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Abstract

We consider one-dimensional di�erential equations with a boundary condition on the interval
[0; 1], perturbed by a Poisson noise. We study existence and uniqueness, the law of the solution
and in which cases the solution is a reciprocal process. c© 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

In the last years some papers have been written on stochastic di�erential equations
with boundary conditions driven by a white noise, namely, problems of the form

Xt = X0 +
∫ t

0
f(s; Xs) ds+

∫ t

0
�(s; Xs) ◦ dWs; t ∈ [0; 1]:

X0 =  (X1):

(1.1)

Equations of the form (1.1) are anticipating in nature, and they have provided a �eld
of applications for the anticipating stochastic calculus developed in the late 1980s. We
refer the reader interested in these white noise driven equations to the survey (Alabert,
1995), the references therein, and the latter papers (Alabert et al., 1995; Ferrante and
Nualart, 1992; Alabert and Marmolejo, 1999).
The solution to (1.1) is not a Markov process, except in trivial cases, due to the

strong relationship between the variables X0 and X1. Instead, investigation of conditional
independence properties of the solution has turned mainly to the weaker reciprocal
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property (see De�nition 4.1), also called Markov-�eld, quasi-Markov or local-Markov
property in the literature. Reciprocal processes have received considerable attention
recently (see, e.g., Krener, 1997), since they play an important role in the e�orts to
�nd a satisfactory stochastic theory of quantum mechanics.
So far, nothing has been written concerning boundary value problems driven by a

Poisson noise. In this paper we provide a �rst work in this direction. We consider the
simplest possible case, in which the noise appears additively:

Xt = X0 +
∫ t

0
f(s; Xs) ds+ Nt; t ∈ [0; 1]:

X0 =  (X1):

(1.2)

The solution will be taken in a pathwise sense, and, therefore, we do not need to use
any kind of anticipating stochastic calculus with respect to the Poisson process. The
case with multiplicative noise is a work currently under development.
In the Wiener setting, two methods have been employed to study Markovian-type

properties of the solution. One of them is based in an anticipating change of measure in
Wiener space (the Ramer–Kusuoka Theorem, see Kusuoka, 1982); the second one relies
on a more direct argument that involves a characterisation of the conditional indepen-
dence of two independent random vectors given a function of them, and was introduced
in Alabert et al. (1992) (see Lemma 4.3 below). In our case, the �rst method cannot
be applied; our approach is based on the second method, which, in comparison with
the Wiener case, has some additional technical di�culties, arising from several facts:

(1) The laws of the random variables Xt have in general a discrete and an absolutely
continuous part.

(2) The support of these laws is not the whole real line.
(3) The path space of the Poisson process is not as rich as the Wiener space.

The results obtained here di�er from the ones we know for white noise driven equa-
tions. Indeed, it was shown in Nualart and Pardoux (1991) that, when � ≡ 1, the
solution to (1.1) is a reciprocal process if and only if f is an a�ne function in the
second variable (or  is constant); for our Eq. (1.2), we �nd that if f is a�ne or
1-periodic in the second variable then the solution is reciprocal (Theorems 4.7 and
4.8), but the converse is not true (Example 4.9). These results are proved by direct
arguments. As Example 4.9 suggests, it seems di�cult to �nd a neat necessary and
su�cient condition for the reciprocal property to hold. However, in the autonomous
case, and by means of the aforementioned characterisation of the conditional indepen-
dence, we are able to identify a wide class of drift coe�cients for which the reciprocal
property fails (Theorem 4.10). This class includes the functions f¿ 0 for which

F(x) =
f′(x + 1)f(x)− f(x + 1)f′(x)

f(x + 1)− f(x)

is well-de�ned and one-to-one.
The process N in (1.2) models an impulse disturbance independent of time and

position. It is also interesting to study the case when the source of the disturbance is
�nite, modelled by a Poisson process conditioned to have no more than a �xed number
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of jumps in the interval [0; 1]. This situation is more di�cult to deal with, mainly
because the increments of the driving process are not independent. We will concentrate
in the case when at most one jump is allowed. It is shown that the solution is always
reciprocal (Theorem 5.1), and it is also Markov under some conditions (Theorem 5.2).
We explain now brie
y what can be found in each of the sections of this work.

Section 2 is devoted to some preliminaries about the equation dXt = f(t; Xt) + dNt

with constant initial condition. In Section 3 we study the existence and uniqueness of
a solution to (1.2), its di�erentiability properties when the coe�cients are smooth and
the absolute continuity of the law of each variable Xt with respect to the sum of a
Dirac-� measure and the Lebesgue measure. In Section 4 we state and prove the main
results of this paper, which deal with the reciprocal property of the solution. Finally, in
Section 5, we give some results on the Markov and reciprocal properties with a �nite
source of Poissonian noise.
We will use the notation @if for the derivative of a function f with respect to the

ith coordinate, f(s−) and f(s+) for limt↑s f(t) and limt↓s f(t); respectively, and the
acronym c�adl�ag for “right continuous with left limits”.

2. The equation of the 
ow

Let N = {Nt; t¿0} be a standard Poisson process with intensity 1 de�ned on some
probability space (
;F ; P); that means, N has independent increments, Nt − Ns has
a Poisson law with parameter t − s; N0 ≡ 0, and all its paths are integer-valued,
non-decreasing, c�adl�ag, with jumps of size 1.
Throughout the paper, Sn will denote the jump times of N :

Sn(!) := inf{t¿0 :Nt(!)¿n}:
The sequence Sn is strictly increasing to in�nity, and {Nt = n}= {Sn6t ¡Sn+1}.
Let us consider the pathwise equation

’st(x) = x +
∫ t

s
f(r; ’sr(x)) dr + Nt − Ns; 06s6t61; (2.1)

where x ∈ R, and assume that f : [0; 1]× R→ R is a measurable function such that
(H1) ∃K ¿ 0: ∀t ∈ [0; 1]; ∀x; y ∈ R; |f(t; x)− f(t; y)|6K |x − y|,
(H2) M := sup

t∈[0;1]
|f(t; 0)|¡∞.

For every x ∈ R, denote by �(s; t; x) the solution to the deterministic equation

�(s; t; x) = x +
∫ t

s
f(r; �(s; r; x)) dr; 06s6t61: (2.2)

The following properties of (2.2) are either well known to the reader or very easy to
show:

Proposition 2.1. Under hypotheses (H1) and (H2); there exists a unique solution
�(s; t; x) of Eq. (2:2). Moreover;
(1) For every 06s6t61; and every x ∈ R; |�(s; t; x)|6(|x|+M)eK(t−s).
(2) For every 06s6r6t61; and every x ∈ R; �(r; t;�(s; r; x)) = �(s; t; x).
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(3) For every 06s6t61; and every x1; x2 ∈ R with x1¡x2;

(x2 − x1)e−K(t−s)6�(s; t; x2)− �(s; t; x1)6(x2 − x1)eK(t−s):

In particular; for every s; t; the function x 7→ �(s; t; x) is a homeomorphism from
R into R.

(4) If G : [0; 1]×R→R has continuous partial derivatives; then for every 06s6t61;

G(t; �(s; t; x)) =G (s; x) +
∫ t

s
[@1G(r; �(s; r; x))

+ @2G(r; �(s; r; x))f(r; �(s; r; x))] dr:

Using Proposition 2.1 one can prove easily the following analogous properties for
Eq. (2.1):

Corollary 2.2. Under hypotheses (H1) and (H2); for every x ∈ R there is a unique
process ’(x) = {’st(x); 06s6t61} that solves (2:1). Moreover;
(1) For every 06s6t61; and every x ∈ R;

|’st(x)|6(|x|+ (Nt − Ns)(1 +M) +M)eK(t−s):

(2) For every 06s6r6t61; and every x ∈ R; ’rt(’sr(x)) = ’st(x).
(3) For every 06s6t61; and every x1; x2 ∈ R with x1¡x2;

(x2 − x1)e−K(t−s)6’st(x2)− ’st(x1)6(x2 − x1)eK(t−s):

In particular; for every s; t; the function x 7→ ’st(x) is a random homeo-
morphism from R into R.

(4) If G : [0; 1] × R→R has continuous partial derivatives; then for every
06s6t61;

G(t; ’st(x)) =G (s; x) +
∫ t

s
[@1G(r; ’sr(x)) + @2G(r; ’sr(x))f(r; ’sr(x))] dr

+
∫ t

s+
[G(r; ’sr(x))− G(r; ’sr−(x))] dNr:

Notice that the jumps of ’ coincide with those of N in position and size, and that the
homeomorphism property above is not true for equations driven by general martingales
with jumps (see Meyer, 1981 or L�eandre, 1985).
By solving Eq. (2.2) between jumps, the value ’st(!; x) can be found recursively

in terms of �: If s1 = S1(!); : : : ; sn = Sn(!) are the jump times of the path N (!) on
(s; 1], then

’st(x) =�(s; t; x)1[s; s1)(t) +
n−1∑
i=1

�(si; t;’ss−i
(x) + 1)1[si ;si+1)(t)

+�(sn; t;’ss−n
(x) + 1)1[sn;1](t): (2.3)
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Consider now the stronger hypotheses

(H′
1) f and @2f are continuous functions.

(H′
2) ∃K ¿ 0: |@2f|6K .

Proposition 2.3. Under hypotheses (H′
1) and (H

′
2); we have:

(1) For every ! ∈ 
 and every x ∈ R; the function t 7→ ’st(!; x) is di�erenti-
able on [s; 1]− {s1; s2; : : :}; where s1; s2; : : : are the jump times of N (!) on (s; 1];
and

d’st(x)
dt

= f(t; ’st(x)):

(2) For every ! ∈ 
 and every 06s¡ t61; the function x 7→ ’st(!; x) is con-
tinuously di�erentiable and

d’st(x)
dx

= exp
{∫ t

s
@2f(r; ’sr(x)) dr

}
:

In particular; x 7→ ’st(x) is a random di�eomorphism from R into R.
(3) On the set {Nt − Ns = n}; (n = 1; 2; : : :); the mapping ! 7→ ’st(!; x)

can be regarded as a function ’st(s1; : : : ; sn; x) de�ned on {s¡ s1¡ · · ·¡sn6t};
where sj = Sj(!) are the jump times of N (!) in (s; t]. This function is
continuously di�erentiable and; for every j ∈ {1; : : : ; n};

@’st(x)
dsj

= exp

{∫ t

sj
@2f(r; ’sr(x)) dr

}
[f(sj; ’ss−j

(x))− f(sj; ’ssj (x))]:

Proof. It is easy to see that

@1�(s; t; x) =−f(s; x) exp
{∫ t

s
@2f(r; �(s; r; x)) dr

}
;

@2�(s; t; x) = f(t; �(s; t; x));

@3�(s; t; x) = exp
{∫ t

s
@2f(r; �(s; r; x)) dr

}

and that these derivatives are continuous on {06s6t61} × R. Claims (1) and
(2) follow from these formulae and representation (2.3).
The existence of the function ’st(s1; : : : ; sn; x) of (3) and its di�erentiability

properties are also clear from (2.3). Let us compute the derivative with respect to sj.
For n= 1, we have

d’st(x)
ds1

= @1�(s1; t;�(s; s1; x) + 1) + @3�(s1; t;�(s; s1; x) + 1)@2�(s; s1; x)

= exp
{∫ t

s1
@2f(r; ’sr(x))

}[
f(s1; ’ss−1

(x))− f(s1; ’ss1 (x))
]
:
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Assume the formula is valid up to n= k. Then, for n= k + 1, and j = 1; : : : ; k,

@’st(x)
@sj

= @3�(sk+1; t;’ssk+1(x))
@’ssk+1(x)

@sj

= exp

{∫ t

sj
@2f(r; ’sr(x)) dr

}[
f(sj; ’ss−j

(x))− f(sj; ’ssj (x))
]
:

Taking into account that

’ssk+1(x) = ’ss−k+1
(x) + 1;

@’ssk+1(x)
@sk+1

= f(sk+1; ’ss−k+1
(x));

we obtain, for j = k + 1:

@’st(x)
@sk+1

= @1�(sk+1; t;’ssk+1(x)) + @3�(sk+1; t;’ssk+1(x))
@’ssk+1(x)

@sk+1

= exp
{∫ t

sk+1

@2f(r; ’sr(x)) dr
}[

f(sk+1; ’ss−k+1
(x))

−f(sk+1; ’ssk+1(x))
]
:

We will write ’t(x) for ’0t(x). It is well known that {’t(x); t ∈ [0; 1]} is a Markov
process (see, e.g., Protter (1977), Section 5, for a proof in a more general situation).
Carlen and Pardoux (1990) studied, using Malliavin calculus on the Poisson space,
the law of the solution of Poisson-driven equations. In particular, they obtained that
on the set {N1¿1} the law of ’1(x) is absolutely continuous with respect to the
Lebesgue measure, provided @2f never vanishes. We generalise here this result proving
that the law of ’t(x) is the weighted sum of a Dirac-� and an absolutely continuous
probability, without using the Malliavin calculus formalism. Moreover, we only need
f(t; x) 6= f(t; x + 1), ∀t;∀x, instead of |@2f|¿ 0.

Proposition 2.4. Let f be a function satisfying hypotheses (H′
1) and (H

′
2). Assume

moreover that f(t; x) 6= f(t; x+1); ∀t;∀x. Let ’(x)={’t(x); t ∈ [0; 1]} be the solution
to (2:1) for s=0. Then; for all t ¿ 0; the distribution function of ’t(x) can be written
as

F(y) = e−tFD(y) + (1− e−t)FC(y) (2.4)

with

FD(y) := 1[� (0; t;x);∞)(y)

and

FC(y) := (et − 1)−1
∫ y

−∞

∞∑
n=1

tn

n!
hn(r) dr;

where hn is the density function of the law of ’t(x) conditioned to Nt = n.
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Proof. Let S1; S2; : : : be the jump times of {Nt; t ∈ [0; 1]}. We know from Proposition
2.3 that on the set {Nt = n} (n = 1; 2; : : :) we have ’t(x) = G(S1; : : : ; Sn) for some
continuously di�erentiable function G, and that

@1G (s1; : : : ; sn) = exp
{∫ t

s1
@2f(r; ’r(x)) dr

}[
f(s1; ’s−1

(x))− f(s1; ’s1 (x))
]
:

The hypothesis f(t; x) 6= f(t; x + 1), ∀t;∀x implies |@1G|¿ 0.
It is known that, conditionally to {Nt = n}, (S1; : : : ; Sn) follows the uniform distri-

bution on Dn = {0¡s1¡ · · ·¡sn6t}. If we de�ne T (s1; : : : ; sn) = (z1; : : : ; zn), with
z1 = G (s1; : : : ; sn) and zi = si, 26i6n, then (Z1; : : : ; Zn) = T (S1; : : : ; Sn) is a random
vector with density

h(z1; : : : ; zn) = n!t−n|@1s1(z1; : : : ; zn)|1T (Dn)(z1; : : : ; zn)

and therefore ’t(x) is absolutely continuous on {Nt = n}, for every n¿1, with condi-
tional density

hn(z1) = 1G(Dn)(z1)
∫ ∫

· · ·
∫

n!t−n|@1s1(z1; : : : ; zn)|1T (Dn)(z1; : : : ; zn) dz2 : : : dzn:

Now,

F(y) =
∞∑
n=0

P{’t(x)6y=Nt = n}P{Nt = n}

= e−tP{’t(x)6y=Nt = 0}+ e−t
∞∑
n=1

tn

n!

∫ y

−∞
hn(r) dr

= e−t1[� (0; t; x);∞)(y) + e−t
∫ y

−∞

∞∑
n=1

tn

n!
hn(r) dr

and (2.4) follows.

Remark 2.5. If the hypothesis f(t; x) 6= f(t; x + 1), ∀t, ∀x, does not hold, then the
conclusion of Proposition 2.4 is not necessarily true: Consider for instance the equation

’t =
∫ t

0
f(’r) dr + Nt

with f(n) = 0 for n = 0; 1; 2; : : : ; whose solution is ’ ≡ N . More generally, under
hypotheses (H1) and (H2), the condition f(t; x) = f(t; x + 1), ∀t, ∀x is su�cient for
the process ’ to have discrete laws, and in that case ’t(x) = �(0; t; x) + Nt .

3. The equation with boundary condition

In this section we establish �rst an easy existence and uniqueness theorem, based
on Corollary 2.2 above, when the initial condition in our equation is replaced by
a boundary condition. Then we prove in this situation the analogue of Propositions
2:3(3) and 2:4 on the di�erentiability with respect to the jump times and the absolute
continuity of the laws (Propositions 3.2 and 3.3, respectively).
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Theorem 3.1. Let f : [0; 1]× R → R be a measurable function satisfying hypotheses
(H1) and (H2) of Section 2 with Lipschitz constant K . Let  :R→ R be a continuous
function such that:
(H3)  satis�es one of the following one-sided Lipschitz or inverse-Lipschitz

conditions:
(a) x¿y ⇒  (x) −  (y)6� · (x − y); for some real constant � such that

�¡ e−K .
(b) x¿y ⇒  (x) −  (y)¿� · (x − y); for some real constant � such that

�¿ eK .
Then there exists a unique c�adl�ag process X = {Xt; t ∈ [0; 1]} that
solves the boundary value problem

Xt = X0 +
∫ t

0
f(s; Xs) ds+ Nt; t ∈ [0; 1];

X0 =  (X1): (3.1)

Proof. According to Corollary 2.2, for every x ∈ R there exists a unique c�adl�ag process
’(x) = {’t(x), t ∈ [0; 1]} satisfying

’t(x) = x +
∫ t

0
f(r; ’r(x)) dr + Nt; t ∈ [0; 1]:

From part (3) of that corollary and hypothesis (H3), it is clear that the function x 7→
x −  (’1(!; x)) has a unique �x point, that we de�ne as X0(!). It follows that (3.1)
has the unique solution Xt(!) = ’t(!; X0(!)).

In the next two propositions, we assume the regularity hypotheses (H′
1) and (H

′
2) on

f. Moreover, we also require the boundary function  to be continuously di�erentiable.

Proposition 3.2. Let f: [0; 1]× R→ R and  :R→ R satisfy hypotheses (H′
1); (H

′
2)

of Section 2 and
(H′

3)  is continuously di�erentiable with  ′6�¡ e−K or  ′¿�¿ eK ; for some
constant �; and let X = {Xt; t ∈ [0; 1]} be the solution to (3:1). Then;
(1) Let n∈{1; 2; : : :}. On the set {N1 = n}; X0 can be regarded as a

function X0(s1; : : : ; sn) de�ned on {0¡s1¡ · · ·¡sn61}; where sj = Sj(!) are
the jump times of N (!) in [0; 1]. This function is continuously di�erentiable;
and for any j = 1; 2; : : : ; n:

@X0
@sj

=
 ′(X1) exp{

∫ 1
sj
@2f(r; Xr) dr}[f(sj; Xs−j

)− f(sj; Xsj)]

1−  ′(X1) exp{
∫ 1
0 @2f(r; Xr) dr}

: (3.2)

(2) Let t ∈ (0; 1] and n; k ∈{0; 1; : : :} such that n + k¿1. On the set
{Nt=n}∩{N1−Nt=k}; Xt can be regarded as a function Xt(s1; : : : ; sn+k) de�ned on
{0¡s1¡ · · ·¡sn+k61}; where sj = Sj(!) are the jump times of N (!) in [0; 1].
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This function is continuously di�erentiable; and for any j = 1; 2; : : : ; n+ k:

@Xt

@sj
= exp

{∫ t

0
@2f(r; Xr) dr

}
@X0
@sj

+exp

{∫ t

sj
@2f(r; Xr) dr

}
[f(sj; Xs−j

)− f(sj; Xsj)]1{16j6n}: (3.3)

Proof. Since X0 =  (’1(X0)), we have

@X0
@sj

=
 ′(’1(X0))@’1(x)=@sj|x=X0

1−  ′(’1(X0)) d’1(x)=dx|x=X0

and (3.2) follows from Proposition 2.3, (2) and (3). On the other hand, from Xt =
’t(X0),

@Xt

@sj
=
d’t(x)
dx

∣∣∣∣
x=X0

@X0
@sj

+
@’t(x)
@sj

∣∣∣∣
x=X0

1{16j6n}

and we �nd (3.3) immediately.

Proposition 3.3. Let f : [0; 1] × R → R and  :R → R satisfy hypotheses (H′
1);

(H′
2) and
(H′′

3 )  is of continuously di�erentiable and  ′ ¡ 0 or 0¡ ′6�¡ e−K or  ′¿
�¿ eK ; for some constant �.
Assume that f(t; x) 6= f(t; x + 1); ∀t; ∀x. Let x∗ be the unique solution to x =

 (�(0; 1; x)). Let X be the solution to (3:1). Then;
(1) The distribution function of X0 is

FX0 (x) = e
−1FDX0 (x) + (1− e−1)FCX0 (x);

with

FDX0 (x) = 1[x∗ ;∞)(x)

and

FCX0 (x) = (e− 1)−1
∫ x

−∞

∞∑
n=1

hn(r)
n!

dr;

where hn is the density of X0 conditioned to N1 = n.
(2) The distribution function of Xt; t ∈ (0; 1] is

FXt (x) = e
−1FDXt

(x) + (1− e−1)FCXt
(x)

with

FDXt
(x) = 1[� (0; t;x∗);∞)(x)
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and

FCXt
(x) =

e−t

1− e−1
[
e−(1−t)

∫ x

−∞

∞∑
n=1

(1− t)n

n!
h0n(r) dr +

∫ x

−∞

∞∑
n=1

hn(r)
n!

dr

]
;

where h0n is the density of Xt conditioned to Nt = 0; N1 = n; and hn is the
density of Xt conditioned to Nt = n.

Proof. Under the given hypotheses, and from Proposition 3.2, we have |@Xt=@s1|¿ 0,
for every t ∈ [0; 1], on the sets {N1 = n}, (n= 1; 2; : : :). We deduce, as in Proposition
2.4, that the laws of Xt are absolutely continuous on these sets. On {N1 = 0} one has
clearly Xt ≡ �(0; t; x∗).
The formula for FX0 is obtained as in Proposition 2.4, but conditioning to {N1 =

n}. The formula for FXt , t ¿ 0, is also obtained in a straightforward manner as in
Proposition 2.4, but starting with the decomposition

FXt (x) = P{Xt6x; N1 = 0}

+
∞∑
n=1

P{Xt6x=Nt = 0; N1 − Nt = n}e−1 (1− t)n

n!

+
∞∑
n=1

P{Xt6x=Nt = n}e−t t
n

n!
:

4. The reciprocal property

Let us recall the de�nition of a reciprocal process. We introduce �rst the usual
notation for conditional independence: Let (
;F ; P) be a probability space and let F1,
F2 and B be sub-�-�elds of F such that

P{A1 ∩ A2=B}= P{A1=B}P{A2=B}
for any A1 ∈ F1, A2 ∈ F2. Then we say that the �-�elds F1 and F2 are conditionally
independent given B, and we write

F1p
B

F2:

De�nition 4.1. A stochastic process {Xt; t ∈ [0; 1]} is called reciprocal if for every
06a¡b61,

�{Xt; t ∈ [a; b]} p
�{Xa;Xb}

�{Xt; t ∈ (a; b)c}:

Any Markov process is reciprocal. This fact was stated in Jamison (1970) for contin-
uous processes. We have not been able to �nd in the literature a proof for the general
case. We give here a short one.

Proposition 4.2. Any Markov process is reciprocal. The converse is not true.
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Proof. An easy example of a reciprocal process which is not Markov is {Nt +N1; t ∈
[0; 1]}. Suppose now that X is a Markov process in [0; 1]. Fix 06a¡b61 and set
F1 := �{Xt; t ∈ [0; a]}, F2 := �{Xt; t ∈ [a; b]}, F3 := �{Xt; t ∈ [b; 1]}, B :=
�{Xa; Xb}. Using elementary properties of the conditional independence (see, for in-
stance, Rozanov, 1982) one �nds that the Markov property implies

F1p
B

F2 ∨ F3; F2p
B

F3 and F1p
B

F3: (4.1)

Let us show that (4.1) implies that F1 ∨ F3 t
B

F2, and the proof will be complete.

Indeed, F1∨F3 is generated by the �-system of sets of the form A1∩A3, with A1 ∈ F1
and A3 ∈ F3. Taking A1 ∈ F1, A2 ∈ F2, and A3 ∈ F3, we obtain

P(A1 ∩ A2 ∩ A3=B) = P(A1=B)P(A2 ∩ A3=B)

= P(A1=B)P(A2=B)P(A3=B)

= P(A1 ∩ A3=B)P(A2=B):

For stochastic boundary value problems driven by the Wiener process, two di�er-
ent methods have been used to determine in which cases the solution is a reciprocal
process. The �rst is based in the anticipating version of the Girsanov theorem (see
Kusuoka, 1982). The other one makes use of the characterisation of conditional in-
dependence given in Lemma 4.3 below. Both methods can be applied to the Wiener
analogue of our equation (see Nualart and Pardoux (1991) and Alabert et al. (1995),
respectively), and they allow to prove, assuming f satis�es (H′

1), (H
′
2), and  is con-

tinuously di�erentiable and non-increasing, that the solution is a reciprocal process if
and only if f(t; ·) is an a�ne function for every t or  ′ ≡ 0.
In the Poisson case we will see that there is no such a neat characterisation of

the reciprocal property. A�ne functions f always lead to reciprocal processes, but
1-periodic and other nonlinear functions f also do; however, introducing additional
hypotheses on a nonlinear drift, we �nd a class of equations for which one can ensure
that the reciprocal property does not hold.
Our plan is as follows: in Lemmas 4.3–4.6, we introduce some tools that we will

needed. The �rst three lemmas are not new, and we refer the reader to the original
papers for the proofs. Then we prove that if the drift is a�ne or 1-periodic in the
second variable, then the solution is reciprocal (Theorems 4.7 and 4.8); we exhibit
other drifts coe�cients with the same property (Example 4.9), and �nally we state a
negative result under some conditions on the drift (Theorem 4.10).
The following result was proved in Alabert et al. (1995).

Lemma 4.3. Let F1 and F2 be two independent sub-�-�elds in a probability space
(
;F ; P). Consider two functions g1 :R × 
 → R and g2 :R × 
 → R such that gi

is B(R)⊗Fi-measurable; i= 1; 2; and they satisfy the following conditions for some
�0¿ 0:
(C1) For every y1; y2 ∈ R; the random variables g1(y1; ·) and g2(y2; ·) possess

absolutely continuous distributions and their corresponding densities f1(y1; z)
and f2(y2; z) are locally bounded in R2.
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(C2) For any |�|¡�0; |�|¡�0; the system

y2 − g1(y1; !) = �;

y1 − g2(y2; !) = �

has a unique solution (y1; y2) ∈ R2; for almost all ! ∈ 
.
(C3) For almost all ! ∈ 
; the functions y1 7→ g1(y1; !) and y2 7→ g2(y2; !)

are continuously di�erentiable; and there exists an integrable random variable
H such that

sup
|y1 − g2(y2; !)|¡�0
|y2 − g1(y1; !)|¡�0

|1− g′1(y1; !)g
′
2(y2; !)|−16H (!) a:s:

Let Y1 and Y2 be the random variables determined; according with (C2); by the system

Y2(!) = g1(Y1(!); !);
Y1(!) = g2(Y2(!); !):

Then; the following statements are equivalent:
(i) F1 and F2 are conditionally independent given Y1 and Y2.
(ii) There exist two functions F1 :R2 × 
 → R; F2 :R2 × 
 → R; which are

B(R2)⊗ Fi-measurable; i = 1; 2, such that

|1− g′1(Y1)g
′
2(Y2)|= F1(Y1; Y2; !)F2(Y1; Y2; !) a:s:

If; in addition; 1 − g′1(Y1)g
′
2(Y2) has constant sign; then (i) and (ii) are equi-

valent to
(iii) At least one of the random variables g′1(Y1); g′2(Y2) is a.s. constant; with

respect to the conditional law given Y1 and Y2.

Lemma 4.3 can be generalised to n-dimensional variables (see Ferrante and Nualart,
1997). In case the distributions of Y1 and Y2 are discrete, the following Lemma (Alabert
and Nualart, 1992) states that the conditional independence always holds true. This
result is valid with any measurable space in place of R.

Lemma 4.4. Let F1 and F2 be two independent sub-�-�elds in a probability space
(
;F ; P). Consider two functions g1 :R×
 → R and g2 :R×
 → R such that gi is
B(R)⊗ Fi-measurable; i = 1; 2; and that the system

y2 − g1(y1; !) = 0;
y1 − g2(y2; !) = 0

has a unique solution (y1; y2) ∈ R2; for almost all ! ∈ 
. Let Y1 and Y2 be the
random variables determined by this system; and assume they have discrete laws.
Then F1 and F2 are conditionally independent given Y1 and Y2.

We will also make use of the following tool, �rst employed in a context similar
to ours by Ferrante and Nualart (1997) to prove that certain speci�c two-dimensional
linear equation with boundary condition and Wiener noise does not have a reciprocal
solution, thus solving a problem left open in Ocone and Pardoux (1989).
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Lemma 4.5. Let F1; F2 and G three sub-�-�elds in a probability space (
;F ; P).
Let B=B1∩B2; where B1 ∈ F1 and B2 ∈ F2 and P(B)¿ 0. Denote by Fi|B := {A∩B :
A ∈ Fi}; i = 1; 2. If F1 and F2 are conditionally independent given G in (
;F ; P);
then F1|B and F2|B are conditionally independent given G|B in (B;F|B ; P(·=B)).

It should be noted that one cannot deduce the global conditional independence from
the local conditional independence for all Bi in a partition.

Lemma 4.6. If � = {�t ; t ∈ [0; 1]} has independent increments and g is a Borel
function; then X := {g(�1) + �t; t ∈ [0; 1]} is a reciprocal process.

Proof. Fix 06a¡b61. Set B := �{Xa; Xb}; F i
ab := �{�t−�a; t ∈ [a; b]}, and F e

ab :=
�{�t ; t ∈ [0; a]; �t − �b; t ∈ [b; 1]}. Since F i

abtF e
ab and �{�b − �a}⊂F i

ab, we have

F i
ab p

�{�b−�a}
F e

ab ∨ �{�b − �a}: (4.2)

Similarly, (4.2) and �{�b − �a}⊂B⊂F e
ab ∨ �{�b − �a} imply

F i
ab ∨ Bp

B

F e
ab ∨ B:

We use �nally that �{Xt; t ∈ [a; b]}⊂F i
ab ∨ B and �{Xt; t ∈ (a; b)c}⊂F e

ab ∨ B, and
the proof is complete.

Theorems 4.7, 4.8 and 4.10 are the main results of this paper.

Theorem 4.7. Assume f has the form f(t; x) = �(t) + �(t)x; where � and � are con-
tinuous functions; and that Eq. (3:1) has a unique solution X . Then; X is a reciprocal
process.

Proof. If f has the given form, Eq. (3.1) has a unique solution if and only if for almost
every ! ∈ 
, there exists a unique value X0(!) verifying X0(!) =  (A(1)(X0(!) +
�1(!))), where

A(t) := exp
{∫ t

0
�(r) dr

}
; �t :=

∫ t

0
A(r)−1[�(r) dr + dNr]

and in that case the solution is given by Xt = A(t)[X0 + �t], a.s.
Therefore, there exists a Borel function g such that X0 = g(�1), a.s., and we can

write

Xt = A(t)[g(�1) + �t]:

Since � has independent increments, we conclude from Lemma 4.6 that X is reciprocal.

Theorem 4.8. Assume that f : [0; 1] × R → R and  :R → R verify hypotheses
(H1); (H2) and (H3); and that f(t; x) = f(t; x + 1); ∀t; ∀x. Let X = {Xt; t ∈ [0; 1]}
be the solution to (3:1). Then;
(1) For every t ∈ [0; 1]; Xt has a discrete law.
(2) X is a reciprocal process.
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Proof. In this case, the solution to (3.1) satis�es X1=�(0; 1;  (X1))+N1 (see Remark
2.5). Together with (H3), this implies that X1 is N1-measurable, and we can write
Xt = �(0; t; �(N1)) + Nt = �(0; t; �(N1) + Nt) for some Borel function �. Claim (1)
follows immediately. Claim (2) follows from (1), applying Lemma 4.4, and it is also
a consequence of Lemma 4.6, since �(0; t; ·) is invertible.

Example 4.9. The process X = {�t + Nt − 1
2N1; t ∈ [0; 1]}, where � ∈ [0; 1=2), is

reciprocal, because it is the solution to (3.1) with f(t; x) ≡ � and  (x) = � − x, and
we can apply either Theorem 4.7 or 4:8. But X also solves

Xt = X0 +
∫ t

0
f(Xr) dr + Nt; t ∈ [0; 1];

X0 = �− X1
(4.3)

for any function f :R → R satisfying f(x) ≡ � for every x ∈ ⋃
k∈Z [k=2; k=2 + �]. In

particular, Nt− 1
2 N1 solves (4.3) for any function f vanishing on the set {k=2; k ∈ Z}.

This example shows that we cannot expect to �nd a characterisation of the reciprocal
property similar to that of equations driven by white noise. Intuitively, the reason is
that there is not a one-to-one correspondence between drift and boundary coe�cients
on one side and solution processes on the other, unlike in the additive Wiener case.
The next theorem states a negative result for the reciprocal property. We restrict

ourselves to autonomous drift coe�cients.

Theorem 4.10. Let f :R→ R and  :R→ R be measurable functions satisfying:
(1) f is continuously di�erentiable; f¿ 0 and |f′|6K; for some constant K .
(2) f(x) 6= f(x + 1); ∀x.
(3)  is continuously di�erentiable with  ′ ¡ 0 or 0¡ ′6�¡ e−K or  ′¿

�¿ eK ; for some �.
(4) The function F :R→ R de�ned by

F(x) =
f′(x + 1)f(x)− f(x + 1)f′(x)

f(x + 1)− f(x)
;

satis�es F(x) 6= F(x + 1 + �) for all �¿ 0 and x ∈ R.
Then; the solution to

Xt = X0 +
∫ t

0
f(Xr) dr + Nt; t ∈ [0; 1];

X0 =  (X1)
(4.4)

is not a reciprocal process.

Proof. We will split the proof into several steps. Let X = {Xt; t ∈ [0; 1]} be the
solution to (4.4), which exists and is unique under the given hypotheses, by virtue of
Theorem 3.1.
Step 1: Fix 06a¡b61, and denote

F i
ab := �{Nt − Na; a6t6b}; F e

ab := �{Nt; 06t6a;Nt − Nb; b6t61}:
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Then,

�{Xt; t ∈ [a; b]} p
�{Xa;Xb}

�{Xt; t ∈ (a; b)c} if and only if F i
ab p

�{Xa;Xb}
F e

ab:

Proof of Step 1. The ‘only if’ part is obvious, because

F i
ab ⊆ �{Xt; t ∈ [a; b]} and F e

ab ⊆ �{Xt; t ∈ (a; b)c}:
Conversely, the ‘if ’ part follows from the relations

�{Xt; t ∈ [a; b]}⊆F i
ab ∨ �{Xa; Xb};

�{Xt; t ∈ (a; b)c}⊆F e
ab ∨ �{Xa; Xb}

and elementary properties of the conditional independence.

Step 2: Set B=B1∩B2; where B1 := {Nb−Na=2} ∈ F i
ab and B2 := {Na=2}∩

{N1 − Nb = 0} ∈ F e
ab: Then,

F i
ab t

�{Xa;Xb}
F e

ab ⇒ F i
ab|B t

�{Xa;Xb}|B
F e

ab|B :

Proof of Step 2. This is a consequence of Lemma 4.5.

Step 3: On the probability space (B;F|B; P(·=B)), the �-�elds F i
ab|B and F e

ab|B are
independent and the functions

(y1; !) 7→ g1(y1; !) := ’ab(!; y1);

(y2; !) 7→ g2(y2; !) := ’a(!;  (’b1(!; y2)));

verify conditions (C1) – (C3) of Lemma 4.3.

Proof of Step 3. From Lemma 4.5, the given �-�elds are independent, since F i
ab and

F e
ab are independent in (
;F ; P). Let us check properties (C1) – (C3).
(C3): From Corollary 2:3(2), we have that for any !, the mappings g1 and g2 are

continuously di�erentiable and

g′1(y1; !) = exp

{∫ b

a
f′(’ar(!; y1)) dr

}
;

g′2(y2; !) = exp

{∫ a

0
f′(’r(!;  (’b1(!; y2)))) dr +

∫ 1

b
f′(’br(!; y2)) dr

}

× ′(’b1(!; y2)):

When  ′¿�¿ eK , we get

1− g′1(y1; !)g
′
2(y2; !)61− �e−K ¡ 0

and when  ′ ¡ 0 or 0¡ ′6�¡ e−K , we get

1− g′1(y1; !)g
′
2(y2; !)¿1− �eK ¿ 0;

so that |1 − g′1(y1; !)g
′
2(y2; !)|−1 is bounded. Notice also that 1 − g′1(y1; !)g

′
2(y2; !)

has always constant sign.
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(C2): It is enough to show that the function J (y) := y− g2(�+ g1(y;!); !)+ � has
a unique zero. We have just seen that in all cases |J ′|¿�, for some �¿ 0. Therefore,
J vanishes at exactly one point.
(C1): The random variable g1(y; ·) restricted to (B;F|B; P(·=B)), satis�es, for i=3; 4,

@g1(y)
@si

= exp

{∫ b

si
f′(’ar(y)) dr

}[
f(’as−i

(y))− f(’asi(y))
]
;

from which we deduce, following the arguments of Proposition 2.4, that it is absolutely
continuous and its density f1(y; z) is locally bounded in R2. Analogously, for the
random variable g2(y; ·) restricted to (B;F|B; P(·=B)), one has, for i = 1; 2;

@g2(y)
@si

= exp
{∫ a

si
f′(’r( (’b1(y)))) dr

}

×[f(’as−i
( (’b1(y))))− f(’asi( (’b1(y))))]

and g2(y; ·) must be absolutely continuous with density f2(y; z) locally bounded
in R2.

Step 4: The solution X to (4.4) is not a reciprocal process.

Proof of Step 4. Assume X is a reciprocal process, and �x 0¡a¡b¡ 1. By Steps
1 and 2, this would imply

F i
ab|B p

�{Xa;Xb}|B
F e

ab|B ;

where B= {Na=2} ∩ {Nb −Na=2} ∩ {N1−Nb=0}. For each ! ∈ B, the path N (!)
jumps exactly twice, at some times s1; s2, in [0; a], exactly twice, at times s3; s4, in
(a; b], and never in (b; 1].
By Step 3, we can apply Lemma 4.3 in the given situation with Y1 =Xa and Y2 =Xb

to deduce that at least one of the random variables

g′1(Xa) = exp

{∫ b

a
f′(Xr) dr

}

or

g′2(Xb) = exp
{∫ a

0
f′(Xr) dr

}
exp

{∫ 1

b
f′(Xr) dr

}
 ′(X1)

is a.s. constant, with respect to the conditional law given Xa and Xb.
Assume g′2(Xb) is constant. Notice that

exp

{∫ 1

b
f′(Xr) dr

}
 ′(X1) = exp

{∫ 1

b
f′(Xr) dr

}
 ′(’b1(Xb))

depends only on Xb, since N1 − Nb = 0. Therefore,
∫ a
0 f′(Xr) dr must be constant,

given Xa and Xb. For t ∈ [0; a] we can write

Xt =  (’b1(Xb)) +
∫ t

0
f(Xr) dr + Nt:
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Applying the change of variables formula (Corollary 2.2(4)) to the functions G(x) :=∫ x
0 dr=f(r) and H (x) := logf(x) one obtains

G(Xa) = G( (’b1(Xb))) + a+ [G(Xs1 )− G(Xs−1
)] + [G(Xs2 )− G(Xs−2

)]

and

H (Xa) =H ( (’b1(Xb))) +
∫ a

0
f′(Xr) dr + [H (Xs1 )− H (Xs−1

)]

+[H (Xs2 )− H (Xs−2
)]:

Di�erentiating with respect to Xs−1
, with Xa and Xb given, we �nd

[G′(Xs1 )− G′(Xs−1
)] + [G′(Xs2 )− G′(Xs−2

)]
dXs−2
dXs−1

= 0

and

[H ′(Xs1 )− H ′(Xs−1
)] + [H ′(Xs2 )− H ′(Xs−2

)]
dXs−2
dXs−1

= 0;

from which we obtain

H ′(Xs1 )− H ′(Xs−1
)

G′(Xs1 )− G′(Xs−1
)
=

H ′(Xs2 )− H ′(Xs−2
)

G′(Xs2 )− G′(Xs−2
)

or, equivalently,

F(Xs−1
) =

f′(Xs−1
+ 1)f(Xs−1

)− f(Xs−1
+ 1)f′(Xs−1

)

f(Xs−1
+ 1)− f(Xs−1

)

=
f′(Xs−2

+ 1)f(Xs−2
)− f(Xs−2

+ 1)f′(Xs−2
)

f(Xs−2
+ 1)− f(Xs−2

)
= F(Xs−2

): (4.5)

But, from hypothesis (1), for every ! ∈ 
, the function t 7→ Xt(!) is strictly increasing.
Therefore Xs−2

¿Xs1 = Xs−1
+ 1, and equality (4.5) contradicts hypothesis (4). Hence

g′2(Xb) cannot be constant, a.s., with respect to the conditional law given Xa and Xb.
For t ∈ [a; b], we can write

Xt = Xa +
∫ t

a
f(Xr) dr + (Nt − Na)

and

G(Xb) = G(Xa) + (b− a) + [G(Xs3 )− G(Xs−3
)] + [G(Xs4 )− G(Xs−4

)];

H (Xb) = H (Xa) +
∫ b

a
f′(Xr) dr + [H (Xs3 )− H (Xs−3

)] + [H (Xs4 )− H (s−4 )]:

A similar reasoning as above shows that g′1(Xa) cannot be constant, a.s., given Xa y
Xb. We conclude that X is not a reciprocal process.
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Remark 4.11. Hypothesis (4) in Theorem 4.10 holds, for instance, if F is one-to-one.
Consider, on the other hand, the functions f;  :R→ R de�ned by

f(x) = ex1(−∞;0)(x) + (1 + x)1[0;∞)(x) and  (x) = cx;

with 0¡c¡ 1=e, which satisfy all conditions of Theorem 4.10, except (4). Notice
that, for every ! ∈ 
,

’1(!; 0) =
∫ 1

0
f(’r(!; 0)) dr + N1¿0

and that the function h(x) := x −  (’1(!; x)) is strictly increasing (this can be seen
using Proposition 2.3(2)). Since h(0)60, the unique zero of h is positive and we �nd
that X0(!)¿0. This implies that the whole path Xt(!) is non-negative and X solves

Xt = X0 +
∫ t

0
(1 + Xr) dr + Nt; t ∈ [0; 1];

X0 =  (X1) ;

as well. We know, according to Theorem 4.7, that the solution is a reciprocal process.

Remark 4.12. All the results of Sections 2–4 can be easily generalised to the case
when Nt is a Poisson process with jumps of arbitrary �xed size.

5. Poisson noise with �nite source

Assume that the random disturbance of our equations has only a �nite source of
Poisson impulses. That means, the driving noise is a Poisson process N conditioned
to N16k, for some �xed k ∈ N. This change does not a�ect any of the results on
existence, uniqueness and regularity of Sections 2 and 3. Propositions 2.4 and 3.3 on
the law of the solution also hold true with the obvious changes.
Concerning the Markov and reciprocal properties, the situation is more complex in

this case. On the one hand, the path space of the noise is poorer, and conditional
independence properties are more likely to hold. On the other, such a noise, though
Markovian, does not possess independent increments. The application of the main tools
of Section 4 (Lemmas 4.3, 4.4 and 4.6) rely heavily in this feature of the driving
process, and therefore we cannot use them here. Lemma 4.5 still can be applied in the
following way:
If the solution X to (3.1) is reciprocal and the event B={N16k} is X1-measurable,

then X is still reciprocal when conditioning to B. Indeed, Lemma 4.5 applied to the
set B leads to this conclusion. For instance, this is the case in the situation of Theorem
4.8 (f is 1-periodic), where one can write N1 = X1 − �(0; 1;  (X1)).
In the remaining of this section, we will discuss the case k=1. That means, we con-

sider the following set-up. Let {�t ; t ∈ [0; 1]} be a process de�ned in some probability
space (
;F ; P), all of whose paths are {0; 1}-valued, non-decreasing, and c�adl�ag, with
�0 ≡ 0, and whose law is that of a standard Poisson process N conditioned to N161.
In particular, P{�t = 1} = t=2 and P{�t = 0} = 1 − t=2. It is easily checked that � is
a Markov process but does not have independent increments. We can de�ne on 
 a
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random variable S such that S = t if � jumps at time t, and takes a special value � if
� does not have jumps. Then, S = � with probability 1=2 and, conditioned to S 6= �, S
is uniformly distributed on [0; 1].
We consider the problem

Xt = X0 +
∫ t

0
f(r; Xr) dr + �t; t ∈ [0; 1];

X0 =  (X1): (5.1)

Under hypotheses (H1) – (H3) of Theorem 3.1, there exists obviously a unique solution,
which can be expressed as a function of S by

Xt(S) =




�(0; t; x0); if S = �;
�(0; t;X0(S)); if t ¡S61;
�(S; t;�(0; S;X0(S)) + 1); if 0¡S6t;

(5.2)

where x0 is the unique solution to x =  (�(0; 1; x)), X0(S) is the unique solution to
x =  (�(S; 1;�(0; S; x) + 1)), and � is de�ned by Eq. (2.2).
We are going to show �rst that X is always a reciprocal process (Theorem 5.1);

then we will see that it is in fact a Markov process in a variety of situations (Theorem
5.2), but that this is not always the case (Example 5.3).

Theorem 5.1. Under hypotheses (H1) – (H3) de�ned in Sections 2 and 3, the solution
X to (5:1) is a reciprocal process. Moreover; if  is constant; X is a Markov process.

Proof. Fix 06a¡b61. Set F i = �{Xt; t ∈ [a; b]} and F e = �{Xt; t ∈ (a; b)c}.
Denote A := {S ∈ (a; b]c}. Let us show �rst that for every Fi ∈ F i, Fi ∩ A is
(Xa; Xb)-measurable, and that for every Fe ∈ F e, Fe ∩ Ac is (Xa; Xb)-measurable.
The set A coincides with B := {Xb =�(a; b;Xa)}. Indeed, it is clear that A⊂B; for

the other inclusion, notice that on Ac, one has Xb=�(S; b;�(a; S;Xa)+ 1). Since � is
one-to-one in the third variable (Proposition 2.1, 3), Ac⊂Bc. We conclude from A=B
that the sets A and Ac belong to the �-�eld �{Xa; Xb}, and that for any t ∈ [a; b], we
can write Xt = �(a; t;Xa)1A + Xt1Ac . Therefore, for each C ∈ FB(R),

{Xt ∈ C} ∩ A= {�(a; t;Xa) ∈ C} ∈ �{Xa; Xb}:
This yields Fi∩A ∈ �{Xa; Xb}, for any Fi ∈ F i. Similarly, we obtain Fe∩A ∈ �{Xa; Xb},
for any Fe ∈ F e.
Now we can prove that F i and F e are conditionally independent given (Xa; Xb): Let

Fi ∈ F i and Fe ∈ F e. We have,

P(Fi ∩ Fe=Xa; Xb) = P(Fi ∩ Fe ∩ A=Xa; Xb) + P(Fi ∩ Fe ∩ Ac=Xa; Xb)

= 1Fi∩AP(Fe=Xa; Xb) + 1Fe∩AcP(Fi=Xa; Xb)

= 1AP(Fi=Xa; Xb)P(Fe=Xa; Xb) + 1AcP(Fe=Xa; Xb)P(Fi=Xa; Xb)

= P(Fe=Xa; Xb)P(Fi=Xa; Xb):
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Finally, from the reciprocal property applied to a=0 and to 0¡b61, we conclude
that X is a Markov process when  is a constant.

Theorem 5.2. Assume f satis�es hypotheses (H′
1) – (H

′
3) of Sections 2 and 3. Then;

the solution to Eq. (5:1) is a Markov process in each of the following cases:
(a) |@2f|¿ 0 and  ′ ¡ 0.
(b) @2f¿ 0 and 0¡ ′6�¡ e−K ; for some �.
(c) @2f¡ 0 and  ′¿�¿ eK ; for some �.
(d) @2f¡ 0 and 0¡ ′6�¡ (KeK + 1)−1; for some �.
(e) @2f¿ 0 and  ′¿�¿ (1− K)−1¿ 1; for some �.

Proof. We continue using representation (5.2) of Xt as a function of the jump time
S. We will show in all cases that �{Xt}= �{S} for all t ∈ [0; 1]; in other words, S is
determined by each Xt , so that the �-�elds generated by Xt are the same for every t,
and the Markov property is trivial.
Notice �rst that, using the injectivity of  and �(0; t; ·), one �nds easily that for

all t; s ∈ [0; 1], Xt(�) 6= Xt(s). From formulae (3.2) and (3.3), the variables X0 and X1,
as functions of s, are invertible, so that we get �{X0} = �{X1} = �{S}. From (3.3),
we see that, for t ∈ (0; 1), Xt , as a function of s, is strictly monotone in each of the
intervals (0; t] and (t; 1]. We will show that

sup
s∈(t;1]

Xt(s)¡ inf
s∈(0; t]

Xt(s) (5.3)

and the proof will be complete. Using the monotonicity of Xt , (5.3) can be written in
terms of � (using (5.2)) as

�(0; t;X0(t)) ∨ �(0; t;X0(1))¡�(0; t;X0(0+) + 1) ∧ �(0; t;X0(t)) + 1: (5.4)

In cases (a) with @2f¡ 0, (b) and (c), X0 is decreasing, and (5.4) holds because
x 7→ �(0; t; x) is strictly increasing, by Proposition 2.1(3).
In case (a) with @2f¿ 0, s 7→ Xt(s) is decreasing in [0; t] and increasing in (t; 1],

so that proving (5.4) reduces to prove �(0; t;X0(1))¡�(0; t;X0(t)) + 1. Suppose the
converse inequality; then,

X1−(1) = �(t; 1;�(0; t;X0(1)))¿�(t; 1;�(0; t;X0(t)) + 1) = X1(t);

which implies X1(1)¿X1(t). Since  is decreasing, we get X0(1)¡X0(t), a contra-
diction, since X0 is increasing in the present case.
In case (d), s 7→ Xt(s) is increasing in both intervals [0; t] and (t; 1], so that

(5.4) amounts to �(0; t;X0(1))¡�(0; t;X0(0+) + 1). From (3.2), we have X0(1) −
X0(0+)6�(1 − �)−1KeK ¡ 1, and the inequality holds true. Case (e) can be done
similarly.

Theorem 5.2 remains true if we replace conditions @2f¿ 0 and @2f¡ 0 by f(t; x+
1)− f(t; x)¿ 0, ∀t; x, and f(t; x + 1)− f(t; x)¡ 0, ∀t; x, respectively.
The following example shows that the solution to (5.1) is not always a Markov

process.
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Example 5.3. Consider the problem

Xt = X0 −
∫ t

0
Xr dr + �t ; t ∈ [0; 1]

X0 = (e − 1=2)X1:
The solution is given by

Xt(S) =



0; if S = �;
2e1−teS ; if 0¡S6t;
(2e − 1)e−teS if t ¡S61:

It is clear that �{X0} = �{X1} = �{S}, hence �{Xr; r6 1
2} = �{Xr; r¿ 1

2} = �{S}.
However, one can easily see that �{X1=2} is strictly included in �{S}, and this implies
that X cannot be a Markov process.

Remark 5.4. Theorem 5.1 shows that the solution to (3.1), which is not reciprocal
in general, can enjoy this property when the noise is conditioned to a �nite number
of jumps. The same happens with the Markov property: The process Xt = Nt − 1

2N1,
considered in Example 4.9 is not Markov, but it becomes Markov when conditioning
to N161.
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