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Abstract. We study a class of one-dimensional stochastic differential-equations

with boundary conditions by means of a change of variables that reduces the
diffusion coefficient to a constant. We obtain a representation of the type X; =

" G(t,Y;), where Y is the solution of the simpler equation. “This representation

is used to show several properties of the original equation. In particular, our
main result is a characterization of the coefficients for which the solution process
satisfies a suitable Markov-type property, namely, the reciprocal property.
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1. Introduction

Tt is well known that under appropriate conditions one can reduce a classical
Ttd stochastic differential equation with a non-degenerate diffusion coefficient to
another simpler equation with unit diffusion (see the heuristics for instance in
the books by Kloeden and Platen [8, p. 115], or Gihman and Skorohod [6, p. 34]).
The transformation is analogous to the “change of unknown function” in o.d.e.
practice, and its stochastic counterpart is of course implemented through the
It change of variables formula.

We want to apply a similar transformation to a class of anticipating stochas-
tic differential equations, by means of an anticipating It6 formula. Specifically,
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we consider the following one-dimensional s.d.e.:

4

¢
(A) X; :.Xo+/b(s,Xs)ds+/a(s,Xs)o dWs, te|0,1],

0 0
‘XO - X(Xl)a

where instead of fixing an initial condition X, we impose a boundary condition
that links the values of the solution at times 0 and 1 through a deterministic
function y. Since Xy depends strongly on X;, which in turn depends on the
whole evolution of the Wiener process W, the solution will not be adapted to
the filtration of W. Therefore, the stochastic integral involved must be under-
stood as an anticipating integral. The circle denotes, as usual, the Stratonovich
integral. The corresponding stochastic calculus has undergone an important
progress in the last ten years, and provides the necessary tools to treat antic-
ipating problems. In particular, several versions of non-adapted It6 formulae
have been established. In Section 2 we summarize the portion of this theory
that we need in the present paper.

Equations of type (A) have been considered by several authors: Qcone and

~Pardoux [13], Donati-Martin [4] and Alabert, Ferrante and Nualart [1], among =~ % .‘

others. In special cases, existence and uniqueness has been proved inside a cer-
tain class of processes, and Markovian type properties of the solution have been

studied.. The usual'Markov property, however, only holds in trivial cases, also
because of the strong relation between X, and X;. Instead, the reciprocal prop- =~ = *
erty (also called Markov field property), stating the conditional independence of =

{Xt, t €a,b]} and {Xy, t €]a,b[°} given X, and X}, seems to be better suited
for this kind of problems.
In particular, when b,0,x: R — R are C' functions such that

a) ¢ >0, and z / —1—d§ maps R onto R,
/ 7®

b) y (~Zz o G~')(y) has a bounded derivative,
o
c) x' <0,

it was proved in [1, Theorems 5.1 and 5.2] that the problem

t t

(A) X: =X +/b(‘Xs) ds + /O'(XS) o dW,, te][0,1],
0
XO :X(X1)7

admits a unique solution in the Sobolev space of processes Llc’ioc, and that this
solution is a reciprocal process if and only if ¥’ = 0 (and in this case it is in



Reciprocal property for a class of anticipating stochastic differential equations 333

fact Markovian) or b(z) = Ao(z) + Bo(z) f:( /o(y)) dy for some constants
A,B,c € R. This example, and other particular cases studied so far, tell us
that equation (A) does not enjoy the reciprocal property in general.

Our main interest in this paper is to characterize the coefficients b and o
for which the reciprocal property is true in the nonautonomous case (\A4), thus
generalizing the results in [1]. We show first that under conditions on b, o: [0, 1] x
R — R and x: R — R similar to a), b), ¢) above (condition c) will be slightly
relaxed) the problem (A) has a solution, which can be represented in the form
Xt =G(t,Y;), where Y = {V;, t € [0,1]} is the solution to

t
(B) M=Y0+/f(s,Y;)ds+Wt, t €10,1],
0
YO = 1/1(Y1>,
and the functions G, f and v are related with b, ¢ and x by

{ BQG(t, y) = O(ta G(ta y))a .
G(t,0) = 0, |

(t:G(t7y)> — a'lG(t:y) SRS % e SN
and Y(y) =G (0, x(G(1, .
L CTD) 1) = G~ (0:X(C(L, W)
In turn, Y can be represented in the form Y;(w) = ¢ (w, Yo(w)), where Yp(w) is
a fix point of y — ¥ (1 (w,v)), and p(w,y) is the unique solution to the integral
equation

fty) = !

(€) eot(w,y)=y+/f(sasos(w,y))ds-%wt, t €[0,1],
0

for y € R and w a continuous function vanishing at zero. Thus, we can write
Xi(w) = G(t, pi{w, Yo (w))).

We use this representation to characterize the class of boundary value prob-
lems (A) for which X is a reciprocal process. Our main result (Theorem 5.2)
states that X is reciprocal if and only if either x is constant or b and o are
related by

X

b(t,a:):a(t,a:)[b(t’o) +a() / L s+ m-?-l;’l(-t’—slds],

o(t,0) / o(t,s) J a?(t,s)

for some function af(t).
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We explain now briefly what can be found in each of the sections of this work.
In Section 2 we present some results from the anticipating stochastic calculus
that we will need in the rest of the paper. In Section 3 we study equation
(B), showing that it has a unique solution under Lipschitz and linear growth
conditions on f and a one-sided Lipschitz condition on 1. It is also shown that
the solution process belongs to the Sobolev spaces L};’p . To this end, we point
out previously some properties of equation (C) that are useful in studying (B).

Section 4 is devoted to the study of the general equation (A), assuming the
diffusion coefficient is non-degenerate. By means of a change of variable, we
obtain a solution to (A) that can be represented as a deterministic function of
the solution to (B), and belongs to Lé’ﬁoc, for all p. In Section 5 we use this fact
to determine in which cases the solution is a reciprocal process. Other properties
of equation (A) that can be easily proved using this representation are placed in
the final Section 7. We establish the absolute continuity of the law of X; with
respect to Lebesgue measure, a maximal inequality and a comparison result.

A special case of equation (A) appears when the diffusion coefficient is linear
in the second variable: ¢(t,z) = o(t)z, with o(¢) > 0. Strictly speaking, this
situation is not covered by the results of Section 4, since o(t, z) vanishes at some
points. Nevertheless, under additional conditions, a slight modification of the
arguments allows to apply the same change of variable technique to this case as
well. This is shown in Section 6.- We consider also linear boundary conditions
in this section. - - o i

We will use the notation 8;f for the derivative of a function f with respect
to the ith coordinate, and 8;;f for the second derivative 0;(0;f). The symbol
VF will always mean the Fréchet differential of F', whereas the notation DF'is
reserved for the weak derivative of F, as defined in Section 2. In several places
where we want to prove the weak differentiability of a functional F', we state
first the Fréchet differentiability, which is of interest on its own, and then apply
Lemma 2.1. Other methods are possible.

2. Preliminaries

Throughout the paper, W = {W;, t € [0,1]} will denote the coordinate
process on the classical Wiener space (©2, §, P). That means, {1 = Co([0,1],R) is
the Banach space of continuous functions w:[0,1] -+ R with w(0) = 0, endowed
with the supremum norm, § is the Borel o-field, and P is the standard Wiener
measure. In this section we are going to recall some notions of analysis on
Wiener space and the Stratonovich anticipating integral. We refer the reader to
Norin [10], Nualart [11], or Nualart and Pardoux [12] for details.

Set H = L%([0,1],8([0,1]),A), where B([0,1]) and A are the Borel o-field
and the Lebesgue measure on [0, 1], respectively, and let H; denote the Hilbert
space of all functions on [0, 1] with square integrable derivative, which is densely
embedded in Q. The isomorphism between H and H, is given by h fo h.
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A smooth functional is a mapping F: {2 =+ R of the form
F= f(thUWtz) .. '7th)a

where n > 1 and f € C* has polynomial growth, together with all its deriva-
tives. Denote by S the set of smooth functionals.

If F e S, the weak derivative of F is the stochastic process {D.F, ¢ € [0,1]}
defined by

n

DiF(w) =Y 8 f (Wi, (), Wi (), - s We (@) 110,21 (£)-

=1

As arandom variable, DF belongs to [, LP(€); H), that means, E[|| DF|%;] < oo,
for all p > 1. The operators

D:S C LP(Q) — LP(Q; H), (2.1)

p > 1, are closable, and we denote by DP the closure of S in LP(f2) with respect
to the graph norm =

1Flls,p = [E(FI) + E(IDFIE)?-

Iterating I), one obtains the whole class of Sobolev spaces D*?.
It is easy to see from the definition that the weak derivative DF' of a smooth
functional is related to the Fréchet derivative VF in the following way:

(DF(w), Wi = o«(VF(w),h)q, VYhe Hi,
where o-(-, )q denotes the dual pairing. In other words,
DiF(w) = [VF(w)](t,1]),

if we consider VF(w) as a bounded Borel measure on [0, 1]. The following lemma
follows from the results of Sugita [15].

Lemma 2.1. Let F: Q) — R be a Lipschitz and Fréchet differentiable mapping.
If F € L*(Q) and [VF(w)](t,1]) € L*(; H), then F € D"*? and

DiF(w) = [VF(w)](t, 1))-

Let Dfo’f denote the set of random variables F' such that there is a sequence

{(Qn, Fr)}nen in § X D? satisfying Q,, 9, a.s. and F = F,, a.s. on Qy,. The
operators D are local, and this allows to define DF for all F' € Dﬁ)’f without
ambiguity, setting DF' = DF), on (.

The following properties of the derivative operator will be used later (see
Propositions 1.2.2, 1.5.5 and Theorem 2.1.3 in [11] for the proofs).
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Lemma 2.2. (1) Let o:R™ — R be of class C* with bounded partial deriva-
tives, and fix p > 1. Suppose F = (F',F?,...,F™) is a random vector
whose components belong to D¥?. Then ¢(F) € D'*, and

D(p(F)) =Y 8ip(F)DF".
=1

(2) Let F be a random variable in D"'*, with a > 1. Suppose F € L?(Q) and
DF € LP(Q; H) for some p > a. Then F € D'P.

(3) IfF € D! and | DF||gr > 0 a.s., then the law of F' is absolutely continuous

loc
with respect to the Lebesgue measure on R.
We shall introduce also some spaces of random processes: L7 := P ([0, 1); Dl’p);

lep is the class of processes u € L' such that there is a version of the derivative
Dwu with the properties:

a) the sets of LP(Q)-valued functions {s — Dyvstins}ttefo,1; and {s —
Dinstivs ftefo,1] are equicontinuous, - ‘

b) esssup E(|Dsut|P) < oo;
s,t€[0,1]

Lll(_;’g is the set of measurable processes u for which there exists a sequence

{(Qn, Un) tnen in Elx LY? such that Q, 7 Q, a.s. and u = Uy, a.5. on [0, 1] x Qp;
P

finally, the space Lz, is defined analogously, imposing u, € Llép .
fue ng, the following limits exist in L2(f2), uniformly in ¢:
Dfut = lﬁlil(’)l Dtut+e, D;Ut = 151.11:8 .Dt'u,t..e.
We recall now the usual definition of the anticipating Stratonovich integral.
Given a measurable process u = {u,t € [0, 1]} with fol lug| dt < oo a.s., define

tiy1At
n—1
1

sE=Y [t_ﬂ — | / up ds) (W (tea) ~ W(e), £€[0,1],

— i
=0 t; AL

where 7 is a partition {0 = tg < #; < ... < t, = 1} of [0,1]. We say that u is
Stratonovich integrable on [0, 1] if for any ¢ € [0,1], S{ converge in prd®ability
to a limit S; when || N, 0. In that case, S; is called the Stratonovich integral of
u on [0, t], and will be denoted by fﬂt us o dWs. It can be seen that if u € L};’?}OC,
or if u is continuous and with bounded variation a.s., then u is Stratonovich
integrable.

We will make a fundamental use of the following Itd-type formula for the
Stratonovich integral, which is a particular case of Theorem 7.10 of Nualart and
Pardoux [12].
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Theorem 2.1. Let ®: R® — R be a continuous function such that the deriva-
tives 019, 0, P, 83<I> 012®, 093P and 933P are also continuous functions.
Let u € L2" N L satisfy the following conditions.

a) There exists p > 4 such that
11 11
//}EDut |pdsdt+E//
00 0 0

{Df us + D; ug, t €[0,1]} € L2

|D;Dsus|P dr dsdt < oo.

o

and
1

sup E [ |Dy(D}us+ D7 u,)|* ds < oo.
t€[0,1]

Let {V{, t € [0,1]},i = 1,2, be contmuous processes in L"? with finite variation
a.s., such that

11 o
c) E//(DSVti)4 dsdt < co; 1=1,2,
00

d) the mapping t — DV}, i = 1,2, from [0,1] into L*(Q) is continuous,
uniformly with respect to s.

Set U; := f; ugs o dWs.
Then

SV, VAU = @waw%m+/6@0?wﬁvaﬂ? (2.2)

t i
/ (V) V2 U,)dV2 + /agcp(vsl,ﬁ;Us) o dW;.
0

0

3. Constant diffusion coefficient

In this section we study some aspects of the s.d.e. with boundary conditions

B lYi=Yo+ [feX)ds 4w, te]

0
Yo =y(11).
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In [1] it was proved that under Lipschitz and linear growth conditions on f
(assumptions (H;) and (Hs) below), and assuming % is a nonincreasing function,
there exists a unique solution to (B3), which solves the equation pathwise. When
f and v are of class C*, it is pointed out without proof that the solution belongs
to the space LC loc-

Here we are going to precise those arguments with a slightly weaker condition
on 1, and to obtam that in the C! case the solution belongs in fact to the smaller
space [, La?

C0n51der ﬁrst the deterministic integral equation with initial condition

t
€) wi(w,y) +/f8<pswy ) ds +w, teo0,1],
0

where w €  and y € R.

Proposition 3.1. Let f:[0,1] x R — R satisfy the following conditions.

(H,) There exists a constant K > 0 such that for every t € [0,1] and every
z,y € R, |f(t,z) — ft,y)| < Klo —yl

(H) sup |f(t,0)| =M < oo.
tefo,1]

Then, for every w € Q and every y € R, there exists a unzque contmuous
function ¢(w,y) satisfying equation (C). Moreover for each w,w!,w? € Q and
each Y, Y1,Y2 € Ra

1) sup |pe(w,y)| < [yl + llwlloo + Me
tef0,1]

(2) sup o (!, y1) — oe(?,92)] < [ly1 — v2l + [lw! — w?]lco]e”
te|0,1

Proof. The main statement can be proved by the usual Picard iterations as in
the classical case when w is differentiable (see [1] for a more general situation,
where ds is replaced by u(ds), with u a finite measure on [0, 1]).

(1) and (2) follow from Gronwall inequality. O

We have also the following additional properties, whose proof is straightforward,
when we let y and w to vary.

Proposition 3.2. Under assumptions (H;) and (Hz) of Proposition 3.1, we
have moreover:

(3) For every t € [0,1] and every w € §, the function y = p(w,y) Is strictly
increasing.
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(4) For every y € R, the mapping w — p(w,y) is a homeomorphism between
Q and the space C¥ = {z € C([0,1],R) : zo = y}.

(5) The mapping (w,y) + p(w,y) from @ x R into C([0,1],R) is a homeo-
morphism.

Under differentiability assumptions on f, we obtain differentiability proper-
ties of the solution to (C).

Proposition 3.3. Assume f:[0,1] x R — R satisfies the following conditions.
(H}) f and O>f are continuous functions.

(HY5) There exists a constant K > 0 such that sup |02f(¢,y)] < K.
t€[0,1],y€R

Then, with the notations of Proposition 3.1, we have: for every t € [0,1], the
mapping (w,y) + @i(w,y) is continuously Fréchet differentiable, its Fréchet
differential V:(w,y), as an element of the space L(2 x R,R) of continuous
linear mappings from ) x R to R, satisfies

i[V(Pt(way)].(h'; f) = f + /a2f(37 (pS(way))[V(ps (w>y)](h7 5) ds + h'ta (31)

for all (h,€) € 2 x R, and [V (w,y)](h, §)| < exp K (|[h]lo + |€]).
In particular, if @; denotes the derivative of ¢; with respect to the real
variable y, we obtain

Ailo) =exp { [ 0af(ror,y) dr}. (3.2)

Proof. Fix (w,y) € @ x R. (H}) and (H}) imply that for each (h,£) € @ xR
there exists a unique continuous function £;(h, £) solving

t
Lo(hy€) = €+ / B f (5, 05(0, ) La(hy €) ds + he, £ € [0,1].
0

By Gronwall inequality,
L4 (R, ) < [I€] + lIhlloole™, ¢ € [0,1],

so that (h, &) — Li(h,€) is a linear continuous functional.
Let us check that, for every ¢ € [0, 1],

et(w, hyy, &) == pr(w+ h,y + &) — @r(w,y) — Li(h, &) = o(||(R, )]
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when ||(h, £)|| = 0. Indeed, we have

er(w, by, 8) = [[f(s, 05w+ hy+E) — fs,0s(w,y))]ds

o .

t
/ (5,05 (,9)) Loy ) ds
0

[02(s,1s) — D2 f (5,05 (w,y))] [@s(w + b,y +€)

Il
o

—Ps ((4), y)] ds

; / B2 F (5, 0w, ))Es(w, hi 1, E) ds,
0

where i, is some point between ¢s(w + h,y + &) and ps(w,y). Fixe > 0, and

denote o = infOSsSl @S(wa y): ﬁ - SuD0<s<l (103((“) y) and C' = [O 1] {Oé 1 ﬁ+ g EREE
1]. There exists 0 < § < 1 such that (¢,z), (¢',2') € C and max{[t—t'|, |z~ x’l} <

0 imply
021 (t,2) = Gaf (¥, )] <e.
By Proposition 3.1 (2), if exp K||(h, )| < 6,

lis = @s(w, 1) < lps(w + By +€) — ps(w, )] < eXI(h, )l < 1,

from which o — 1 <4, < B+ 1, for all s € [0,1], and we deduce that

t

lec(w, h;y, €)| < eeX||(h, O]l +K/|es<w,h;y,£>|ds, t € [0,1].
0

By Gronwall inequality again, |e:(w, h;v,&)| < eexp (2K)||(h,€)||. This shows
that for every t € [0, 1], the mapping (w,y) - @¢(w,y) is Fréchet differentiable
and its Fréchet differential Vi (w,y) satisfies (3.1). With similar arguments,
one can show the continuity of (w,y) = Vi (w,y). a

In the next proposition we compute the weak derivative of the random vari-
ables ¢;(+,y) and show that the processes ¢.(-,y) belong to the spaces L P, The
fact that ¢¢(-,y) € D" can also be proved using Picard iterations, followmg
Nualart [11], Theorem 2.2.1. Here we will use the Fréchet differentiability of
vi(+,y) and Lemmas 2.1 and 2.2.
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Proposition 3.4. Assume f:[0,1] x R — R verifies hypotheses (H}) and (Hj).
Then, for every y € R, ¢.(-,y) €, Ll’p and

Dar(,9) = Tpoy(s)exp { [ 8af(r0r(o,) i}

Proof. We have ¢;(-,y) € [, LP(€2). This is a consequence of (1) of Proposi-
tion 3.1 and Doob max1mal mequahty applied to the supremum of the Wiener
process. Moreover, by Proposition 3.1 (2), the mapping w + ¢¢(w,y) is Lips-
chitz.

On the other hand, we know from Proposition 3.3 that ¢:(-,y) is Fréchet
differentiable and, denoting by V; the Fréchet differentiation with respect to w,
we have

V1w, 9)](h) = / 82 (5, 00, 4)) (V105 (w0, )] (B) ds + / (s) ds,
0

for every h(s) = [, h(r)dr € H;. That means,

1 : T . e
[Viwi(w,y)] /h 5) exp / (r, or(w,y) )dT} ds,
0

and therefore, as a measure (see Section 2),

[vlwt(w7y)](]37 1]) = 1[0,t](3) €xp { /an(Ty (Pr(wvy)) d’r}

for almost all 7 € [0,1]. This function is bounded by exp(K); hence, according
to Lemma 2.1, (-, y) € D" and

Dspi(w,y) = l[o,t](s) €xp { /Bzf("‘, or(w,y)) dT}~ (3.3)

Using (2) of Lemma 2.2, we conclude ¢:(-,y) € [, Dh?,

Let us check that ¢.(-,y) € Lé’p . From (3.3), it is obvious that this process
belongs to (1, LY. On the other hand, the sets

{s DtvSGDt/\s(';y)}te[o,l] and {s Dt/\s()OtVs('ay)}tE[O,l]

are equicontinuous, since
DtVs<Pt/\s('7y) =0
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and
|DtnsyPrves (5 Y) = Dins: Pivs: ()] < KeFlsa — 51,

Moreover,

esssup E[| Dy (-, y) 7] < €”% < o0.
s,t€[0,1]

We turn now to the boundary value problem (B).

Theorem 3.1. Assume f:[0,1] x R — R satisfies conditions (H,) and (Hz) of
Proposition 3.1 with Lipschitz constant K, and that

(H3) ¥:R — R is continuous and enjoys the following one-sided Lipschitz con-
dition:
z>y =) -y <n-(z-v),
with n < exp (- K).
Then, for every w € Q, the problem (B) has a unique solution.

Proof. From (Hs), Proposition 3.1 (2) and Proposition 3.2 (3), it is immediate
that, if z > vy,

Yowlwz) = [Yeoplwy) _

=Y

for some € > 0, and this implies that z ~ ¥(p1(w,z)) intersects the graph
of the identity exactly once. Therefore, if Yj is the unique fixed point of this
mapping, Yi(w) = ps(w, Yo(w)) solves the equation. Moreover, if Z is another
solution, we must have

Zi(w) = ¢t(w, Zo(w)) = pt(w, Yo(w)) = YVi(w),

.__.6,

for each w and ¢t. 0

From Propositions 3.3 and 3.4, we can derive corresponding properties for
equation (B). This is the content of the next two propositions.

Proposition 3.5. Let f:[0,1] x R = R and :R — R satisfy (H}), (H5)
and (Hj), where:

(HY) 4 is a C! function and ¢' < n < exp (—K).

Let Y = {Y;, t € [0,1]} be the unique solution to (B). Then, for every t € [0, 1],
Y; is Fréchet differentiable and its Fréchet derivative [VY;](w) at w satisfies:

t
VY3 (w)[h] = VYa(w)[H] + / 0y (5, Yo (W) VYs(@)[h]ds + by, heQ (3.4)
0
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Proof. Yo(w) is the unique solution y to S(w,y) := y — ¥(p1(w,y)) = 0. The
derivative of S with respect to y is strictly positive, because of (H3) and Propo-
sition (3.3). Thus, from the Implicit Function Theorem, Y; is differentiable
and

VYo(w)[h] =

¥ (1, Yo())
S ma ) o o MR U]

h € Q. (3.5)

On the other hand, we know that the mapping (w,y) = ¢:(w,y) is Fréchet
differentiable and (3.1) holds. Thus, by the chain rule, we obtain the differen-
tiability of Y;(w) = ¢i(w, Yo(w)) and the variational equation (3.4). l

Proposition 3.6. Let f:[0,1] xR — R and ¢: R — R satisfy conditions (H}),
(Hp), (HS). Then Y €, Ll”’ and

t

D,Y; = DYy exp { / By f(r, Yy) dr} + 1p0.4i(s) exp { /32f (r,Y,) dr}, (3.6)
0 i

where

' (V1 (w))

Do) = TG m o) (0,7

@) exp { / ﬁélfér,uyli’»}(;;))dr}. (3.7)

Proof. We are going to apply again Lemma 2.1, first to Y5 and then to Y;(w) =
ot (w, Yo(w)), t > 0. From (3.5), we have

Y’ (1 (w, Yo (w)))
1 -9/ (p1(w, Yo ()} (w, Yo (w

From Proposition 3.3, we find that

VYo ()l =

AR A NEES

IVig1(w, )] < e and ¢} (w,y) > e XK.
If ¥’ (1 (w, Yo(w))) < 0, the absolute value in (3.8) can be bounded by exp(K).
If, on the contrary, ¥’ (1 (w, Yo(w)) > 0, then it can be bounded by (exp (—K))/
(1 —nexp(K)). In any case, we obtain ||VYs(w)|| < C, for some constant C.
By the Mean Value Theorem, Y; is Lipschitz and |Y5(w)| < C - ||w]|o + |Y0(0)].
We conclude that Yy € LP(Q), for all p.

From (3.5) again and the computations in the proof of Proposition 3.4, we
have

1

V50 = e B [iorexp { [ 30500, : 00 ) s
0 s
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1]

Proceeding as in that proof, we obtain that the function s — [VYj(w)](]s,1])
is bounded uniformly in w. From Lemma 2.1, ¥; € DY, Applying (2) of

Lemma, 2.2, we conclude Yy € [, D'? and that (3 7) holds.
We can perform a similar computation for Y;:

|V (w) =Y (@)] = o (w, Yo()) — 01 (@, Yo (@))] < [|Yo(w) = Yo (@)|+]lw—5lle]e™,

that means, Y; is Lipschitz in w. From (1) of Proposition 3.1, ¥; € LP({2).
Finally one obtains from Proposition 3.5 after easy computations that

VY@ 1) = DeYow)exp { [ BusrYi(w)) dr}
0

+1j0,(s) exp { /Bgf(r, Y (w)) dr},

and from here we have that this random variable is in LP(§2; H) for all p. We
again conclude from Lemma 2.1 and Lemma 2.2 that ¥; € [, Dl

To show that Y € ’Lép , one can prove easily that

|DsZVtY;2/\'t'(w)‘ - Dslv‘“tYsl/\t(w)l < K6K|32 - sll,
|DsantYsovi(w) — Dsiat¥Ysve(w)| < 2K e¥|sy — s1),

esssup E(|D,V3|P) < 2Pe*KP < 0. (3.9)
s,t€[0,1]

4. General (non-degenerate) diffusion coefficient

In this section we study the boundary value problem

i t
(A) +O/b ds+/a(s,Xs)o dw,, tel0,1],
Xo = x(X1).

By a solution to (A) we mean a continuous stochastic process X = {X;, t €
[0,1]} such that o(-, X\) is Stratonovich integrable on [0, 1] and the equalities
in (A) hold true almost surely. Under appropriate conditions on b,0 and x, we
will prove the existence of a solution belonging to 1, Lg’fcc We will assume the

following conditions on 0:[0,1] x R = R:

(Hy) o(t,z) > 0 for every z € R and every ¢ € [0,1].
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(Hs) For every t € [0, 1],

oo

/ ;zzl;z'jdf”‘“‘m[o a(tl,m do = oo

0

(Hg) o, 010 and 0,0 are continuous functions.

Let G:[0,1] x R — R be the function defined by the differential equation

{ QG(t,y) = o(t,G(t,y)),
G(t,0) = 0.

Assumptions (Hy)—-(Hg) imply that:

(1) for any t € [0,1], the function G(¢,-): R — R is well defined and it is the

inverse of .

-1 _ 1

0

~ . (2) 61G(t,y) is continuous and differentiable with respect to y. Moreover,

001G (t,y) = 812G(t,y) (see Theorem 6.3.1 in [3]). We obtain the differ- -

ential equation
82 [GIG(t7 y)] = aZU(tv G(t7 y))alG(t7 y) + 810(t7 G(t7 y))

Taking into account that 9;G(t,0) = 0, we have

8G(ty) = / B10(t, G(t,5)) exp | / B20(t,G(t,€)) de } ds.

(3) 822G(t, y) - 82U(t1 G(ta y))a(t7 G(t) y))
With the preceding notations, let now b:[0,1] x R — R be such that:
(H7) The function f:[0,1] x R — R defined by

_ b, G(ty) — Gt y)

f(t7y) - a(t,G(t,y)) ’ (41)

satisfies (H}) and (H5) of Proposition 3.3 with Lipschitz constant K.

Notice that (Hy) holds if, for instance, b and J;b are bounded continuous, o
satisfies (Hg), and 9,0/0 and 020 /0 are bounded.
Finally, assume that



346 A. Alabert and M.A. Marmolejo

(Hg) x is of class C* and x’ <, where

-K

e
= f R
< Moy’ if MoM; # oo,
= 0, if ]\40]\/.[1 =
with
My := sgp 50.2) and M, := sgp o(l,z).

Theorem 4.1. Assume (H4)—(Hg). Then the problem (A) has a solution in
ﬂ LC loc”

Proof. Let f be the function given in (H7), and define 9: R — R by

P(y) = G710, x(G(1L,1))). (4.2)

We want to apply the It6 formula of Theorem 2.1. First we must show that the
solution Y of

t .
+/f(sY Vds+ W, tel0,1],
0

),

belongs to L2, Actually, we are in the conditions of Proposition 3.6. Indeed,
we know that f satisfies conditions (H}) and (H5), and, on the other hand,

o(1,G(1,y))
o(0,x(G(1,v))

If MoM; # oo, we get ¥/ (y) < MoMyn < exp (—~K), and if MyM; = oo, we get
¥’ (y) < 0. In both cases v satisfies (H;) and we conclude from Proposition 3.6
that ¥ € N, Lg".

Now, it is easily seen that the processes V! = ¢, V2 = Y¥; — W; and u =
1, and the function ®(z1,z2;23) = G(z1,2z2 + x3) satisfy the assumptions of
Theorem 2.1. Since

:<

V' (y) = X' (G(1,y)).

(I)(V;‘,li Vtz; Ut) = G(t,Yi),

@(‘ V07 ) = G(():YO),
81(1)(V517 s 7Us) - alG( )
0 ®(V),VEUs) = 8:8(V],VU,) = 8.G(s,Y5),

dvl = ds,
dv? = f(s,Y;)ds,

s
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we obtain
t

¢
G(t,Y:) = G(0, Yo)+/[81G(s,Ys)+82G(s,Ys)f(s,Ys)] ds-{—/azG(S,Ys)o dWs,
0 0

that means, X; = G(t,Y;) satisfies

¢ ¢
Xy :X0+/b(s,Xs)ds+/o(s,Xs)o dWs.
0 0

On the other hand,
Xo = G(0,Y0) = G(0,G71(0,x(G(1,11)))) = x(X1),

and we have obtained a solution to (A).
Let us see that X € [, Llciﬁoc. Denote 0, = {supp<;<1 [Yi| < n}, and let
a,: R — R be a smooth function with 0 < @, <1, ax(y) = 1 on {|y| < n} and

an(y) = 0 on {|ly| > n + 1}. Define Xén) =G, V)an(Ys), n> 1.
Clearly, Q, A~ 0, and Xt(n) = X; on Q. By Lemma 2.2 (1), Xt(n) e DbP
and T
D.X™ = [0(t,G(t, Y2))an(V2) + G(t, Yi)oy, (V)] DsYs.
We see that X.™ is uniformly bounded in ¢ and that 1D, X{™| < R|DYi],
for some constant R. Therefore, .Xt(") e LY?, To conclude that X € Lé’ﬁoc,

we must check that the set of LP(Q)-valued functions {s — Dg: X s(%}te[o,l]
is equicontinuous. This is tedious but straightforward, and we only sketch the
proof. Using the bounds in (3.9), we can write

Doyt Xy = Dorue Xl < Clsz = 1]+ [Yaane = Yo nel + 2 At — 51 A E]),

for some constant C. We have also, for r < ¢,
t
Vs = V| < Mt — 7| + |Ws — Wi + K/ Y| ds,

where M = supg<s<i |f (s,0)]. With the help of the inequality in Proposi-
tion 3.1 (2), we find
V2 (w)] < C'(1+ |lwllo),

for some constant C', and from here we can finally deduce for any p the existence
of a constant C" such that

E [IDSthﬂng/)\t - D$1Vt-Xs(:L/)\t p] < C”isz - 81|p.

Analogously, one obtains the equicontinuity of {s = DX sg@}te[o,l], and this
finishes the proof of the theorem. O
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Remark 4.1. In case o is a bounded function, it is not difficult to see that the
process X found in Theorem 4.1 actually belongs to the spaces L*? (there is no
need to localize). If moreover 8,0 and 9,0 are bounded, then X belongs to Lé:p .
In any case, by the chain rule (Lemma 2.2 (1)) we get DsX; = o(t, X;)D:Y;. It
is also immediate that X is a Fréchet differentiable mapping on 2 and VX;(w) =
o(t, Xt (w))VYi(w), for all w.

Using the inverse change of variables Y; = G~1(t, X;), one can formally
transform a solution X of equation (A) into a solution Y of an equation of type
(B). Therefore, if we assume that X belongs to a class of processes for which
Theorem 2.1 can be applied to

t
V;l = ¢, Vt2 = X + /b(g,Xs) ds, wui=o(t,X),
0

and
®(z1,29;73) = G (21, 20 + T3),

then the uniqueness property of equation (B) implies at once the uniqueness for
(A) inside the given class of processes.

We will not state here a rigorous result in this direction. Some uniqueness
theorems for stochastic differential equations with boundary conditions can be
found in [1,5,9]. -

5. Markovian-type properties

Definition 5.1. We say that X = {X;, ¢t € [0,1]} is a reciprocal process if for
every 0 <a <b<1,{Xy, t€[a,b]}and {X;, t € [0,1]]a, b[} are conditionally
independent given {X,, X;}.

A reciprocal process (a notion introduced by Bernstein [2]) is a one-dimensio-
nal Markov field in Paul Lévy’s terminology. The concept can also be found
in the literature under the names of Bernstein process, quasi-Markov process,
and local Markov process. Note that the Markov field property in the sense of
Rozanov [14] is weaker. To distinguish between both concepts, sometimes the
former is called sharp Markov field, and the latter germ Markov field.

Jamison [7] shows that every continuous Markov process is reciprocal. The
converse is false: the process X; = W, — 1/2W;, t € [0,1], where W is a
Wiener process, is reciprocal, but not Markovian. It is the solution to the
trivial boundary value problem

X, =Xo+ W, tel0,1],
Xo = —X;.

The following result is an immediate consequence of Theorem 4.1 in [1], and
characterizes the set of equations of type (B8) for which the reciprocal property
holds true.
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Theorem 5.1. Assume f:[0,1] x R — R and ¢¥:R — R satisfy (H;), (H5)
and (H}). Then the solution to (B) is a reciprocal process if and only if one of
the following conditions holds:

a) P =
b) f(t,z) = a(t)z + B(t), for some functions o and f3.
Now, using this theorem and the representation X; = G (t,Y:) for the solution

to (A), we can find the necessary and sufficient conditions on b, ¢ and x under
which X; is a reciprocal process. This generalizes Theorem 5.2 of [1].

Theorem 5.2. Under the assumptions of Theorem 4.1, the solution to the
problem (A) found there is a reciprocal process if and only if one of the following
conditions holds:

(a) X' =
~ b(t,0) [ 1 [dw(s)
(b) b(t,x) _a(t,a:)[ @.0) +a(t)/ 5) ds+- o7t 8) ds] for some func-
: 0 -
tion a(t).
Proof. First observe that, since X; = G(t,Y;) if and only if ¥; = G7(t, Xy),

the o-fields generated by X; and by Yt coincide, for each t. Therefore, X is a
reciprocal process if and only if Y is. According to The_vorem 5.1, this is true if
and only if ¥' = 0 or f(¢,z) = a(t)z + B(1).

From (4.2) and the fact that G is strictly increasing, we see that ¢’ = 0 is
equivalent to the condition x’ = 0. On the other hand, differentiating (4.1) with
respect to the second argument, we find that the second possibility is equivalent
to the existence of a function a(t) such that

O1o(t,z) 0Os0(t, )

Oqb(t, z) — cto) ol b(t,z) = a(t). (5.1)
Solving for b one obtains
b(t,z) = b(t,0)exp { / %%t(_té? df}
0
[l [
0 s
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Corollary 5.1. Consider the boundary value problem

¢
Xt=X0+/a(s,Xs)odWs, t €[0,1],
0

Xo = x(X1),

and assume (H4)—(Hg) (with b = 0).

Then X is a reciprocal process if and only if ¥’ = 0 or ¢ factorizes as
o(s,z) = A(s)B(z). In particular, if ¢ does not depend on s, X is always a
reciprocal process.

Proof. When b = 0, condition (5.1) reduces to

31 O"(t, )

()’(t,ll_iy_ = -'(],(t),

hence
S

= K'a‘(s, :c) : J(O,:c) exp{ - /a(t) ds} = A(s)B(z).

6. The linear case

In this section we consider the case in which ¢ is linear in the second vari-
able, that means o(t,z) = o(t)z, with o(¢t) > 0 for all ¢ € [0,1]. This case
is not covered by the results of Sections 4 and 5, because the diffusion coeffi-
cient vanishes at the points (¢,0). However, under a certain assumption on the
boundary condition, a solution exists which avoids the singular point and can
be constructed, with the same change of variable technique that we have used
before, from the solution Y of an equation with unit diffusion. We have the
following theorem.

Theorem 6.1. Let 0:[0,1] = R, b:{0,1] x R = R and x: R — R be functions
satisfying the following conditions.

a) 0 € C! and o > 0.

b) The function f:]0,1] x R — R defined by

b(t,e?®¥)  5'(1)
sy~ o(t) Y

flty) = (6.1)

satisties assumptions (H{) and (HY), with Lipschitz constant K .
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c) x € C*, maps positive numbers into positive numbers, and

for some 1 < exp (—K).
Then, the problem

t t
Xi = Xo + /b(s,Xs)ds + /O'(S)Xs o dW,, te€]0,1],

0 0
Xo = x(X1)

(£)

. . l,p . o,
has a solution in ﬂp Loy, which moreover has positive paths.

Proof. Define )
P(y) = ;@Mg [x(e?M¥)].

- "_This function satisfies the assumption (Hj) of Proposition 3.5, because 9'(y) is
equal to the left-hand side in (6.2). This ensures that

t
Y; = 0—}-/f(s,Y's)ds+th, t€10,1],
0
)

Y.
Yo =9y

has a unique solution, which belongs to ﬂp L}J’p . Applying Theorem 2.1 to the
processes V! = t, V2 = Y, — W, u = 1, and the function ®(z1,z2;73) =
exp (o(z1)(x2 + 3)), the continuous process defined by X; := exp (o (t)Y:) ver-
ifies

t t
X, = Xo + / b(s, X,) ds + / () X5 0 dW,
0 0

and
Xo = 700 = oo(O¥(M1) — 3 (7 WY1y = y (X)),

l,p

Proceeding as in the proof of Theorem 4.1, one can see that X; € (), L;g..

Notice that from the results of Section 5, X; is a reciprocal process if and
only if
a) X' =0,

or
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b) b(t,z) = b(t, 1)z + [%(%‘

a(t).

Theorem 6.1 is also true if we assume that y applies negative numbers into
negative numbers. In this case, we replace exp (o(t)y) by — exp (¢(t)y) in (b)
and exp (o(1)y) by — exp (0(1)y) in (c), and we obtain a negative solution X; =
—exp (o(t)Yz). Condition (b) for the reciprocal property is then

+- a(t)]xlog z, for all z > 0 and some function

!
b(t,z) = —b(t,1)z + [%—(%)- + a(t)]mlog(——m), Vz < 0.
Particularizing a little more, we assume now that the boundary condition
is also linear: Xy = aX; + 3. In case a > 0, this situation is covered by the
previous theorem (in its “positive” or “negative” version, depending on 8 > 0,
or B < 0, respectively).
Assume that a < 0 and § > 0. Consider the auxiliary problem

’

Q=Y0+/f(s,Ys)ds+Wt, t €[0,1],
(L) S

1
Yo = —— log (aeMM 4 g),
\ ° ‘7(0) g( )

 with f given by (6.1). The boundary condition can be written as
-1
- AN _ _ ,0(0)Yy
Yy = g(Yo) := (1)log[ (B—e )]

The function g is a decreasing bijection between the intervals

]—oo,;—k%ﬂogﬂ[ and ]—oo,;—(%—)-log—_&——[.

Since ¢} (w,y) > exp(—K) > 0 (see (3.2)), equation ¢;(w,y) — g(y) = 0 will
have a unique solution, that we call Yy. Then the process Y; = p:(w, Yp(w))
is the unique solution to (£)', and, as before, it can be seen that it belongs to
the spaces Lé’p . Now we apply the change of variables X; = exp (¢(¢)Y;) as in
Theorem 6.1, and we get a solution to our equation.

Finally, the case Xo = aX; + 8 with @ < 0 and # < 0 can be treated in
a similar way, with the change of variables X; = —exp (0(t)Y;), and writing
Yo = (1/0(0)) log (aexp (s(1)¥1) - B) in (L)

It is clear that our method can only work to construct a solution of (L)
whose paths are all of them positive or all of them negative. For example, the
equation

t
xo+/¥ odW,, tel0,1],

0

1,

Xo= X1+
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can be explicitly solved and the solution has positive and negative paths. The-
orem 6.1 cannot be applied here because the constant 7 in (c) does not exist.

7. Other properties of the solution

The representation X; = G(t,Y;) for the solution to (A), where Y3 is the
solution to the simpler equation (B), allows to study some properties of the
former quite easily, as we have seen with the Markovian property of Section 5.
Here we will show also the absolute continuity of the law of Xy, a maximal
inequality and a comparison result.

Proposition 7.1. Let 0,b:[0,1] x R -+ R and x:R — R satisfy assump-
tions (H4)—(Hg) and let X = {X;, t € [0,1]} be the solution to (A) found
in Theorem 4.1.

Then, for every t € (0,1], the law of X; is absolutely continuous with respect
to the Lebesgue measure on R. If X' # 0 a.e., this is also true for Xp.

Procf. We know that ||DsX¢||gr = o(t, X¢)||DsYellm. By (3) of Lemma 2.2, it is
enough to show that the last norm is positive.

From (3.6), multiplying D,Y; by exp { - f: o f(r,Y,(w))dr} > 0, we see
that ||DsY:||z = O if and only if the function of s

P Yow)) o
T 31 (w, Yo())h (@, Yol))

{ [ aastr00 Yo dr} + 10409
0

is zero a.e.
If 0 < t < 1, this is clearly impossible. If £ = 1, using

1
o1, Yo(w)) = exp { [ 0af(r 00, Yo(w)) dr .
0

we get also an absurd equality.

With the same arguments of Proposition 3.1 in [1], one can show that the
support of the law of Y} is the whole real line. Therefore, we see from (3.7)
that Yp (and consequently Xo) is absolutely continuous provided o # 0 ae.
(equivalently X' # 0 a.e.). 0

Proposition 7.2. Assume 0,b:[0,1] x R = R and x:R =+ R satisfy assump-
tions (Hy)-(Hg) and let X = {X;, t € [0,1]} be the solution to (A) found in
Theorem 4.1.

Then, for all p > 1,

[, ] s s o o (2 )
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where K is the constant in (Hy),

R= StuEO(t,rv), M =81§pl£—%’—%l)l, D =|G71(0, X0(0))],

and
1

"1 — MoMne¥ }
In particular, if o is bounded, then supg;<; |X:| € N, LP(2).

C = max {€2K

Proof. We have |Xi| = |G(t,Y:)| < R|Y;|, where Y is the solution to problem
(B). By Proposition 3.1 (1),

Y2 ()] = Jpr(w, Yo(w))] < [IYo(w)] + lwlleo + M]eX.

We know from the proof of Proposition 3.6 that |Yp(w)| < [Y5(0)| + Cllwlle =
D + Cl|w||co- Hence,

]n@mp§$W”§KUW+AN+wC+UWM@J

The Doob maximal inequality states that

E[( sup |W,|)?] < (—2—)P E[jW; 7],

0<s<1 p—1
and the result follows. O

We finish with an easy comparison result with respect to the boundary func-
tion Y.

Proposition 7.3. Let ¢,b:[0,1] x R - R and x: R — R satisfy assump-
tions (Hs)-(Hs) and let X = {X;, ¢t € [0,1]} be the solution to (A) found
in Theorem 4.1.

Let x: R — R be another function satisfying (Hg), and such that x < ¥.
Let X = {X;, t €[0,1]} be the corresponding solution to

¢ t
X’t=}_(0+/b(s,Xs)ds+/o(s,Xs)OdWs, t € [0,1],
— — 0 0
Xo = x(X1).
Then X; < X;.
Proof. Define

YY) =G (0,x(G(1,y)) and P(y) := G0, %(C(1,y))).



Reciprocal property for a class of anticipating stochastic differential equations 355

Since G~1(0,-) is increasing, we have ¢ < 4. If ¥ = {Y,, telo, 1]} solves

then _
Yo(w) = ¥(e1(w, Yo () < Vo) — (o1 (w, Yo(w))) =0,

which implies that ¥j(w) < Yo(w). By Proposition 3.9 (3),
Fi(w) = 01w, Yo () < o4 (w, Yo(w)) = Ti(w).

Finally,
=G4, Y) <G, ) = X,
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