wiener spaces
without difficulty. [

3. Existence and uniqueness

A formal computation, using the fact that the Stratonovich integral follows the
rules of ordinary calculus, yields from (1.2),

{

X' - cﬂ’u".x’() _*,J\ cl‘f““, “'Jv"(x\p‘\’ d,\" () :"\: { g l,
]

(3.1)
4\’() B 0, ¢\’| == l.

Consider the following proposition, whose proofl is a consequence of the definition of
the Stratonovich integral.

Proposition 3.1. Let {¢, te[0, 11} be a process with C' paths. Then the process
{pe™, te[0, 1]} is Stratonovich integrable in each interval [0, t], and

(U]

] t .
J‘ he™ o dW, = ! ((b,e”"" — ho — J (/)sc”w'ds) (3.2)
o 0

Applying Proposition 3.1 to ¢, = X, + [ge~ "/ (X,)ds, we deduce that il X solves
(3.1) then it satisfies (1.2). We remark that the converse implication requires additional
assumptions (for instance, X € (L& *),.c. see Alabert et al., 1995), and we will not discuss
this here. So, henceforth, we will work with Eq. (3.1) instead of (1.2).

Let Y = {Y,, 1€[0, 1]} be the solution to (3.1) for /= 0. Clearly,

1 1
Y, = ( ( c”“’m') f e ds, tef0,1]. (3.3)
Jo 0

Notice that for all we, the function Y.(w) belongs to the class X of continuously
differentiable functions in the closed interval [0, 1], which take the value O att = 0 and

(9]
‘9
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1 at t =1, and possess a positive derivative in [0, 1]. Moreover, the mapping
w+— Y(w) is a bijection from Q to X, with inverse

|
Y (¢ = - log(C(®/E(0), <el. 34

Let T:Q — Q be the transformation defined by

RALEC) N

T,(w) = w(t) — oV

(3.9)
Then we have:

Proposition 3.2. A process X = {X , 1[0, 11} is a solution of (3.1) with paths in X if and
only if there exists Z:Q — Q such that T(Z(w)) = w, and Z is uniquely determined by
the relation Y (Z(w)) = X (w).

Proof. Let X be a process with paths in X and define Z(w) = Y " '(X(w)). The
property T(Z(w)) = w means

Y (Z(w))

Z(w) = w, + o 6Y(Z(w))

ds. (3.6)

From (3.4) we obtain that (3.6) is equivalent to the equality

[
log(X,/Xo) = J‘ LL{‘) ds + oW,
0 X\
or
e "X, = Xehl ki (3.7)

Clearly, (3.7) is equivalent to (3.1). [

Corollary 3.3. If the transformation T:Q — Q defined in (3.5) is bijective, then there
exists a unique solution of (3.1) with paths in 2.

We want to find conditions on fin order to ensure that T is a bijective transforma-
tion. Notice that, from the definition of 7, this is cquivalent to the existence and
uniqueness of a solution ve Cy([0, 1]) of the deterministic integral equation, obtained
by putting v, = 0, — .

l : air, + 1) ! . (; e'm“ L dU
(I ¢ dy ] ] ¢ Aot gy = 0, (‘28)
o Jo Jo" \ g €™ du
for each fixed ne Cy([0, 1]). Notice also that it is enough to have f defined only on

[0, 1].

To study (3.8), we consider, for each x > 0, the equation

x[t /1 e
(X)) — o j ! (w j gflnu ¢ ""’du)e””“‘“" N ds = 0. (3.9)
[t

by \N Jo
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If we prove that (3.9) has a unique solution v,(x)e Co([0, 1]), for each x > 0, it will only
remain to show that one and only one x > 0 solves

1
Y = J~ (’”‘l’(‘)+’l’)d§
0

We use this procedure to show the following theorem.

Theorem 3.4. Let £:[0, 1] > R be a nonnegative and nondecreasing C* function such
that f(0) = 0. Then, Eq. (3.1) has a unique solution X, which paths in .

Proof. It will be a consequence of the following two lemmas.

Lemma 1. Suppose that f:R* —= R is a locally Lipschitz, nonnegative, and bounded
JSunction. Then, for all x > 0, Eq. (3.9) has a unique solution v(x)e Co([0, 1]). for each
fixed ne Co([0, 1]).

Proof. We prove first the uniqueness. Fix x > 0 and ne Cy([0, 1]). Let v,(x) and ,(x)
be two solutions of (3.9). We will have

t s
; . X VA . BN
[ (x) — §(¥)| < —J / (—J c"““""*”“’du)e alnix) +n)
G Jo X Jo
l K]
__/(_“ J\ en‘(u‘"(\*) + r),,)du) e I UNBYIE SN
X Jo
t{ s N
X f1 o {1 ,
o ‘\ / - f C(rll,,(\) :1,,)“.‘“ ”l (WJ‘ CM'"“' + "“)dll)
7 Jo NJo X Jo
I N
+ ’(A [\ cn(r.,l\l 1) du) l ¢ alrds) gy e a{e g ,,‘;I d.\
X JO
Y { l R}
% - C‘ J‘ __: j‘ (enr,,(‘\) . crw,,(‘\')) em;,, dll
o o (X Jo

Fle Y —e g '} ds, (3.10)

ds

ar (v) + )

/AN

C

e cafe,ny) 4o

from some constant C, using the Lipschitz property and that f'is bounded. Conse-
quently, we can write, for some constant C,

lv(x) — 6,(x)] < C [ (I vy(x) - 0,(x)] + f [0 (x) — E,,(.\')Idu)ds.
J O [}

and by a Gronwall-type inequality we deduce |v,(x) — 7,(x)| = 0, for all re[0, 1].
Local existence of a solution in a neighborhood of zero for the Cauchy problem

{
1 (X F ) gy [ o) ),
X Jo

du,(x) _ _‘f/
dt o
vo(x) =0
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can be shown by Picard method, using arguments similar to those of (3.10). We want
to see that this local solution can be extended to the whole interval [0, 1]. We denote
a, = e’". Hypothesis f = 0 implies dv,(x)/dt = 0. On the other hand,

durt) <Zsupfy) sup a7,

d xeR™ tef0, 1]

and this implies that we can extend v,(x) to [0,1]. O

Lemma 2. Suppose that fis of class C* in [0, 1], withf (0) = 0,f > 0 and f’ = 0. Then, if
v,(x) is the solutioi of (3.9), the mapping ®:R™ — {0} »R* — {0}, defined by

1
’CHJ‘ err(v..(x) + m)du
0

has a unique fixed point.

Proof. Put, as before, a, = ¢”, and denote also f,(x) = e™"/x, for x > 0. Differenti-
ating with respect to t, we can write (3.9) as

g AT (X) dv‘(x) - (_l, J‘l aS(U,4X) +11,) - an,
< ¢ T f , ¢ du e ", (3.11)

\*

or, in the notation just introduced,

ﬂgdf) t/( j oz,,[j,,(x)du) a
0

dt

Differentiating with respect to x, we obtain

d dfi(x) ([ . S, dBux)
dy dr “‘“./ (f() Dtu,}u(v\)du) %, J;) oy “"a“‘;-“‘“‘ du.

Denoting p,(x) = f'(jo %, fu(x)dwya, ' =0, and integrating with respect to t, we have

S

d d i 3 d
dv pi(x) = I Polx) + J.o 75(x) L oy ix Pu(x)duds. (3.12)

)
But (d/dx) fio(x) = — 1/x?, together with (3.12), implies that (d/dx)8,(x) < 0, for all x.
Therefore, f,(x) is decreasing in x for each fixed 1, giving that @(x)/x is also decreasing.
We deduce that @ has at most one fixed point.
We turn to the existence of that fixed point. We know from the proof of Lemma 1
that v,(x) is nonnegative for all ¢ and x. Consequently,

1
lim &(x) > j 2, du > 0. (3.13)
(

x=0 )
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On the other hand, ¢ is bounded. Indeed, integrating with respect to ¢ in (3.11), we
obtain

¢ 1 S
e =1+ x f f ('\; f o, €Y du) ag ' ds,
[¢) - 0

and using f(x) < Kx,

i s
e Mgl +K j a ! j e’ duds
0 0

t N
<1+ CJ J. e duds (3.14)
0J0O
for some constant C. Inequality (3.14) implies that & is bounded. From this fact and
(3.13) we arrive of the existence of the fixed point, because lim,_.o ®(x)/x = o0 and
lim,., , @(x)/x =0.
The proof of Lemma 2 is complete and Theorem 3.4 holds. [

Remarks 3.5. Condition f(0) = 0 cannot be removed. Suppose, for instance, that
f= K > 0. In this case, one can prove that T is not bijective.

This does not imply that (3.1) fails to possess a solution. If f = K # 0, we can solve
(3.1) directly, and the solution is

] i s
X, = XOJ‘ e:ds + K [ e"w'*J. e "eduds,
( (

) JU D

where

i S i -~ 1
Xy = (I — K J c"”*J ¢ """"'duds)( [ c"”"'dx‘) .
0 0 Jo

In this case, the paths of the process {X,,1€[0, 1]} do not belong to 2. [0

4. Markov field property

The idea of the change of measure method to study nonlinear anticipating stochas-
tic differential equations is analogous to that of the classical Girsanov theorem for
non-anticipating ones. We have chosen a transformation T:2 - Q such that
X, =T '(Y),, where X is the solution to our Eq. (3.1) and Y, defined in (3.3),
solves (3.1) for f = 0. Therefore, defining @ = P~ T, the law of ¥, under @ coincides
with the law of X, under P. Anything we can prove concerning the first produces
automatically the same result for the latter. In other words, we switch to the simpler
process Y, given in explicit form, at the price of having to deal with a more
complicated measure.

First, we will prove that the process (Y,, Y,) is a Markov process under the original
probability P.
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Proposition 4.1. The two-dimensional process {(Y,, Y,), te[0, 1]} given by (3.3) is
a Markov process under the Wiener measure P.

Proof. Itis enough to show that for any ¢, s€ [0, 1], s > t, and for any measurable and
bounded function ¥ : R?> - R, the conditional expectation

Ep[l,ll(Ys, Ys)/(Yr, Yr) r< t] (41)

isa(Y,, Y,)-measurable random variable. It is easy to see that the o-field generated by
{(Y,, Y,), r <t} coincides with the one generated by

1
f eWr-Wdr and {W,,r<t}.
t

Denote

1 t
o = J eaw,dr’ B —_ J eo'W, dr, y = eaW
0 0

a, f# and y are measurable with respect to the conditioning o-field, so that we can write
(4.1) as

§ 1 1
Ep [:w (_:; (/j + },J‘ eo(w, -~ w"dr). a ,})ed(“/‘ - W,))/j ea(W, - W) dr, {wrs r< t}]
4 t

4.2)

in the sensc that «, f and y are constants that should be given their values after
applying the conditional expectation operator.

Notice that the variables {W,,r <t} are independent of all other variables in-
volved, and therefore they can be removed from (4.2). The resulting expression is
a function of

l; J(] en" 1 ¥ ‘ ev?W, Y
eV e g T Te
«  fle™Mdr x fyemrdr
! l-Y
e Wi dp = — =t
£ Y,

which are (Y,, Y,)-measurable random variables. [J

We want to apply Ramer-Kusuoka Theorem to the transformation T defined in
(3.5). First, notice that if f'is of class C!, then the stochastic process

AL

a¥,

(4.3)

is = -
is H — C'. Its derivative Dy, is given by

w}:-i[f( Yo+ (Ya( - Y)] ifr<s
Dtus == 1 : Y (44)
-—;-;—‘ [—f(Y)+f(Y)Y] ift>s
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Indeed, using the chain rule for the derivative operator, we have

— Y. f(Y)D,Y, +f(Y,)D,Y,

Dtus = GYf 3
with
DY — [01 e’ drfs e 1y (D dr — f5e dr jol oe”"" 1o () dr
o (g ™ dr)?
=0l - Y.(1 = Yl 4(t) — Y(1 — Y)1j5 4(0)]
and
D' }_’ _ O.em’l/s 5(; eoW,. dr 1[0.s](t) . eﬂWs .‘01 o.eaw, l[O.r](t) drC

( j-ol LA dr)2
= O'[YSY, l[o,s](l) - Ys(l - Y:)lls.l](t)]’

and we obtain (4.4).

Proposition 4.2. Let f:[0, 1] — R be a nonnegative, nondecreasing C* function such
that f(0) = 0. Let u be the stochastic process defined in (4.3). Then,

(1) The transformation T :Q — Q given by T(w), = w, + j(‘, us(w)ds is bijective.

(2) The operator I + Du(w) is invertible, a.s.

Proof. The bijectivity of T is contained in the proof of Theorem 3.4. It only remains to
show the invertibility of the operator in (2).

Suppose T~ ! is Fréchet differentiable in . Then, the following lemma (see Nualart,
1993) applies.

Lemma. Let T:Q-Q be a bijective transformation  of  the  form
Tw)=w + j(', udlw)ds. (This  means that T Yw)=w + j{, u(w)ds, with
i(w) = — u(T "(w)).) Suppose that u. 2= H and T ' :Q —  are Fréchet differenti-
able.

Then:

I'=[I +Du)(T" Y (w)]"[I + Dii(w)] (4.5)
By the Fredholm alternative, equality (4.5), which can be written
= [I + Du(w)] - [I + (Da)(T (w))],
implies that I + Du(w) is invertible and
[I + Du(w)] ' =1 + (Da)(T(w)) =1 — (D(u> T "N(T(w)).
Let us show that T~ ! is indeed differentiable, and the proof will be complete. Recall

that

T~ 1) = ¥~ (X)) = log () Xo(o)) (4.6)
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where X is the solution to the system (3.1). Consider the function
F:C([0,1]) - C([0, 1]) x R given by

F(X) = (X, - e"""()'(o + J.‘e“"wsf(Xs)ds),J‘

0 0

1

X, dt — 1).

It is enough to check that the Fréchet differential DF(X) is invertible for every
X eC[0, 1]) and the conclusion follows from the Implicit Function Theorem. The
derivative of F in the direction of ye C([0, 1]) is

1
[DF(X)}(y) = (y' — Ayo — Bi(y) L y,dt),
where
A =eW,
B,(y):= j‘ e”Wi = Wlf '(Xs)j Yududs.
0 0

Fix (h, «)e C([0, 1]) x R. The equation y, — 4,yo — B,(y) = h, has a unique solution
y(yo) for each yo€R, and it only remains to show that there exists a unique y, such
that

1 1
(L A,dt) Yo + j) B,(y(yo)dt = a. 4.7)
(
We have
d d

a}’o y(yo) = A, + a"’;’;’; B.(y(yo))

t ) ) 5 d
= Ar + j et ""."'(Xx)J\ N .\’u(.\"())d“ ds,

0 o dyo

which, together with the initial condition (d/dyo)y(yo)li=o =1, yields
(d/dyo)yi(yo) = A,, Vi e [0, 1]. Therefore, (d/dyo) Bi(y(vo)) =0 = — A4,, and this im-
plies clearly that (4.7) has a unique solution y,. [J

Therefore, under the hypotheses of Proposition 4.2, the Ramer-Kusuoka Theorem
can be applied and we have the equivalence of the probabilities P and Q, with dQ/dP
given by formula (2.1). We are going now to compute the Carleman-Fredholm
determinant that appears in this density.

Proposition 4.3. Let Du be given by (4.4). Then,
1 1 ! ~Y
dety(I + D) = (I - j .q(s)ds) exp{ [ ““"‘;;'"“ Y] =S(Y)Y{] ds}, (4.8)
V] / JO N

where ¢:[0, 1] = R is the solution of the Volterra equation

g(t) + L M(t, s)g(s)ds = M(t, 0), 4.9)
(
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with

Mt )___1_:_5[”, YUY, - Y !

s S) = Y, ( t) "f( r)( t v)] 1 — Ys‘ (4-10)
Proof. We will denote
1
o)=Y, @)= 2 [FY)+f(Y)1 - Y)],
1
9(1):=‘Y‘[—f(Yz) +f(Y)Y,] 4.11)

D,u, can then be expressed
D = oY)l <o + (1 — @@)0(s) 1, - .

For each fixed ne N, denote t; = i/n and define ¢;(t) := \/;_1 1, gy@®fori=1,..,n
The function

] n '
K™(t, 5) = Z Lotti-D(t;- Dl +(1 — o(ti- NO(t;- )15 5]

ij=1
x ¢;(t)e;(s) 4.12)

converges to Dy, in L3([0, 1]%) as n increases.

We can compute det, (I + D) as lim,.,, det,(I + K™(1, s)), since the Carleman-
Fredholm determinant is continuous in L2([0, 17%). On the other hand, the matrix
B™ = (b{}), where

1 e
=@t ) (t;-1) if i<,
pot = 4!
7] l o . 9
;;(l — i )O(t;-y) P>
satisfies
det, (I + K"(t, s)) = det(lp + B™)exp{ — tr B}

The trace of — B"™ converges as n = oC 10

1
- J o) (t)dt. 4.13)

0

Concerning the determinant,

1
det(IR" 4 B(")) = F X
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n+ @(to)¥(to) o(to)y(ty)
(1 —@(t))0(te) n+ oY)  ot)Y(t2)
(1 —ot2))0(te) (1 — @))0(t) n+ @(t2)Y(t,)

Ve

. . . (p(tn— Z)l»b(tn— l)
(1 = @(ty-1)0(to) S N (A 11 (A
(4.14)

Since ¢(ty) = 0, we suppress the first row and the first column. Subtracting the
(i + th row from the ithrow (i = 1, ... ,n — 2) and then subiracting the (i + 1)th row
from the ith one multiplied by

oL+ 1) — @(t)
O(tiv2) = @t 1)

=1,..,n=2),

we arrive at
m
ay hl Cy 0
0 & b & o0
0 a by
1

del(l.;g" + Bm) = N" -t K . K . (4]5)

(n) J(a)
hn S O |

a:,"! 2 h:,nl 2 |

di' d3 dS e dy e
with
@" = n 4+ U (t) = (1 = @UDO), i=1,..,n-2

N U 1) — o(t) RN T ‘
t n (p(tn 2) - (P(t.w l) (‘P(tw-)'/’(’c + l) +n (l ‘p(lr"- 2))0(114‘ l))a

i=1,....n-23,

P, = — - Pty 1) = plt,- 1) LWL o Ptiv ) — olt)

) Pta) — @ty- ) (Ut} + ey 'fP(lwz) = o(tiv 1)
i=1,..,n=13,

d" = (@t — @(ta- )0,

e =0+ @ty- DP(ta- 1)
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We transform (4.15) iatc triangular form by adding to the last row a suitable
combination of the others. Let m\™ be the multiplier of the ith row:

aPm” +dV" =0,
)
B\"my" + a'mb) +dY =0,
(n) _(n)

A + b o+ adn M, +d®, =0, i=1,..,n—4 4.16)

The determinant in (4.15) can be expressed:

1 n—2
det(Ig + B™) = R @™ + b om™ 5 + ™ am 3) I1 a™.

i=1
On the one hand,
n—2 a{") n-2 a(.n)
li - = i log —
,,:r? "l:[l n xp '}Ln: i=1 8 n
"o et () — (1 — @(t))0(t)
- ]’ l l 1 ] i/
exp lim 3, °g( ¥ ,

n-2 1)kt Noirdt) — = . Y\k
—explim Y Y 1) (tp(t.)w(t.) (': «p(t.))()(tl))’ @17

B =) k=1 k
where the last equality is valid for n large enough. Given that ¢, ¥ and 0 are
continuous, the double series converges absolutely and we can apply Fubini and
Dominated Convergence Theorems, obtaining that (4.17) is equal to

.
cxp“ [p(Dy() — (1 — p()O(n)] dr}. (4.18)
0

On the other hand,

]
lim - (™ + b ,m™ 5 + " mi" ,

n—a M

= lim 1[" + q’(’ow 1)‘//(ln~ 1)

n-ao N

+ ( —_n - oty ) — olt,- 2)

P(ta) = @ty 1) (@t lta 1) + "))'n::"f 2

o(t,--)— @lt, -
+n P( n 2) P( n 3) ':;"«! 3]
([)(t,,wl)“"([)(l"mz) }
=1-=2lim m", + lim m}" ;, (4.19)
n=rx [ Radie &)
taking into account that ¢ is differentiable .2nd provided the last two limits exist. It
only remains to see that these limits exist and to compute them.
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Multiplying by » in (4.16), we can write this equality, fori =3, ... ,n — 4, as

nz[ o(ti+1) — o(t)

m™
O(tiv2) — @(ti 1)

O(ti+2) — o(t;+ 1)) (n) m ]
+{ -1~ Miyy + my;
( O(ti+3) — @(tis2) . 2

+ "[((P(th)‘ﬁ(tnz) -1 - (p(ti+2))0(ti+2))'n5"22 (4.20)

_ Oti+2) — @(tisy)
P(tiv3) — O(tis2)

+ n[(p(t,,) - (p(tn— 1)]0(ti+2) = (.

(@i )Y(ti+2) — (1 — o(t; 1 3O + 2)'"?2 1 ]

Define
pii=n[Em” + (~1 =&, i, +m",] fori=1,2,....n—4,
with
. Pltivq) — (1)
Eprm e =Y (4.21)
O(tis2) — @ty y)
Then,
{
2_ P’ = nAEmy (— 1= ¢ Imy + my
k=1
+ Em 4+ (= 1= EYm + mf”
+Eam™ (== Em" + m, (4.22)

g .. 1) (C])
+Em” 4 (=1 =& mi, +m",

2 .00 {n) %
= [Emy" — my — & D + "™,

and we also have

i k
Y (@tiis) = o) Y pi”
V=1 i=1

i
= Z Wt 3) = @t IUE " - ms) — (00 2) — ot Dmy |
k=1

+ (s 3) = @t )",
= n¥(p(t;, 3) = ‘P('s))(é;"l{;ﬂ - mg"
0l 3) = @ty Dy ~ (plt3) = ple2)mS)

= 0@+ 3) — @UNE MY — (@4 3) — QUM + (@(E14 3) — @t m™ ).
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Solving for m\" ,:

m s = (:1.+z Y Z (@(tk+3) = @lti+2)) ; p‘"’) T _1_ sy @
where

ii= — (@(ti1) — @ENEMY + (@(ti+1) — @(L))mS. (4.24)
Substituting into equality (4.20),

0 =pi” + nl(@(ti+ DY (tis2) — (I — @(ti+2)00ti-2)) (4.25)

1 ¢ 1
(») (n)
i+2 +.._._ q t t+
('7+ nzkgl(P(k+3) q’(k 2) §='1p ) (ti+3) (IHZ)

_ P(ti+2) — @ti+1)
Q(ti+3) — olti+2)

(Ui )W (tir2) — (1 — @(t:+3))0(ti4 2))

) - _ (n) 1
X (}']..._1 -+ Z ((p(tk+3) (P(tk't 2)) =Zl Di ) (p(li‘*z) - (,D(ti+ ])

+ "[‘P(tn) - ‘p(tn - l)]o(‘HZ)-

The last term tends to ¢’(1)- 0(t) as n — oc. If we multiply and divide by n, the second
term can be written

[(”(‘/’(fu 2) = @ty )Wty ) + 0(t;42)

n I n
X (l”]: 4)1 + ;, Z n((p(!k 4 3) - ([)((k; by Z p‘ ))

k=1

i Pt ) = (1 = @t )00 1))
X ("z('l:"»)z =)+ () = ol z)) }: Pm)\l

X ! .
n(p(tis3) = @iy 2))

It is immediate that

lim n(p(t; 2) = Ui N 2) + 000 2) = — @' (D) + 0(),

"=

Hm ot )P 2) — (1 = @i )00 2) = @O (1) = (1 = @(1)0).
Let us sec lhat nyi" 5 and n*(@y") 2 — 1y 1) both have limit zero: Recalling the defini-
tions of m'" and m$" (4.16), &, (4.21), and »{" (4.24), we have

- olt2) = olt)  dY

mi'y 2 = (Pl v 3) — @(t3) —

CH—
pts) — ‘/7(12) a(l")

dy + bm"
—(p(ti+3) — o(t3)) n —2———(;;,1—1— (4.26)
2
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The first term has limit zero, because lim,.. , ndy" = ¢'(1)0(0), lim, . ai” = + o,
and the other factor tends to ¢(t). Similarly, lim,_ , nd3"/a$" = 0, and

nb(n) (n)

lim 2L
n— o (1‘2”)
t,) — oft n
(n + 2("L—ﬂl—)(" + @t DY (i 2) — (1 — @t 4 2))O(E; + 1)))'"d(1)
_ o(t3) — olt2) =0
= lim m_m -
= ay’ a

because the order of numerator and denominator is n and n?, respectively, for large n.
On the other hand, from (4.24),

n? (" — it 1) = nloltic3) — @t ))mS — némi").
Both terms in the second factor appear in (4.26) and we have just shown that they tend
to zero, while the first factor tends to ¢'(t).
(n)

The jump function defined by p;", i.e.

2"(1) = Z I’ﬁ‘m g TP (4 X

converges a.c. and boundedly on [0, 1] to the solution z of the Volterra integral
equation

To sce this, notice first that, in view of (4.25) and the limits above, one can write
f 4§ 8
2] £ A™ 4 B‘“’f [2"(s)]ds + (“"’J J 2" u) ) duds (4.27)
O 0OJO

for some converging sequences 4™, B™, C™, whence | z*'(¢)| is uniformly bounded in
n and t. Taking this into account, an inequality similar to (4.27) is obtained for
[2"(1) — z(1)],te]0, 1 - 3/n]. We will have then lim, .. , 2™ = z, a.e. and boundedly on
L0, 1].

We can now turn back to (4.23), to compute the limit we are interested in:

] 08§ |
lim a3 = lim (i w * = Ot 3) — ol Y "
In- 3 Y (ol ) = ot ) Y pi o ) = ol

03 TR k 1 l~'

fi

| l n- S !
—— lim (") - )ﬂ n(olt, 3) — @iy, ,)) bn (n))
(p(l)(“” In- 0=, Ot 3) — @ty 2] 11:'1“

1 vl Y Y
= (ﬁ[ q:)(\)J z(u) du = (”J z(s) [ ¢ () du

0 0 N

P
xj L - q’)(s) (s)ds.

o'l
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The computations for lim,_, ., m"" , are the same, with the same result, and therefore,

using (4.19), (4.18) and (4.13), we find that

l —
det,(I + Duy) = (1 - f : ,(p(s) z(s)ds)
o o) .

1 1
xexp{ - L @(t)w(t)dt}exp{ f [0 — (1 — p)0)] dr}

_ "1 —o() !
= (1 - L o) z(s)ds) exp{ - J‘O (1 - (p(t))B(t)dt},

Alternatively, if we define

— @(s)
@'(1)

1
g(s) = z(s),

we obtain

1 1
det,(I + D) = (l - f g(s)ds) exp{ - J (1- (p(t))O(t)dt},
0 0

with g(r) the solution of the integral equation
{
g(t) + [ M(t, s)g(s)ds = M(1, 0),
o0
where
I — ol
M(t, ) ;= wwmﬂL‘l [ p(s) — (1 — p(s)0D)].
1 p(s)
Using now the notations (4.11), we find (4.8). [0

It is casy to show that, under the hypotheses of the previous proposition, the
process u, = — f(Y)/aY, belongs to L& 2 and we can apply Proposition 2.1 to obtain

! 1
j u,.desz()'(u)-}-J‘ (‘l““‘}‘;““[ /(Y)+/(Y)Y\J+/(:Z))ds
0 o ]

Formula (2.1) can be written (using (4.8)) as

1
dQ i J g(s)ds

dpP
xcxp{j LL-L) J‘ I/“—Q (’«():)> ]d.s},
0 0

where ¢ is given by (4.9).
Fix two points 0 € s <t < 1, and denote

%i = (J'( Yu-: flu)s ME[S, (‘]}" E'c:z 6{( Ym Yu)v “E]S7 t[c}*
§i=alY, Y, Y, Yl (4.28)
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We know that (X,, X,) is a Markov field under Piff (Y,, Y,) is a Markov field under
0, and this is in turn equivalent to say that for any bounded and §°-measurable
random variable ¢, E[¢/&'] is an §°-measurable random variable, for all possible
choices of s and t. It is easy to show that

Ep[¢/31]

4.29
/ST @)
where J:=dQ/dP.

In our case, J admits a partial factorization J = ZLIL¢, with L' and L° measurable
with respect to &' and §°, respectively. Specifically, we can take

P [ f(Y) 1 f(Y) [(f(Y)\?
L“e""[mn ov, W zf[y '(v)]"}

o[ £ L[ (f%)
t _exp[vls L GY dW +2J;s.t[‘|: Yu (Gyu> :'dt}

r1

1 -1 g(s)ds].

JO

Eol¢/&] =

7 = (4.30)

The quotient in (4.29) is then equal to
Ep[SZL/§']
E[ZLY/E]
Taking & = n(L°) ', with 5 an F°-measurable random variable, we obtain that
(X X uel0,17) is a Markov field iff

A e ['7//’?]

is “'?"umeasumblc for every boundcd and §‘-measurable variable .

Moreover, interpreting now g, Z, and A, as random variables on &, and &; as the
o-field on X generated by the sets {Y: Y, e B, BeB(R), ue[0.r]} and {Y: Y,eB,
BeB(R)}, the condition above can be written

A o “Pt['iz/&]h o= ly
" En 2w S

where Py is the law of Y:Q - .

Our goal is to prove that, under certain hypotheses on the function fof (1.1), if the
process {(X,, X,). ue[0, 1]} is a Markov field, then fis lincar, and that in this case the
process is in fact a Markov process. The second claim is easy:

(4.31)

-measurable, 4.32)

Theorem 4.4. If fis lincar, then {(X,, X,), ue[0, 11} is a Markov process.

Proof. If f(x) = ax, the integral equation defining g is

fa(l = Y)Y,
t e () S =
glt) + L V- Yy g(s)ds = 0,
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and has g = 0 as the only solution. Therefore, in this case, Z = 1 and J can be written
as a product of two random variables measurable with respect to ¢ {(Y,,, Y,), u€[0, 11}
and 6 {(Y,, Y,), ue[t, 1]}, respectively (take L' and L° with s = 0). Using that (Y,, Y,)
is a Markov process (Proposition 4.1), we obtain 4, 1s (Y,, Y,)-measurable. Hence,
(Y,, Y,) has the Markov process property also under Q, and (X,, X,) must be a Mar-
kov process under P.

In fact, if fis linear, we see from expression (4.4) that D, is a Volterra kernel
(D = 0, for t > s). In that case, the Carleman-Fredholm determinant of I + Du is
always equal to 1 (see, for instance, Cochran 1972, Section 5.1). This implies directly
a factorization of this type for J. []

To see the converse, the usual technique, employed in other boundary value
settings, is the Malliavin Calculus on (2, §, P). Our method will be different. We will
perform a calculus of increments directly on the path space of the process Y.

Recall that

Y ={y:[0,1]-»[0, 1] of class C' such that yo =0,y =1 and y > 0}.

We consider in X the topology induced by the norm |y || . + |l ¥ . The law of the
random variable Y: Q — X has the whole set X as topological support, because Y has
a continuous and hijective version. Clearly, the mapping Z: 2 — R defined by

1
Z(y) = l 1 “J glyl(s)ds|, (4.33)
(4

)

“ o . . o .1 .
where ¢g[v] solves (4.9) with Y = y, is continuous on X. Moreover, | — |, g(s)ds is
always positive or negative, since I + Du is invertible for all we Q.

Proposition 4.5, Fix (€ 0, 1[. Let Ty, Ty : X = X be continuous transformations such
that

T(¥)o = T2(Wo = Yo. ?ﬁ(.\")r =T,y = ¥ (4.34)

and
T (=, Vse[yl1], Ty(v)s = vs» Vse[0,1]. (4.35)

Assume that [ satisfies the hypothesis of Proposition 4.2 and that condition (4.32) holds
for the points s = 0 and 1. Then,

ZOWZ(T (T () = Z(T((WZ(T 2 (y)) Vyvel. (4.36)

Proof. Under hypothesis (4.32), we have A,(y) = A,(¥o, Vi, J) This implies that, if
T:¥ — ¥ is a transformation verifying (4.34) and (4.35), then A, (T () = A,(y). That
means,

EZ/FUTY) _ EZ/FI)

. - 10) b s, (4.37)
ELZ/FITo)  ELZ/En
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We also have

E[Z/FNT() = E[Z°T\/&1(), Py-as. (4.38)
and

EMZ/FUT1(y) = EINZ-T)/F1W). Pyas. (4.39)

Indeed, we can assume that Z has the form Z = Z'Z¢, with Z' and Z°¢ & and
& -measurable, respectively. Then,

EMZ/FNT () = Z(T (W EMZ/FNT ()
= Z(T(WEMZ/F1(y)
= E[(Z'> T\)nZ¢/F1(»)
= E[(Z'> T)n(Z°> T,)/F1)
= E[W(Z> T,)/&F 1),

where we have used that E[#Z°¢/&'] is &®-measurable (because {(Y,, Y,), ue[0, 1]} is
a Markov field) together with conditions (4.34) and (4.35), and that T, is &'-measur-
able (yielding Z°- T, = Z°). This proves (4.39), and the proof of (4.38) is identical.
Substituting (4.38) and (4.39) in (4.37) we obtain

E(nZ T)E[Z/¥)/&] = EWZE[Z-T\/&')/&], Pyas.
In other words, for all ¢ §'-measurable and for all n F*-measurable,
E(WZ TOE[Z/E] = E[EnZE[Z - T,/&'7). Py-as. (4.40)

Equality (4.40) remains true substituting ¢y by any random variable §' V §*-measur-
able, yielding

(Z T)E[Z/§'] = ZE[Z T\/§'], Py-as,
and we deduce that (Z - T',)/Z is §'-measurable. This implies

ZT Z:T
WZ; (T,H(y) = 7——1 (v), Py-as.

and consequently equality (4.36) as it was to be proved. Taking the continuous version
of Z defined in (4.33), the equality holds for all yeZ. [
Proposition 4.6. Suppose that {(X,, X)), t€[0, 1]} is a Markov field, and f satisfies the
hypothesis of Proposition 4.2. Let y, vy, va€ X be such that, for some te]0, 1[,

PO) = 2(0) = ¥2 (01, F(1) = ¥, (1) = ¥

yal8) = y(s), Vse[0,t],  »i(s) = »(s), Vseln 1]

Then,

t 1
(L (g[y16s) — gy 1) d8> : ( j (9ly]es) - g[yz](S))dS) = 0. (4.41)
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Proof. Denote

Q) yi(s) if s
V1.2(8):= {yz(S) i s

Then, (4.32) holds for s = 0 and t€]0, 1[, and (4.36) implies that
Z(y)Z(y2) = Z(WZ(y:.2)

As a consequence,

(1 - J(: gly:1(s)ds — J’I g[y](s)ds)

x(l - [[opaeas— [ g[Yz](S)dS)
- (1 - [[omawas- [ g[.v](s)ds)

X (1 - J{: glrils)ds — f’l y[yz](s)ds),

which reduces easily to (4.41). [

We finally state a converse of Theorem 4.4.

43

Theorem 4.7. Let f:[0, 1] = R be C', nonnegative and nondecreasing, with f(0) = 0.
Let X, be the solution of (3.1). Then, if the process {(X,. X,). 1[0, 1]} is a Markov field,

fis linear,

Proof. Suppose [ is nonlinear. We are going to see that (4.41) leads to a contradiction.

FFor the function y(t) = 1, we have the associated kernel

1 —
M, s) = TT: L) = —s)].

Seta = inf{x:f(x) - f'(x)x # 0}. Forall t € [0, a], M(t, 0) = 0, and hence g(1) = 0. On
the other hand, there exists 6 > 0 such that M(1,0) # 0, for all t € Ja, a + d], implying

that g # 0 on some interval [¢,d] < Ja,a + ).

Fix a € [¢, d] and consider the sequence of functions y": [0, 1] — [0, 1] with deriva-

tives
1 . 1
- foagtr<o+ -,
n n
. Pl 2
y(t):{2——- lfoc+-‘<t<°f+‘“~
n h h
_ 2
| 1fl<ocort>:x+z.
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These functions are not in X but they can be approximated by elements of X. The
kernel relative to y" will be

M"(t, s) =
1 2
r 1 [f(}’"(l)) OO — s)] 70 fa<t<<a+ - and s < %
I 1 LA@ —f @) — y"(s)] ifa+—2—<t and a<s<a+g;
"( 1—y"(s) n n
| M(t, s) otherwise.

Notice that, as n — o,
M"(t, s) > M2, $)(1 + nlyyy 1 (1))

and therefore the kernels M" converge to the generalized kernel
M(t, s) + M(a, 5)d,(t),

where J, is Dirac’s delta at «.
The solution ¢" of the integral equation (4.9) with kernel M" has the representation

g'(t) = Z (=1 J M"(t, sy )M"(sy, $3) -+ M"(s;,0)ds; ... ds,

k=0
=5 > >5>0

(the term for k = 0 should be interpreted as M"(1, 0)).
Take T > a. Then,

r
lim J' g"(ryde
(

n= o o O
- im }f; (-1 j MMt s M (sy 85) 0 oo M8 O)ds, ... dsy de

n= k=0

(Tt 28>0
=¥ (-1p J (M(t,52) + M(t, 505,00 -+ *(M(s5, 0
=(
T>t>5> o >8>0
+ M(S;—‘. 0)()‘4,(83‘))(1»\'& e u‘\“dl. (442)

The integrals in (4.42) not involving delta’s form a series representation for jl,' g(r)yde.
The other ones are zero unless they involve 8, acting upon consecutive variables. The
integrals with d, acting upon the variables s; to s;, for 0 < i < j < k (understanding
sp = t), form the series

Z ("“"‘l)k j Aff(f‘s‘)‘""M(S,'Ml,m)ds,'wl dSld‘
k=0
(T>1>5> - >5.,>1]
Mo, 2y ! ;
Xim Mo, sj4q) - - M(s, O)dsy ... ds;j,

WS> e >y >0
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with the convention that for i = 0 the first integral is equal to 1, and for j = k the
second one is replaced by M(a, 0).
Therefore, we have

T T
limj g"(t)dt—j g(t)dr

n—-ow JO0 0
© k M(cx a)] i
= — 1) ’
kg ) IZO ]Za (J —i+ 1)'
X J‘ M(t,sl)'---'M(s,-_,,a)dsi_l ...dsldt
(T>1>85 > >8>
X J\ M(OC,SJ-H)'---'M(Sk,O)dSk ...de+|
{x>55,> - >5>0]
x x @ M(O( )1 i
— )k
IZO jzdl kzl( ' + 1)‘
X J' M(I,S,)'-~-'M(S,-M.1,oc)ds,--l ...dS,dt
IT>1>8 > >85>
X J M2, sj4 1) - M(sy, 0)dsy ... dsjvy
fa > 8, > >85>0
M(oc ac)’ '
=gt ,2(, ,2-,( Y
x J Mt s1) - Ms, a)ds, o ... dsy di
11 =t 8y > > Ny > X)
LG M2, o)
= glo . tei
ol )g:o lz_’()( ) (+
X [ M(I,S[)’“"M(S,'.,l.,“}dsi_,l e dsldt
A = ) S > A
x M(O!., JC)l x
- o (._‘ ])I! | ( )|Ol
4 )lé\:o I+ N .Z:o
X Jv M(t. \1) M(\, l,O()d\, 1 oeenr dsld’.

T > t>s > o >8> %)
] e'M(az o) o

= g0y X (=1

i=0

X J\ M(l,sl)'""M(S,'_.l,{x)ds,'._l ...dsldt.

(T>1>8 > >8. >4
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Denote by I'(«, T') the series in this expression. We can perform the same computa-
tions between f and 1, for « < T < f < 1. Eq. (4.41) implies then

-f®) __e‘f(ﬁ)

1 —e
g(@) ———— 7@ I'(a, T)g(ﬁ) i)

forall T and fsuchthata < T < f < 1. Since limy, I'(2, T) = 1, we obtain that, for
| B — «| small enough, and taking into account the continuity of g, condition (4.43)
reduces to I'(B, 1) =0C.

rg,1)=0, (4.43)

Denote

F(By:=TI(p, 1)

=1+ Y (-1 J\ M(si, 8;-1) - - - M(sy, B)ds, ... ds;. (4.44)
i=1

] ¢ .
>85> >85>0

Differentiating I'( ) yields

or - ;
Fri —f(/f)[ -1+ 2:,2( - 1)
X J‘ M(si, s;- 1) -+ * M(sy, B)ds, ...dsi]
Mz o >y > ff)
=+ z (- l)‘ J ]\/l(.\',',.\',mq) . M(Sn,.’\l) 3 (\l,/f)dﬂ ee ."-
] o
Moy, s ooy o fil
=[S
, - .
+ ) (=1 j [ »(I(n) SISy = )
(< lf)
I T
1 msl ’
+~ul~—:~—ﬁf (.\‘;)J M(sivsio 1) - M(sy,s,)dsy ... ds;
= (M)
+i(“'”" f [lis‘vf(l)* l /(‘1“
i=1 By /)
> > o =8 M
X M(sio 8o )+ M(sa, 80 dsy ... d,
Hence.

' = 1B = B = 3 (= 1f

e
X J l(l _/})zl ( 1)+( _/)11(\1)]

s> o> f

X 1"1(3",8““1)' 'M(Sz, S])d&] .. ds

S
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Differentiating again,
("B = 1B (B -- (BT (BN = B)* = 2(I"(B) — (BT (BN — )
= —((1 =571 (B) + (1 = BSPHT(P).

Thus, I'(p) satisfies the homogeneous linear differential equation

(A=A )+ (=f(BA =B =2I"B) + (f(B) =21 (B — PHT (P =0

for all & Ja, 1]. We have initial conditions I'(B,) = I''(B,) = 0 at some point 8, close
to «. Therefore, I' = 0 on Ja, 1[. But, for (4.44), lims_,; I'(B) = 1, and we get a contra-
diction. [
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