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Abstract. In this paper we obtain a closed form expression of the expected exit
time of a Brownian motion from equilateral triangles. We consider first the analogous
problem for a symmetric random walk on the triangular lattice and show that it is
equivalent to the ruin problem of an appropriate three player game. A suitable scaling
of this random walk allows us to exhibit explicitly the relation between the respective
exit times. This gives us the solution of the related Poisson equation.
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1. Introduction

In this paper we obtain the expected exit time of a random walk and a Brownian motion
from an equilateral triangle. The random walk we consider is not on the regular integer
lattice, but on the triangular lattice, where the random walk takes a step in each of the
possible six directions with equal probability.
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44 A. Alabert, M. Farré, and R. Roy

As is well known, the exit time problem for a random walk on the one-dimensional
line, with steps of size 1 taken in unit time, can also be stated as a ruin problem, namely,
Peter and Paul play a game with capitals $a and $b respectively and according to the
outcome of a toss of a coin, a dollar changes hands—with the game being played until
one of the two is bankrupt. If it takes unit time to toss a coin, then the distribution of the
“time to ruin” is the same as the exit time from the interval ]− a, b[ of a random walk
with steps of unit length starting at the origin.

We first generalize the ruin problem to three players. Let Peter, Paul and Mary play
the following game. First a pair is chosen from the three players, with each pair being
equally probable of being chosen. According to the outcome of a toss of a coin, a dollar
changes hands. Then a pair is chosen again from the three and a coin tossed to determine
who amongst the pair wins and who loses a dollar. This game of alternately choosing
a pair and tossing a coin is continued until one of the three is bankrupt. If a, b and c
are the respective capitals of Peter, Paul and Mary, we are interested in determining the
“time to ruin”, assuming each toss takes a unit time.

In Section 2 we show that the above problem is equivalent to obtaining the exit
time from an equilateral triangle of a random walk problem on the “triangular lattice” in
the plane. For this ruin problem (or the equivalent random walk), the discrete harmonic
equations yielding as a solution the expected time of bankruptcy (or the expected exit
time) may be written quite easily (see (4) below) and we know the solution to this set of
equations.

In Section 3 we look at the exit time of a two-dimensional standard Brownian motion
from an equilateral triangle. We use that an appropriate time and scale change of the
random walk on the triangular lattice approximates in law a two-dimensional Brownian
motion, as happens in the one-dimensional case. Then we show that the laws of the exit
times also converge (Proposition 3) and that so do their expectations (Proposition 5). We
obtain the following result:

Theorem 1. The expectation of the exit time from an equilateral triangle of the standard
Brownian motion Bt on the plane is given by

2
√

3λ1λ2λ3 A, (1)

where A is the area of the triangle and (λ1, λ2, λ3) are the barycentric coordinates of
the starting point with respect to the vertices of the triangle.

It is well known that the expected exit time of a Brownian motion from the triangle,
as a function of the starting point, is the unique solution to the Poisson equation

1
2�u = −1 (2)

that vanishes on the boundary of the triangle. Therefore, expression (1) provides such
a solution, which, to our knowledge, has never been found before. Of course, once this
formula is conjectured, the proof of Theorem 1 is immediate by checking that it satisfies
(2) and the boundary condition. However, our main goal is to exhibit the relation between
the exit times of planar Brownian motion and triangular random walks and how (1) is
derived from the latter, with the help of its relation with the gambling problem described
above.
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In the three-dimensional analogous problem (exit time of a Brownian motion from
a tetrahedron), we have not been able to obtain an explicit result as in Theorem 1 above,
although we can, in principle, compute the solution of the corresponding harmonic
equations (analogous to (4)) for tetrahedrons with side lengths of specified integers.
One might think that kλ1λ2λ3λ4, where k is some constant, solves the three-dimensional
Poisson equation, but this is readily seen to be false.

The Dirichlet problem in a triangle for the equation � f + λ f = 0 was studied by
Pinsky [6] and it can also be related to the exit time from triangles [3] and to the motion
of Brownian particles in a circle with annihilation when they collide [1].

2. The Lattice and the Harmonic Equations

Let S be a positive integer and construct a triangle �S , each of whose sides is of length
S. Consider the regular triangular lattice with edges of unit length. We place the triangle
�S on the lattice such that each of the vertices of �S is a vertex of the lattice (see
Figure 1).

We label the edges 1, 2 and 3. A vertex of the triangular lattice in �S is given
the coordinate (a, b, c) where a (respectively b and c) is the length of a shortest path
comprising of edges of the triangular lattice from the vertex to the edge labelled 1
(respectively 2 and 3). A little thought shows that if (a, b, c) is the label of a vertex in the
triangle�S , then a+b+c = S. Note that this is just a scaled barycentric coordinate system
with respect to the three vertices of the triangle. Clearly, if (a, b, c) and (a′, b′, c′) are two
neighbouring vertices of the triangular lattice in�S , then |a−a′|+|b−b′|+|c−c′| = 2.
We perform a random walk on this lattice. Starting from a vertex (a, b, c) we take a step
to one of the neighbouring six vertices with probability 1/6 each, steps being taken
independent of one another.

This random walk problem is indeed equivalent to the “ruin” problem of Peter,
Paul and Mary. To see this, let the fortunes of Peter, Paul and Mary be respectively
a, b and c. After a game the fortunes change to (a′, b′, c′) with probability 1/6 where
|a − a′| + |b − b′| + |c − c′| = 2.

Figure 1. The triangular lattice.
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The notion of “ruin”, i.e. one of Peter, Paul or Mary becoming bankrupt translates
to the random walk setting as the walk hitting the boundary of the triangle �S .

In the cartesian (x, y)-plane, if the triangle �S is such that one vertex coincides
with the origin, another vertex is at the point (S, 0) and the third vertex is at the point
(S/2,

√
3S/2), then the vertex (a, b, c) of the previous construction corresponds to the

cartesian coordinates (b + a/2,
√

3a/2). Conversely, if (α, β) are the cartesian coor-
dinates of a vertex of the triangular lattice, then the scaled barycentric coordinates are
((2/
√

3)β, α − (1/√3)β, S − α − (1/√3)β).
Now let h(a, b, c) be the expected time to ruin of the Peter, Paul and Mary problem

when their respective fortunes to begin with are $a, $b and $c. Clearly we have

h(a, b, c) = 0 whenever min{a, b, c} = 0. (3)

Moreover, for a, b, c > 0, an argument based on conditioning immediately yields

h(a, b, c) = 1+ 1
6 {h(a − 1, b + 1, c)+ h(a + 1, b − 1, c)+ h(a, b − 1, c + 1)

+ h(a, b + 1, c − 1)+ h(a − 1, b, c + 1)

+ h(a + 1, b, c − 1)}. (4)

It may be easily seen that

h(a, b, c) = 3abc

a + b + c
(5)

is the unique bounded solution to the above equation (4) with boundary condition (3).
The uniqueness of the solution follows from the fact that the difference between two
distinct bounded solutions must be a bounded function whose value at any point equals
the average of its values at the neighbouring points; and hence, from (3), it is identically
zero.

Equation (4) above may be thought of as the discrete analogue of the Poisson
equation. Indeed, let P be the averaging operator and let I be the identity operator, then

Ph(a, b, c) = 1
6 {h(a − 1, b + 1, c)+ h(a + 1, b − 1, c)

+ h(a, b − 1, c + 1)+ h(a, b + 1, c − 1)

+ h(a − 1, b, c + 1)+ h(a + 1, b, c − 1)}. (6)

The operator A:= P− I may be taken to be the discrete analogue of 1
2� where� is the

Laplace operator (see, e.g. [2].
In terms of the above notation, (4) reduces to Ah = −1; thus the analogous equation

in the continuous case is
1
2�u = −1 (7)

and the boundary condition (3) takes the form

u(x) = 0 for x on the boundary of �S . (8)

For this Poisson problem, it is well known that the probabilistic representation of its
unique solution u(x) is the expected exit time from any general triangle�S of a Brownian
motion starting at x (see, e.g., [2]). Thus our theorem gives a closed form solution of this
problem. We have not been able to find in the literature a solution of the above Poisson
problem by purely analytic means (see Chapter III in [8] and Chapter 19 in [9] for a
discussion of analytic methods in the study of Poisson equations).
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3. Convergence of the Expected Exit Times

Now let S be a positive real number. With the help of the gambling model of Section 2,
we are going to find an explicit expression for the expected exit time from the equilateral
triangle �S of a planar Brownian motion, thereby obtaining an explicit solution of (7)
with boundary condition (8).

To this end, we first define a sequence of approximating random walks converging
in law to a Brownian motion. Then we prove that their expected exit times must converge
to the corresponding value for the limiting process. The sequence of random walks is
chosen so that the expected exit times are approximated using the gambling model.
Therefore, the limit will give us the exit time for a Brownian motion.

For a process X on the plane, denote by T (X,�S) its exit time from �S:

T (X,�S) := inf{t : Xt �∈ �S}.
Let {ξn}n∈N be a sequence of independent, identically distributed random vectors taking
values (cos(kπ/3), sin(kπ/3)) for k = 1, . . . , 6 with equal probability. Note that ξn may
be thought of as a single step of the random walk on the triangular lattice.

Fix (α, β) ∈ R2 and, for each n ∈ N, let {Y n
t , t ≥ 0} be the processes defined as

follows:

Y n
t = (α, β)+

√
2/n

( �t�∑
i=1

ξi + (t − �t�)ξ�t�+1

)
, (9)

where �·� denotes the integer part.
For the process

Xn
t := Y n

nt , t ≥ 0,

we have

Proposition 2. The sequence of processes {Xn
t , t ≥ 0} converges in law to a standard

Brownian motion starting at (α, β).

Proof. First, notice that though the two scalar components of ξi are not independent,
they are uncorrelated. This is enough to prove that the sequence Xn converges in law to
the standard Brownian motion on R2. Indeed, the convergence of the finite-dimensional
distributions follows from the multidimensional central limit theorem by standard ar-
guments. On the other hand, tightness of the sequence Xn follows from the same prop-
erty for its scalar components, which is a consequence of their convergence in law
given by Donsker’s Invariance Principle forR-valued random walks (see, e.g. pp. 70–71
of [4]).

In order to prove the convergence of the expected exit times, we show first that
T (Xn,�S) converges in law to T (B,�S) where B is the standard Brownian motion
starting from (α, β). Then we prove that {T (Xn,�S)}n∈N is a uniformly integrable
sequence of random variables. This gives us the convergence of {E[T (Xn,�S)]}n∈N to
E[T (B,�S)].
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The next proposition establishes the convergence of the exit times. Kushner and
Dupuis [5, p. 260] present an argument based on the law of iterated logarithms of a
one-dimensional Brownian motion to exhibit the convergence of stopping times of an
approximating Markov chain. Although their argument may be adapted in our two-
dimensional setting, we use another direct argument.

Proposition 3. The following convergence in law holds:

T (Xn,�S) �⇒ T (B,�S).

Proof. In this proof we adopt, for convenience, the following notation: � denotes the
open triangle of edge length S, ∂� its boundary and �̄ its closure.

Let T n:= T (Xn,�) and T := T (B,�) denote respectively the exit times from �
of the process Xn

t and the Brownian motion B defined above.
To get the stated weak convergence, it suffices to prove

P{T n > t} −→ P{T > t} for all t > 0. (10)

Let Pn be the law of Xn and let PB be the law of B, both on the set C:= C([0,∞),R2)

of continuous functions on [0,∞) with values in the plane, equipped with the Borel
σ -algebra. In terms of Pn and PB , we have

P{T n > t} = P{Xn
s ∈ � for all s ≤ t} = Pn(A),

where A = {x ∈ C: x(0) = (α, β) and x(s) ∈ � for all s ≤ t}. Analogously, P{T >

t} = PB(A).
The set A may also be expressed as

A =
∞⋃

k=1

∞⋂
m=1

{x ∈ C: x(0) = (α, β) and

x(s) ∈ �−1/k, for all s ≤ t, s ∈ Dm}, (11)

where Dm is the set of dyadic numbers of order m and�−1/k := �−V̄1/k(∂�), V1/k(∂�)
being the 1/k-neighbourhood of ∂�. The right-hand side of (11) is obviously Borel
measurable because the set in curly braces is in fact a cylindrical set.

By Proposition 2 we have the weak convergence of {Pn}n to PB , which is equivalent
to

Pn(E) −→ PB(E) for all Borel sets E with PB(∂E) = 0.

Hence, in order to show (10) it suffices to prove that A is a continuity set with respect
to PB , i.e. PB(∂A) = 0. To this end observe first that C is a complete separable metric
space under the metric d , defined by

d(x, y):=
∞∑

k=1

1

2k
(‖y − x‖k ∧ 1),

where ‖ ‖s denotes the supremum norm on the compact interval [0, s].
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Now we establish that A is an open set. Indeed, fix x in A and let k0 be such that
x(s) ∈ �−1/k0 for all s ≤ t dyadic. Set k = �t�+1 and take ε = 1/2k+1k0. If d(x, y) < ε,
then

‖y − x‖t ≤ ‖y − x‖k < 2kε = 1

2k0
,

i.e. y(s) ∈ �−1/2k0 , for all s ≤ t dyadic, and therefore y ∈ A.
The closure of A is

Ā = {x ∈ C : x(0) = (α, β) and x(s) ∈ �̄ for all s ≤ t}

and its boundary is

∂A = Ā − A

= {x ∈ C: x(0) = (α, β), x(s) ∈ �̄ for all s ≤ t

and x(s ′) ∈ ∂ � for some s ′ ≤ t}.

Decomposing ∂� as the disjoint union of its three edge segments r1, r2 and r3, we obtain

PB(∂A) ≤
3∑

i=1

PB{x ∈ C: x(0) = (α, β), x(s) ∈ �̄ for all s ≤ t

and x(s ′) ∈ ri for some s ′ ≤ t}.
Moreover, if Hri denotes the closed half-plane determined by ri and containing the
triangle �̄S , then the following inclusion holds:

{x ∈ C: x(0) = (α, β), x(s) ∈ �̄ for all s ≤ t and x(s ′) ∈ ri for some s ′ ≤ t}
⊆ {x ∈ C: x(0) = (α, β), x(s) ∈ Hri for all s ≤ t

and x(s ′) ∈ ri for some s ′ ≤ t}.
Hence, it suffices to show that the sets of the form

{x ∈ C : x(0) = (α, β) ∈ Hr − r, x(s) ∈ Hr , for all s ≤ t

and x(s ′) ∈ r for some s ′ ≤ t},
where Hr is the half-plane determined by the line r and the starting point, have measure
zero under PB .

By the rotational invariance property of Brownian motion, we can assume that r has
the form y = m for some positive constant m and that the Brownian motion starts at the
origin, i.e. x(0) = (0, 0). If we denote x(s) =: (x1(s), x2(s)) the two components of the
planar process, then we want to show that

PB{x ∈ C : x(0) = (0, 0), x2(s) ≤ m, for all s ≤ t

and x2(s ′) = m for some s ′ ≤ t}
vanishes. However, this is the probability that the maximum of a one-dimensional Brow-
nian motion in the interval [0, t] takes the value m, which is zero, because the law of this
maximum is absolutely continuous. This proves the proposition.
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Lemma 4. The sequence {T (Xn,�S)}n∈N is uniformly integrable.

Proof. Using the same notations we introduced in the proof of Proposition 3, let T n:=
T (Xn,�S) and T := T (B,�S) denote respectively the exit times from�S of the process
Xn

t and the Brownian motion B, starting at (α, β).
It is well known that for the Wiener process ∀ε > 0, ∃δ > 0 such that

P{T < ε} > δ,

for all starting points (α, β),
From this and using Proposition 3, it follows that ∀ε > 0, ∃δ > 0 such that for large

enough n,

P{T n < ε} > δ,

for all starting points (α, β).
Taking ε = 1 and the corresponding δ, and applying iteratively the Markov property

for the time homogeneous Markov process Xn , we have that, for each integer k,

P{T n > k} = P{T n > 1}k ≤ (1− δ)k .

Therefore, for each integer M ,

∫
{T n>M}

T n d P ≤
∞∑

k=M

(k + 1)P{T n > k} ≤
∞∑

k=M

(k + 1)(1− δ)k,

which converges to zero as M tends to∞.

As discussed earlier, this yields

Proposition 5. limn→∞ E[T (Xn,�S)] = E[T (B,�S)].

To find the limit of the sequence of expected exit times, in the following lemma we
rewrite it in terms of a scaled version Zn of Y n given by

Zn :=
√

n/2Y n. (12)

In this scaled version the steps will be of unit size. This will allow us to use the properties
relative to the random walk or the ruin problem described earlier.

Lemma 6. The following equalities hold:

T (Xn,�S) = 1

n
T (Y n,�S) = 1

n
T (Zn,�√

n/2S
). (13)
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Proof. We have from the definition of Zn (see (12) and (9)),

Zn
T (Zn ,�√

n/2S
) =

√
n/2(α, β)+

�T (Zn ,�√
n/2S

)�∑
i=1

ξi + λξ�T (Zn ,�√
n/2S

)�+1

for someλ ∈ [0, 1[. Therefore, for the process Ỹ n defined as Y n but starting at
√

n/2(α, β),
we have

Ỹ n
T (Zn ,�√

n/2S
)=
√

n/2(α, β)+
√

2/n


�T (Z

n ,�√
n/2S

)�∑
i=1

ξi + λξ�T (Zn ,�√
n/2S

)�+1


 ,

which is a point in the segment that joins Zn
0 and Zn

T (Zn ,�√
n/2S

), whose distance to Zn
0

is
√

2/n times the length of that segment. Hence, Ỹ n
T (Zn ,�√

n/2S
) lies on the boundary of

the equilateral triangle of edge length S which is the translation of �S by the vector
(1−√2/n)

√
n/2(α, β) (see Figure 2). Moreover, it is clear that Ỹ n

t is in the interior of
the above triangle for all t < T (Zn,�√

n/2S
). Therefore, by a translation of this triangle

back to the origin, we obtain

T (Y n,�S) = T (Zn,�√
n/2S

).

Now, by the definition of Xn , it is clear that

T (Xn,�S) = 1

n
T (Y n,�S),

and the equalities (13) are proved.

Figure 2. The random walks Z and Y . Here Sn =
√

n/2S.
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In the two-dimensional case we are treating, we know the solution to the harmonic
equations (4). This allows us to compute explicitly the expected exit times from triangles
of integer size of the random walks performed by unit steps and starting from a vertex
of the triangular lattice. Then we deduce from them the value of E[T (B,�S)].

Proposition 7. The limit of the expected exit times from �S of the approximating
random walks Xn is√

3β(α − (1/√3)β)(S − α − (1/√3)β)

S
, (14)

where (α, β) is the starting point.

Proof. Recall that T (Zn,�√
n/2S

) is the exit time from the triangle�√
n/2S

of a random

walk with unit steps starting at
√

n/2(α, β).
Clearly, the set

{(α, β) ∈ �S:
√

n/2(α, β) is a vertex of the triangular lattice

for infinitely many n’s}
is dense in�S . The continuity of the expected exit time with respect to the starting point
allows us to restrict ourselves to (α, β) belonging to the above dense set.

Fix n and consider the exit time T (Zn,�√
n/2S

) starting at the vertex
√

n/2(α, β)

of the lattice. To view this as a ruin problem we have to consider triangles with edges of
integer length. So we take m = �√n/2S� + 1 and look at the exit times T (Zn,�m−1)

and T (Zn,�m). These can be interpreted as the times to ruin of the three player game
explained in Section 2, with initial fortunes given by, for k = m − 1,m,

ak =
√

n/2
2√
3
β,

bk =
√

n/2

(
α − 1√

3
β

)
,

ck = k −
√

n/2

(
α + 1√

3
β

)
.

Using formula (5) we find immediately that, for k = m − 1,m,

E[T (Zn,�k)] = n
√

3β

(
α − 1√

3
β

)
k −√(n/2)α −√(n/2)(1/√3)β

k
.

On the other hand, applying Lemma 6,

1

n
T (Zn,�k) = T (Xn,�

k/
√

n/2
).

Then, using the inclusion �
(m−1)/

√
n/2
⊆ �S ⊆ �m/

√
n/2

and taking limits, we obtain

lim
n→∞ E[T (Xn,�S)] =

√
3β(α − (1/√3)β)(S − α − (1/√3)β)

S
.
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It can easily be checked that u(α, β) given by the expression (14) solves the Poisson
problem (7) with boundary condition (8). Expressing (14) in barycentric coordinates,
and using Proposition 5, we immediately obtain Theorem 1.

Acknowledgments

We are grateful to Mike Keane who brought to the attention of one of the authors the ruin problem discussed
here.

References

1. Balding, D. (1988), Diffusion-reaction in one dimension, J. Appl. Probab. 25:733–743.
2. Dynkin, E.B., and Yushkevich, A.A. (1969), Markov Processes: Theorems and Problems, Plenum, New

York.
3. Hobson, D.G., and Werner, W. (1996), Non-colliding Brownian motions on the circle, Bull. London Math.

Soc. 28:643–650.
4. Karatzas, I., and Shreve S.E. (1991), Brownian Motion and Stochastic Calculus, second edn., Springer-

Verlag, New York.
5. Kushner, H.K., and Dupuis, P. (2001), Numerical Methods for Stochastic Control in Continuous Time,

second edn., Springer-Verlag, New York.
6. Pinsky, M.A. (1980), The eigenvalues of an equilateral triangle, SIAM J. Math. Anal. 11:819–827.
7. Spitzer, F. (1976), Principles of Random Walk, second ed., Springer-Verlag, New York.
8. Treves, F. (1975), Basic Linear Partial Differential Equations, Academic Press, New York.
9. Triebel, H. (1986), Analysis and Mathematical Physics, Reidel, Leipzig.

Accepted 27 July 2003. Online publication 14 November 2003.


