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Abstract 

In this paper we show that the s 
diffusion coefTicie;;lt cr%, and boun 
only if the drift is a linear fun~tio~. proon’is based on the m 
and makes use of the techniques of alliavin calculus. 

ccitj(l!?: 6OIJI 10; 60 

ieids; Won-causal stoc 

C~~rrcsp(~ll~~il~g author. E-mail: alabert@] 
‘Supported by a grant of the CIRIT No. 
“Supported by the GICYT grant number PB 93-0052. 

0304-4149/971’517.00 ,(‘i 1997 Elsevier Science B.V. All rights rcservcd 



on [O, T ] if the following limit exists in probability: 

y a solution to (1.1) we mean a real-valued process (X,, s E [09 1-j) of class C ’ such 
that {G$~, SE [O, 11) is Stratonovich integrable on [O, t] for each TV [O, I], and 
satisfies the system 

The valises 0 and 1 at the b~und~~ry do not play a special role, and they can 
replaced by any two ~~)~~sta~ts R + h. In fact, if Z, is a solution to our ~~~~~~ti~n with 

= h, then X, = (Z, - n)/(b - a) solves (1.1) with j‘(s) replaced by 
- N)] f ((/I l__l a) x =+ u), 

Severa types of st~~h~~sti~ di boundary renditions have 
alre~~dy been stu ied (see, for instance, labert, 1995 and the references therein). in 

second order derivatives have been c~~~sidered in 
~nati~~artin 

ases, the ~ert~lrba~ 
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We recall that this notion is 
arkov fields are also called reciprocal processes (see 

articular cases of st 
eld property only h 

will prove in t 
affine function, and that in such a case 
method employed to prove this result 
induced by a transformation of the form 

f 

. 

T(w) = c1) + II,((U) ds. U-4) 
0 

The same transformation is used to obt an existence and uni 
starting from the solution when .f‘= 0. 5) for a survey of the 
main features of this change of probability method. Another alternativ 
been suggested in labert et al. (1995), but it does ot seem to be s 

ction 3 we tackle t 

solution to (1.1) found in Section 3. 

nctions on IT??” which have poly 
) the set of these 
ochastic process 

Moreover, the operator 



omain Y(E), is closable. enoting by DL*p(E) the closure of Y(E) under the 
graph norm 

we obtain a continuous mapping D: lD’.P(E) -+ Lp(Q; H @ E), called the deriuatizye 
operator. 

The operator D is local in the following sense: 1 tF= ot DF = 0, for all F E: D’*‘(E). 
This fact justifies the following definition: A random variable F: Sz + E belongs to 

ts an increasing sequence {a,}, of measurable sets converging to 
ost surely, and a sequence {F,$, c U31v2(E) such that F, = F on Q,,. For 
,“(E), the derivative DF is defined as DF(w) = DF,,(w), if cr) 
all p > 1, define Q”*P = Lp([O, 11; e denote by Ll-*l’ the set of processes 

)-valued functions [S uicontinuous for 
and similarly, the set of functions (s +=+ LJL~‘,, l]~lt-~o. ,I is also 

(possibly different) version of Du. 

ator D: P(sZ) -4 L2( 
It satisfies the followi 

) is called the Sko~~tto~ 

eorcm 7.3 of Nualart and 



The following is a Girsanov-type theorem 
be our main tool in §ectio~l 

(Ramer, 1974; usuoka, 1982). Let u : 

(a) TI2e t~~~,s~~~,~*~t~~~~ T : Q --+ L? give by T(LL))~ = 
(b) TIte operator I + u : H + H is irtvertible, as. 

Then, Q : = P fi T (the image qf the Wiener nieasure thrmgh T- ‘) is equivalent to P and 

d 
dP=Jdet,(l+Du)~exp(-6(u)-fI~~4~]~). (2.1) 

There exist stronger versions of heorem 2.3, but we 
icula rl y, lijst iinel and akai ( 1993, 199 

for the density of Q without hypothesis (a) an 
The whole of this ction can be stated in 

A formal computation, using the fat 
rules of ordinary calculus, yields from ( 

e Stratonovich inte 

(3.1) then it s~~tisf~es (1.2). 

(3.3) 

Notice that for all WE L?, the function Y.(W) belongs to t ~ws 2.I of ~~~~tit~ 

nctions in the closed interval , which take the va 
. 



1 at t = 1, and possess a positive derivative in [0, 11. oreover, the mapping 
w-=-+ Y(o) is a bijection from Q to C, with inverse 

be the transformation defined by 

T,(o) = w(t) - s ‘J’( “&d) ds 

0 r&,(w) ??

Then we have: 

Let X be a process with paths in C and define Z(u) = Y- ‘(X(u)). The 

From (3,4) we 0 tain that (3.6) is e 

oticc that, from the this t 



If we prove that (3.9) has a unique solution Q(X) E C,( 
ow that one an solve 

We use this procedure to show the following t 

--+ R be u nonnegative and nondecreasing C’ _functioaz 
The;z, Eq. (3.1) has a unique solution X, which paths in C. 

such 

be a consequence of the following two lemmas. 

Suppose that .f’: R + -=+ R is a loc*ally ipschitz, nomegat Ax, ar 
hen, jbr all x > 0, Eq. (3.9) has a uniq solution r(x) E C&O, 1 

jixed rf E C,([O, I]). 

e prove first the 
e two solutions of (3.9). 

ix s > 0 and q 

from some constant C, usin 
CluCnf ly, WC CL1 

I ~~*s(.~~ - tq.Y,l 1 t?,,(x) - F,,(s)1 dtA 
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can be shown by Picard method, using arguments similar to those of (3.10 
to see that this local solution can be extended to the whole interval 
a, = e a? Hypothesis S 2 0 implies du,(.u)/dt > 0. On the other hand, 

and 

du,(s) < .Y - _ supf(.u) sup at- I, 
dt ’ 0 XER’ tEtO.11 

this implies that we can extend U,(X) to [0, 11. 0 

Suppose that f is of elms C’ in [0, I], with f (0) = 0, f > 0 nlzdf’ >, 0. Then, if 
v&x) is th; solutio;d of (3.9), the mapping @ : IF4 + _- { 0) -+ II%+ - {0}, dej~red by 

has a unique fixed point. 

and denote also /I&C) = e”C1(*)/_x, for x > 0. Dilferenti- 
h respect to t, we can write (3.9) as 

(3.11) 



A. Alabert, D. ~r4a~a~t / Stochastic Processes and 

n the other hand, @ is bounded. Indeed, integrati 
obtain 

and using f’(x) < Kx, 

(3.14) 

for some constant C. Inequality (3.14) implies that m this I’act and 
(3.13) we arrive of the existence of the fixed point, beca (X)/X = so and 
lim x-BOO @(X)/X = 0. 

The proof of Lemma 2 is complete and olds. 0 

Condition *f(O) = 0 cann 
j‘s K > 0. this case, one can prove t 

his does not imply that (3.1) fails to po 
(3.1) directly, and the solution is 

whet-c 

n this cast, the paths of the process { 

he idea of the change of measure method to st 

non-anticipating ones. 

trst, we will prove that the process (I’,, vt) is a 
probability P. 
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. The two-dimensional process {( Yt, &), t E [0, 11). given by (3.3) is 
a Markov process under the Wimer measure P. 

roof. It is enough to show that for any t, SE [O, 11, s > t, and for any measurable and 
bounded function ~9 : Rz + R, the conditional expectation 

is a ( Yt, Y,)-measurable random variable. It is easy to see that the o-field generated by 
((Y,, Y,), r < t} coincides with the one generated by 

s 

1 

e ‘(“‘p - w dr and ( W, ) P < t}. 
2 

enote 

3, fl and y are measurable with respect to the conditioning o-field, so that we can write 

nse that B, fl and y are c~l~st~nts that should be iven their values after 
the c~ndition~l cxpe 

0f all other v~~ri~~bl~s in- 

irst, notice that iff is n the stoch~sti 



Indeed, using the chain rule for the derivative operator, we have 

and we obtain (4.4). 

vity of T is contained in the proof of 

Yt redholrn altcrnativc, equality ( 

that 
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where X is the 
F: C([O, 11) -+ C([O, 

solution to the system (3.1). consider the function 
l]) x R given by 

F(Z) = (Ill - e”‘(Xo + S:e-‘wf(X,)ds), IO1 X,dt - 1). 
It is enough to check that the Frechet differential DF(@ is invertible for every 
X E C[O, 11) and the conclusion foIlon;vs from the Implicit Function Theorem. The 
derivative of F in the direction of y E C( [O, 11) is 

1 

f._~Wf)l(~) = yr - A,yo - KY), s > y, dt 3 

0 
where 

A 1 .- ??-- e""f , 

s I 

B,(y) :Z e”(rvt - “valf’(X,) ’ yu du ds. 
0 s 0 

that 

. The equation y, ~ A,y, -- B,(y) = h, has a unique solution 
and it only remains to show that there exists a unique y, such 

c have 

initial condit 

ique solution y,. 

the ~quiv~~~nc~ of the 



e will denote 

1 
q(t) := Y, $qt) := I” LOY,) +f’(Yd(l 

r 

1 
e(t) := I’ c -.fVt) +f’uwI* I 

&u, can then be expressed 

- Ydl 9 

(4.11) 

For each fixed n E N, denote ti = i/n md define ei(t) := ,/n* lf, Jt) for i - 1, . . . 92. 
he function 

1 )I 

K (“)(t, s) = n 
i.j= 1 

Otti- I))o(tj- 1) 

X c'i(t)tfj(bS) 

wi ” Ihwj - 1) 

(1 -- t/l(ti- I))O(tj- 1) if i 

satisfies 

dct,(l =+- (“)(l, s)) = det&* + B@))exp( 

he trace of -- k!P converges as 12 

- 

1 
det( IR” + B(“)) = _- x 

n” 



. . . . . . . . . wn- dWt*- 1) 

(1 - (PUtI- dW0) ??** . . . --- fl + d41- lMkl- 1) 
(4.14) 

Since cp(to) =z we suppress the first row and the first co umn. Subtracting the 
(i-t l)throwfromtheithrow(i= 1, . . ..n -- 2) and then subtracting the (I’ -I- 1)th row 
from the ith one multiplied by 

(P(ti + 1) -- (P(ti) (i = 1, ,c1 - (Ptti 2) (P(ti 1) . . . 2), + B C 

wc arrive at 



e transfor (4.15) into: triangular form by 
combination of the others. er of the ith row: 

(4.16) 

The determinant in (4.15) can be expressed: 

det(l,. + @“I) = l;;;l;i (e(“) + !I!“‘! 2112!“! 2 + c!“‘! g?&“! 3 ) 
i=l 

On the one hand, 

” - 2 

( 

1 -e Vtti)$tti) - t1 - (P(ti))~~ti~ 

n 

I’ 

= exp lim 
( - l)k+l 

I’4rXl i 1 k 12 

‘i- ( ..- n __ 
(P(r', “I 1) _IL (PO" _ 2) 

v44’) _I_ (PU',- 1) 
Ip (cp(t,,)l~(t,,.- *) -I- 12) 

> 
rn!“’ 2 

1'1 (PU" - 23 w (PO,' - 3) ('I) -wl_llll_ll_____l_l 112,, - 3 
(Ph"~ 1) ~ (PU', - 2) 

taking into account 
only remains to see 

I&! 2 ==I- li ,?I!&!‘! 3, 
‘I -3 ix 

that cp is differentia 
that these limits exist and to compute them. 



. M), we can write this equality, for i = 3, . . . $12 - 4, as 

‘2 [ 

Vfri+ 1) - (P(ti) nttm) 

V(li+2) - q(ti+ 1) i 

+ ( _ 1 _ Vtti+2) - V(li+l) 

VCti+3) - VCti+2) > 

9n(~) 
j+1 -I- n-g2 

(P(ti+2) e V(ti+ 1) 

-- P(li -I= 3) __p V(fi -i- 2) 
tV(ti+ 3)*(ti + 2) - (1 - q(ti + 3))O(ti + 2)1?2i”+’ 1 

-+ 43&l) - cpk - ,,I w, + 2) = 0. 

dine 

( - 1 -- <i $ ,,H&! 1 -I-- t?$! 23 for i =b= 1,2, . . . , Iz - 4, 

wit 

(4.20) 

z2 
(Ci * 3) _D q(ti + 2))~~ 2) 



Solving for nti”+’ 2 : 

where 

ffk + 3) - (P@k + 2)) 
I 

Iii := - (V(ti+ 1) - 50(f3))tl111:11) + (dti+ 1) - q(t2))Wy’. 

Substituting into equality (4.20), 

O = Pi”’ + nC(O(ti+2)$(fi+2) - (l - q(ti+2))o(ti+2)) 

( 
qI’:‘2 

1 i 
x + 3 F, (V)(tk + 3) - &k+ 2)) i pj”’ 

1 

= I=1 > V(li + 3) - O(ti -I- 2) 

V(ti-+ 2) -_ o(ti+ 1) - 

V(ti+3) - V(ti+2) 
(V(?i+3)$(ti+2) - (1 - q(ti+3))o(fi+2)) 

37 

(4.23) 

(4.25) 

ast terns tends to q’( 1) ??o(t) as n 
term can be written 

e by II, the seco 

It is 
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he first term has li it zero, because lim,, ,x PI&’ := q’(l)O( 01) 
n-+x Ll1 = + W, 

and the other factor tends to q(t). Similarly, lim,,, n&‘/~$” = 0, and 

( n + cpO2) - dh) 

4303) - (P(b) 
(n + Cp(fi+ 2)$(fi+ 2) - (1 - v!ti+ 2)Wffi + 1)) 

= lim =: 0, 
n-+cx. a:nv? 

because the order of numerator and denominator is n and 1z2, respectively, for large II. 
n the other hand, from (4.243, 

0th terms in the second factor appear in ( .26) and we have just shown that they tend 
ero, while the first factor tends to q’(t). 
he jump function de~~~~d by pi”‘, i.e. 

i 

ral 

rest 



3 

zz ( l- 
Alternatively, If we define 

we obtain 

1 - cpw 1 

441) Jo I 

ornnula (2.1) call be written (usin 

, an ote 

c .- .- 
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e know that (X,, X,) is a arkov field under P iff (Y,, is a arkov field under 
Q, and this is in turn equivalent to say that for any bou e-measurable 
random variable 5, E [J$rj’] is an zb-measurable random variable, for all possible 
choices of s and t. It is easy to show that 

(4.29) 

where J:= dQ/dP. 
In our case, J admits a partial factorization J = ZL’L”, with L’ and L” measurable 

with respect to 8’ and g”, respectively. Specifically, we can take 

(4.30) 

) is then equal to 



kov process under P. 
In fact, if f is linear, we see from expression (4.4) that 

for t > s). In that case, the Carleman-Fredholm 
always equal to 1 (see, for instance, Cochran 1972, Section 
a factorization of this type for J. ??

Volterra kernel 

To see the converse, the usual te 
settings, is the 
perform a talc 

Recall that 

7 y-a.s. 
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c also have 

E[Z/S’I(T,(y)) = ECZ 3 W8’l(Yh ~Y-a*s. (4.38) 

and 

qI,w5’1(~1(Y)) = a.UI(Z 3 W5’l(Y)~ PY-a-s- (4.39) 

Indeed, we can assume that 2 has the form 2 = Z’Z’, with 2’ and Ze 8’ and 
r-measurable, respectively. Then, 

- E[(Z’ (2 T*)q(Z” o T,)/@](y) 

where WC have used that c/@] is gb-measurable (because (( Y,,, VU), u E [O, l]} is 
arkov field) together with conditions (4.34) and (4.35), and that T1 is @-mensur- 

COT1 Zzz his proves (4.39), and the proof of (4.38) is identical. 
.38) and (4.39) in (4.37) we obtain 

le. This implies 

6) iis it WBS t 
alicy holds for a 



y,.z(s):= 
J&) if s >, t. 

Then, (4.32) holds for s = plies that 

~WZ(P2) = ~(YP3Yl. 2). 

As a consequence, 

( s t l- sCYmds -’ 0 J,’ sD3ws) 

I 
( 1 
g [y](s) ds - d&lWs 

0 > 

1 

z I---- s - .II 

1 

~,](s)ds - 
s 

g , 

which reduces easily to (4.41). 

c tinally state a converse of 

(1, s) = 2 [f’(z) --.f”(f)(? _” s)]. 

tives 
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hese functions are not in C but they can be approximated 
kernel relative to y” will be 

by elements of C. The 

2 
if g < t < IX+ - and s < a; 

11 

l-t 
1 _ y”(s) tm -f’(Nt - YWI 

2 2 
if a+-<t and a<s<a+--; 

n I1 

otherwise. 

stice that, as n -+ cc, 

and therefore the kernels ’ converge to the generalized kernel 

W, s) ==I-- Mb, s)&(t), 

irac’s delta at 0~. 
he solution qn of the into 6 uati~n (4.9) with kernel M" has the representation 



with the convention that for i = 0 t 

second one is replaced )* 
Therefore, we have 

lim g”(t) dr - (0 df 
I(+ 5 

= I? ( - 1)” $I0 jii (yy; y;;, 
k=O . 

X 
s 

MU, ~1). 

{T>r>s, > ‘** > Si_ 1 > X) 

X ( & “j-l- 1 I* 

(X>Sj+I > “’ >S,>O1 

u CJc -32 

Z 
(- 1)” 

i .i (.j - i C 

X 

i rj== 

. . . 

. . . * 

’ . . . 

. . . ’ 

s1 dt 

(Sk, O)dSk . . . "jt 1 

zzz (-1)“’ 1 

1 - 0 

X 

X 
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Denote by I”‘@, T ) the series in this expression. We can perform t e same computa- 
tions between /_I and 1, for ct < T < /3 < 1. Eq. (4.41) implies then 

sbo l - e-f(a) 1 _ e-f(B) 
f( ) m m(P) f(P) 

UP, 1) = 0, 
Ix 

(4.43) 

for all T and /3 such that 61 < T < /I < 1. Since limTIX T(rx, T) = 1, we obtain that, for 
I/3 - al small enough, and taking into account the continuity of g, condition (4.43) 
reduces to r( /3, 1) = 0. 

Denote 

r(p) :=== UP, 1) 

==A+ 
s 

(4.44) 
i= 1 

:I >s,> ... >SI >p; 



= - ((1 - BiV’U3 + (1 - ~j~(~jjr(~~* 
) satkfies the homogeneous linear ifferential equation 

(1 - ~)~“(~) + ( -.fmu - P) - W’(P) + (f(P) - ?f’w. - ~))~(~) = 

for all /3 E ICY, 11. We have initial conditions r( PO) = r’( /IO) = 
to cx. Therefore, r = Q on ]a, l[. But, for (4.44), limp+ l F( /3) = 1, and we get a contra- 
diction. 0 

ces 
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