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Abstract We have measured the dissimilarities among
several printed characters of a single page in the Gutenberg
42-line bible, and we prove statistically the existence of sev-
eral different matrices from which the metal types were con-
structed. This is in contrast with the prevailing theory, which
states that only one matrix per character was used in the print-
ing process of Gutenberg’s greatest work. The main math-
ematical tool for this purpose is cluster analysis, combined
with a statistical test for outliers. We carry out the research
with two letters, i and a. In the first case, an exact clustering
method is employed; in the second, with more specimens to
be classified, we resort to an approximate agglomerative clus-
tering method. The results show that the letters form clusters
according to their shape, with significant shape differences
among clusters, and allow to conclude, with a very small
probability of error, that indeed the metal types used to print
them were cast from several different matrices.

Keywords Classification · Cluster analysis · Outlier
testing · Johannes Gutenberg · 42-line bible · Movable types

1 Introduction

It has been accepted for a long time that the typefaces of
the Gutenberg 42-line bible were produced by metal types
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coming from a unique matrix for each character. More pre-
cisely, Zedler [15] classified 299 different glyphs, and this
classification has been usually took as definitive until today.
The 42-line bible (known for short as B42) is commonly
believed to be the first printing work in which movable types
were used, conferring Gutenberg the honor of the invention
of this technology.

However, when considering the personal background of
Johannes Gutenberg and of the other people involved in the
project (notably Johann Fust and Peter Schöffer), together
with their historical circumstances and other technologi-
cal reasons, one is compelled to question this single-matrix
theory, and to consider the possible existence of multiple
matrices.

In this paper, we show statistical evidence that there were
more than one matrix for casting the metal types. To this end,
we quantify numerically the dissimilarities between pairs of
printed letters representing the same glyph, and we see that
the letters cluster in a natural way in groups with shapes that
are similar inside each group and significantly different from
the shapes of the members in the other groups. Statistical
cluster analysis is our main technique, further complemented
with outlier testing to validate the clusters obtained.

The printed letter has some “errors” or “deviations” with
respect to the ideal shape derived from the metal type, due
to inking or to paper inhomogeneity. Moreover, metal types
derived from the same matrix may present deviations with
respect to the ideal intended shape defined by that matrix
(manufacturing deviations or wear), which can be considered
of the same order as the ink and paper errors. These errors can
be considered as random, and independent for each printed
letter in the same page. We need to “filter out” these random
deviations to observe whether there is an actual structural dif-
ference among letters, attributable to the fact that they indeed
come from different matrices.
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304 A. Alabert, L. M. Rangel

Obviously, letters printed with the same metal type do
come from the same matrix and will be very similar in shape.
Therefore, we want to study a set of letters for which we can
ensure that all of them were printed with different types. If
different letter shapes are then observed, we will know that
these differences are due only to a diverse matricial origin.

To guarantee that all types are different, we only need to
take letters printed on the same page, since a whole page (two
columns) was printed at once from a complete form made by
the typographic composer. In contrast, opposite pages in the
same sheet could not be printed concurrently by Gutenberg
presses, so it would be wrong to use a set of letters coming
from both pages.

The wear of a matrix, caused by heat and frequency of use,
affects very little the engraved part from which the shape of
the letter in the metal type is produced. The matrix breaks or
become useless for other reasons, as classical typographers
know. Hence, it is not likely that we can observe different
shapes coming from the same matrix in different states of
states of wear, and much less to observe clusters. On the
other hand, all types produced by the same matrix are almost
indistinguishable, and the damage of a type comes mainly
from accidents, like dropping, since lead is a soft metal. In
this case, it is usually dismissed, since it can be fully recy-
cled in an easy and cheap manner. This means that it is also
unlikely to observe different clusters made from damaged
types coming from the same matrix.

We have chosen for convenience the first page of the
Gospel of Matthew (see Fig. 1), and we have considered in
that page 10 lettersi and 21 lettersa. We have discarded only
those few letters that could not be isolated enough from their
neighbors for a reliable scanning. The quantity of 10 objects
is small enough to permit the computation of the optimal
clustering under any prefixed criterion, by simple exhaustive
search. On the other hand, 21 objects give more possibilities
to find out different patterns, if they are present, although
we must resort to an approximate method of cluster analy-
sis because of the enormous time that the full enumeration
would take.

The specific letters i and a have been chosen for the fol-
lowing reasons. Letter i is the simplest: It has only one con-
tour and its matrix was made by a single hit of the punch.
Moreover, the horizontal space occupied by the i has been
taken as a unit of measure in typography design, and it is
highly probable that the same punch was used to produce
other letters, e.g. m, n, u of the gothic textura typeface. On
the other hand, letter a is one of the most complex, since it
possesses three contours (two interior counters). This feature
is shared with s and g, but the latter are less frequent, and
they would produce smaller sample sizes in any page.

The paper is organized as follows: In Sect. 2, we introduce
our main mathematical tools, cluster analysis, and outlier
testing, recall some basic concepts of classical typography,

Fig. 1 The first page of the Gospel of Matthew of the New Testa-
ment kept at the Universidad de Sevilla, from where the letters that we
compare were taken

and briefly highlight the facts that confer its importance to
the book under consideration. Section 3 is devoted to the
detailed description of the procedure followed to measure
the distances between pairs of printed letters, which is the
initial datum to apply the cluster analysis. Section 4 explains
our exact method to find a good clustering and its application
to 10 letters i in Matthew’s first page; exact means that an
optimality criterion is established and that the absolute opti-
mum is found with respect to that criterion. The approximate
cluster analysis is described in Sect. 5, and it is illustrated
with letters i one more time. The results are compared to
those obtained with the exact method; this comparison will
permit us to ensure that the approximate method applied to
the twenty-one letters a in the next Sect. 6 is meaningful.
The actual application of the hierarchical clustering is done
in Subsect. 6.1, whereas in 6.2, we apply a statistical method
of detection of anomalous data (outliers) to validate the clus-
ters obtained in 6.1.

It is not possible to represent graphically each letter as
a point in some space, in such a way that the ordinary
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Classifying typefaces in B42 305

Euclidean distances among the points coincide exactly with
the measured distances, since the latter are not true distances
in the mathematical sense (the triangle property does not hold
true). However, it is possible to represent the relative posi-
tions of the letters approximately, in 2 and 3 dimensions, by
means of the so-called Multidimensional Scaling. In Sect. 7,
a representation is the plane is given for both letters. The final
Sect. 8 sketches the future plans in the line of research of this
paper.

The present study has a necessary conservative bias. We
are asking the experimental data to give us more than cir-
cumstantial evidence of the existence of several concurrent
matrices, since this is a conclusion that runs against the cur-
rently accepted theory.

2 Preliminaries

2.1 Mathematical tools

Cluster analysis comprises a variety of methods that intend
to obtain a reasonable grouping of a set of objects, based on
the similarities among them. Each group is called a cluster,
and a particular grouping, where each object is assigned to
one cluster, is called a clustering. In modern statistics, cluster
analysis is viewed as the main tool in the field of unsupervised
learning.

To perform a cluster analysis, it is enough to have a mea-
sure representing a “distance” or dissimilarity between each
pair of objects. Ideally, a cluster must possess internal cohe-
sion (i.e. small dissimilarities among the objects of the same
cluster) and external isolation (that means, large dissimilar-
ities between two objects of different clusters). There are
several reasonable ways to implement this idea. The choice
of one or another is a matter of mathematical modeling and
must be done to suit the particular situation at hand. In Sub-
sect. 4.2, we explain different good standard possibilities and
justify our specific choice, which is in fact a variant of one
of them, and seems to be new.

Cluster analysis will be complemented, in the study of let-
ters a, with two additional tools. On the one hand, we will
use the data supplied by a small set of letters printed with
brand new types cast with the same matrix. This set will play
the role of control group to estimate which sort of variability
one can expect from letters with a common matricial origin
(Subsect. 6.1). On the other hand, we will use statistical tests
for the detection of extreme data (outliers) to confirm, with
a probability of error controlled and small, that two different
clusters must be indeed considered distinct (Subsect. 6.2).

A classical exposition of cluster analysis can be found for
instance in Gordon [8]. A modern approach, imbedded in
the so-called unsupervised learning theory, is Chap. 14 of

Friedman et al. [7]. The basic reference on outliers is the
book by Barnett and Lewis [2].

2.2 Typographical terms

For the reader not well acquainted with the concepts of clas-
sical (i.e. non-digital) typography, we briefly explain some
terms and procedures here. They are not strictly needed to
follow the rest of the article, but they help in understanding
the motivation of our work. See Fig. 2 for a picture of the
relevant elements. For a detailed and illustrated description,
we refer the reader to Smeijers [12], and also to the on-line
document [4], prepared by the authors.

A matrix is a piece of brass or copper in which the let-
ter is engraved, by means of a previously made steel tool
called a punch, which represented the character in reverse.
One punch is needed for every character of a typeface and
every size. Some parts of the punch are actually made by
means of a counterpunch, but we do not need to go that far
here.

The matrix already contains information on the point size
(ps in Fig. 2) of the printed character, because the vertical
alignment of the matrix and the casting mould is fixed. The
space that the metal type will really occupy in the line, the
character width (w in Fig. 2), is determined by the relative
position of the two parts of the mould. The metal type is cast
in an alloy of lead that is poured into the cavity formed by
the mould and the matrix. In the matrix, the character has
the right-reading direction, but it is engraved. In the type, it
shows in the wrong-reading direction and in relief. The typo-
graphical space of the printed character is the rectangle with
dimensions width × (point size) that contains the character.

punch

matrix

casting mould

metal type

character ps

ps

w

w

Fig. 2 The process punch → matrix → casting mould → metal type
→ printed character
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The metal types are then gathered in a form to print a
whole page. Therefore, several types representing the same
character are in general needed at the same time, as many as
identical characters are to be printed in the page.

The precise methods used by Gutenberg are still the sub-
ject of much research, but according to [1], the method
described here was well established by 1470.

2.3 The 42-line bible

The printing of the so-called 42-line bible started in 1453
and was a very serious enterprise at that time. Gutenberg
had been working for years perfecting the foundry mould
technique with his previous metallurgical knowledge, and he
needed the aid of the businessman Johannes Fust to finance
the project, and the collaboration of the calligrapher Peter
Schöffer to develop the typographical concept. The society
was broken in the middle of the production of the approxi-
mately 200 copies of the book, and Gutenberg was removed
from the project and sued by Fust. The whole printing was
completed in August 1456.

There were other minor printing works before and after
this one, and several versions of the same manuscript are
named, when possible, according to the number of lines per
page. The B42, however, possesses several pages printed at
40 lines, and it is not yet clear what was the reason. It is
anyway considered the start of an era, because of the huge
dimension of the work. Moreover, all copies show still today
an extremely beautiful and bright ink, made from a recipe that
has been lost, and that was never used again in subsequent
work. Chemical non-destructive analysis carried out in the
1980s (Cahill et al. [10]) has found out a high metallic con-
tent, especially of lead and copper, but the compounds used
and their proportions are not known.

All these facts have contributed to make this bible one
of the most interesting books of all times, from many scien-
tific, social, and historical points of view. Currently, around
55 copies are known to have survived either totally or par-
tially. An inventory can be found in the fundamental work
of Schwenke [11]. For a general history of the book, we
recommend [6].

3 How the dissimilarities were measured

Although we will use both terms distance and dissimilarity,
we recall that the dissimilarities here need not respect the tri-
angular inequality; hence, they are not distances in the usual
mathematical sense.

The measuring device was the Mitutoyo QVA-200 [9],
with a resolution of 0.0001 mm, and equipped with its pro-
prietary software QVPack and FormPack. The letters were
measured from a back up microfilm of the New Testament of

the 42-line bible located in the library of the Universidad de
Sevilla [3]. The quality of the microfilm and the resolution
of the device allow to identify contours accurately enough.
The differences between letters due to ink, paper, etc can be
easily observed. A reproduction of a scanned letter from the
microfilm can be seen in [4].

To estimate the measurement error attributable to the
device and the measuring process, we measured the dissimi-
larity of one scanned letter with itself, and the values were in
the order of 10−27mm2. Two different scans of the same let-
ters gave rise to a value of at most 10−6. As we will see, this
value is at least one order of magnitude below the relevant
values in measuring the dissimilarities between two different
printed letters, and therefore, the measuring process can be
considered stable and trustable in this aspect. This process is
subsequently described.

The measuring device scans each printed letter and deter-
mines the contour of its shape. A contour is approximated
by points and by line segments joining the points, forming
a polygonal closed curve. Some letters possess empty inner
spaces (counters), and in this case, the contour is constituted
by more than one connected curve.

The first step in the measuring process of two given con-
tours A and B is to place them in a coordinate plane, in a
similar orientation and sharing a common reference point,
e.g. the barycenter. Then, an initial distance between the two
shapes is determined, and one of the shapes is moved in the
plane (with translations and rotations), in order to obtain a
lower distance. The distance is again computed and a new
movement takes place. This iterative process stops when no
further improvement seems possible.

At each iteration n, the distance is computed in the fol-
lowing way: From each point p of contour A, its Euclidean
distance d(p, B) to contour B is computed, that means, the
distance to the closest segment of contour B. The squares of
the distances are then added up:

Dn(A, B) :=
∑

p∈A

d(p, B)2

If the process stops after n f iterations, the value Dn f , divided
by the number of points in A, is taken as the dissimilarity
D(A, B) of A with respect to B. Since the role of both shapes
in this process is not symmetric, the roles are interchanged
and the corresponding quantity D(B, A) is computed. The
final (symmetric) value of dissimilarity between A and B
will be the mean

diss(A, B) := 1
2 (D(A, B) + D(B, A)).

The division by the number of points of the shape allows to
compare different pairs of shapes in a common scale.

Notice that we are using the contours to represent the shape
of the letters, and to compute their dissimilarity. No infor-
mation is lost in this representation. Moreover, the measure
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is based on the mean proximity of the contours and therefore
is quite robust in front of local printing errors.

4 Exact clusterings for letter i

4.1 Dissimilarity table

The 10 letters i printed in the odd numbered lines in the first
page of the Gospel of Matthew have been compared in pairs
with the procedure described in Sect. 3, and a symmetric
table of dissimilarities has been obtained. This is the suitable
initial datum to proceed with the cluster analysis.

The original dimensions of the letters in the microfilm are
in the orders of 10−1 mm (the ‘x’ height is around 0.285 mm)
and give rise to dissimilarities in the order of 10−5mm2. For
a more comfortable visualization of the values, these have
been multiplied by 104, and the leading zeroes are omitted.
The results are depicted in Table 1.

In the next subsections, we will study the classification
of the letters i starting from this table. At the same time,
we introduce the necessary cluster analysis theory. The code
to perform the statistical analysis has been written in the
language R [13].

4.2 How to value each possible clustering

As mentioned in Sect. 2, we intend to have cohesive and iso-
lated clusters. Suppose we have N objects (in our case, the
N = 10 letters i) and assume that we want to divide these
objects into a given number K of clusters. (Actually, we do
not want to fix the number of clusters from the start, but let
us assume that we do. Later we come back to the discussion
on the number of clusters.)

In order to find the best clustering with K clusters, we need
to assign to each such clustering a certain cost and then try to
find the clustering with the minimum cost. There are several

reasonable possibilities to translate the desired properties of
cohesion and isolation into a cost function.

Common criteria proceed by evaluating the cost of each
specific cluster and then combine the individual costs of the
clusters. Both things can be done in several ways. For the
first one, the following values are typically used:

1. The maximum of the dissimilarities among objects in the
cluster.

2. The sum of those dissimilarities.
3. For each object, the sum of all dissimilarities between

the object and the remaining ones is measured. Among
all these quantities, the smallest one is chosen.
Valuations based in the minimum or the sum of dissimi-
larities between objects in the cluster and objects not in
the cluster are also used.
We will use a variant of criterion 3, whose justification
will be seen later:

4. For each object, the mean of all dissimilarities between
the object and all other objects in the cluster is measured.
Among these quantities, the smallest one is taken.

To combine the costs of each individual cluster, there are
also two usual criteria:

(a) Adding up the costs of all clusters.
(b) Taking the maximum of the costs.

Methods 3 and 4 have the advantage that they distinguish
a particular object in each cluster, namely the one for which
the sum or mean of dissimilarities with the other objects is
smallest (the same object in both methods, obviously). This
allows to see the other objects as located “around the priv-
ileged one”. In our case, it allows to take one letter as a
“model” and to think of the other ones as “variants” of the
model, representing, in theory, a printed letter coming pos-
sibly from the same matrix as the model but with different
metal types and printing errors.

Table 1 Dissimilarity table for the i

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

i1 .2329 .3518 .2310 .1912 .3213 .2179 .2652 .2590 .3929

i2 .2329 .2097 .0283 .0701 .0801 .1139 .0425 .0835 .0907

i3 .3518 .2097 .1750 .1638 .3713 .0670 .1901 .1232 .3290

i4 .2310 .0283 .1750 .0895 .0756 .0902 .0512 .1026 .0926

i5 .1912 .0701 .1638 .0895 .1541 .1219 .1285 .1028 .2014

i6 .3213 .0801 .3713 .0756 .1541 .1467 .0560 .1324 .0645

i7 .2179 .1139 .0670 .0902 .1219 .1467 .0977 .0900 .2186

i8 .2652 .0425 .1901 .0512 .1285 .0560 .0977 .0718 .0719

i9 .2590 .0835 .1232 .1026 .1028 .1324 .0900 .0718 .1717

i10 .3929 .0907 .3290 .0926 .2014 .0645 .2186 .0719 .1717
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Between possibilities (a) and (b), we prefer the second,
because with the first, we may find clusters with a high cost
coexisting with clusters of small cost. Taking the maximum
as the value to minimize tends to make the clusters uniform
in this sense, and in our opinion, this is more reasonable and
conservative in the situation we are studying.

Once we decided to use criterion (b) for the combination
of the costs of all clusters, the new proposed alternative 4 is
better than the standard idea 3, as the next example shows:
Suppose that for the letter i, we want to compare clustering

{1} {2, 3, 4, 5, 6, 7, 8, 9, 10},
with clustering

{1, 10} {2, 3, 4, 5, 6, 7, 8, 9}.
With the combination 3-b, the first one has a cost of 0.7050
and the second one a cost of 0.6124, therefore making the
second option preferable. But this does not seem reasonable,
because letters 1 and 10 are the farthest apart in the whole
set. What happens here is that in the first clustering, we have
a cluster of zero cost (because there is only one object in it, so
that the internal cohesion is absolute) and another one with
cost 0.7050; in the second clustering, the first cluster new cost
is 0.3929, the distance between letters 1 and 10, and the sec-
ond lowers to 0.6124. The maximum has therefore dropped
from 0.7050 to 0.6124, and the second clustering turns out
to be better.

This inconvenience tends to appear with criteria 3-b if
there are clusters with a very unbalanced quantity of ele-
ments. With the alternative 4-b, the number of elements in
the clusters is not relevant. In the same example, now the first
clustering has a cost of 0.0881, much better than the second,
which is 0.3929.

In summary, we take combination 4-b as the best suited
for this study, although we have not been able to find in the
literature an example of application of this particular combi-
nation of criteria. Our choice gives rise to:

– The possibility of graphically representing the clusters as
stars, with a model letter in the center, and the other letters
around, as variants of the model.

– No coexistence of very cohesive clusters together with
clusters with little cohesion.

– No coexistence, within a cluster, of letters distant from
the center of the star, together with letters close to it.

4.3 Finding the optimal clustering

When the number of objects is small, and still assuming that
we have fixed the number of clusters, the optimal cluster-
ing can be found by exhaustive enumeration of all possible
clusterings.

We have used this direct method to classify the 10 letters
i in 2 and 3 clusters. From the 511 possible partitions into
two clusters, the best one is

{1} {2, 3, 4, 5, 6, 7, 8, 9, 10},
whereas among the 9330 clusterings with three clusters, one
finds

{1} {3, 7} {2, 4, 5, 6, 8, 9, 10}.
As mentioned above, it is possible to graphically repre-

sent these clusterings by means of “stars”. The best cluster-
ing with three clusters is so displayed in Fig. 3. Letter i1 is
isolated, letters i3 and i7 form a second cluster, in which
it is irrelevant which letter is taken as the center, and finally
the remaining letters form a cluster around letter i2. The
distances from i2 to its companion letters are shown on the
solid lines, and the distances with the other three letters are
also shown, on half-dashed lines. (The lengths of the lines in
the picture are not proportional to the dissimilarity.)

Notice that the internal distances are smaller than the dis-
tances among model letters of the different clusters. This is
not a necessary consequence of the criterion chosen, but addi-
tional good property enjoyed by this particular clustering.

We could have tried to find the best clustering with four
or more clusters, but there are very few objects, and its valid-
ity would be questionable. At the end of Subsect. 6.2, we
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Fig. 3 A star-shaped representation of the best clustering with three
clusters. The objects are reproductions of the actual letters scanned
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give another reason against the possibility of more than three
clusters.

For the 21 letters a, the direct and exact method was not
computationally feasible, and we resorted to and approxi-
mate method, as we will see in Sects. 5 and 6.

4.4 The number of clusters

The issue of the number of clusters present, or of the exis-
tence of more than one, does not have a universal solution.
Our point of view is based in the following considerations:

– First of all, we want to be in the conservative side; that
means, we prefer to err by ascribing two letters to the same
matrix when they actually come from different matrices,
than to err by saying that they come from different matri-
ces when they in fact have a common origin.

– Second, our goal is not to determine exactly how many
distinct matrices were used (even in only one page). We
only want to decide whether there is enough evidence that
there were more than one, or more than two, etc.

– In the third place, although it is necessary to take some
decisions a priori that may influence the result (choosing
a criterion for what is an optimal partition, or choosing
the approximate method to employ), then, consistently
with the conservative philosophy, the clusters are reex-
amined with an additional criterion to ensure its isolation
(see Subsect. 6.2).

5 Approximate clusterings

To compute the best partition into clusters, there is no way
essentially more efficient than the exhaustive enumeration
that we have applied to letters i. Therefore, if the enumera-
tion is impossible because of the input size, one has to settle
for some approximate method, able to provide a reasonably
good solution.

The approximate method that we use here corresponds
to the heuristic procedure called agglomerative hierarchical
clustering (see, e.g. [7,8]). With this method, one constructs
in fact a hierarchy of clusterings, so that one has to decide
afterwards which clustering in the hierarchy to keep.

It starts by declaring each object as a cluster by itself,
and then bigger clusters are constructed from smaller ones
in sequence. At each step, two clusters are merged together
to form a bigger one, namely, those which are the closest in
some sense.

This idea raises the need to define a notion of dissimilarity
among clusters, which involves again a certain arbitrariness
in the choice. There are three reasonable and commonly used
possibilities:

1. The dissimilarity between two clusters is the dissimilar-
ity between their most similar objects. (This option is
known in the literature as single linkage.)

2. The dissimilarity between two clusters is the dissimilar-
ity between their most distant objects (known as complete
linkage).

3. The dissimilarity between two clusters is the arithmetic
mean of the dissimilarities between the objects in both
clusters (called average linkage).

We illustrate the hierarchical agglomerative clustering
arising from the three possibilities above with the letters i,
already studied with an exact method, and we discuss the cor-
relation of each variant with respect to the exact results. We
are able in this way to justify the choice of the next section
for the study of the 21 letters a.

5.1 The single linkage

With any of the three possibilities, one can draw a graphical
representation of the agglomerative process, called dendro-
gram. For instance, the single linkage for the 10 letters i
produces the dendrogram of Fig. 4. The height of the hori-
zontal lines, read in the vertical axis, is the distance between
the two clusters that hang from the line, and that combine
into one at that point.

Now, looking at the dendrogram, we should decide how
many and which clusters seem to exist. When applying the
method to the letters a, we will use additional information
to help us in this purpose. Here, we only want to observe to
which extent the approximate methods give similar results to
the exact method used in the previous section.

Specifically, we see in the dendrogram that letter 1 must
be clearly set apart from the others, and we also observe a
clear separation between group {3, 7} and the remaining let-
ters, although not so clear as with letter 1. This reflects fairly
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2 4
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0.
10
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15

Fig. 4 Dendrogram for letter i with the single linkage method
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well in a graphical way the results that we obtained when
we imposed 2 or 3 clusterings. Moreover, looking for a split-
ting in more than three clusters will not be supported by the
dendrogram.

The single linkage method is very conservative, in the
sense that it can easily consider in the same cluster two very
distant objects, as long as they are connected by a chain of
other objects, each one similar enough to the next.

5.2 The complete linkage

The complete linkage method takes the opposite heuristic,
and this makes it little conservative: It tends to keep sepa-
rated pairs of objects that perhaps are not so different. The
clusters produced tend to be cohesive but not quite isolated.

With the complete linkage agglomerative clustering, we
obtain the dendrogram in Fig. 5. Up to four clusters could be
concluded from the picture. Moreover, even sticking to three
clusters, the result would not coincide with that of the single
linkage (letters 5 and 9 switch clusters). This dendrogram
thus suggests a result more distant to the exact one than that
obtained with the single linkage method.

5.3 The average linkage

The average linkage is half-way between the previous meth-
ods. It gives rise to dendrogram of Fig. 6. The distance
between two clusters C1 and C2 is computed as

1

|C1| · |C2|
∑

o1∈C1

∑

o2∈C2

diss(o1, o2)

where |C | means the number of elements of cluster C ,
and diss(o1, o2) is the given dissimilarity between objects
o1 and o2.

The list in Table 2 indicates the order in which the clusters
are formed, and the distance between merging clusters. The
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Fig. 6 Dendrogram for letter i with the average linkage method

Table 2 Merging order and distances for letter iwith the average link-
age method

Merge Distance

a 2 – 4 .0283

b 8 – a .0469

c 6 – 10 .0645

d 3 – 7 .0670

e b – c .0778

f 5 – 9 .1028

g e – f .1205

h d – g .1744

i 1 – h .2737

central column indicates which clusters are merged. A num-
ber n refers to a single object (the n-th letter i), whereas a
letter means the multiobject cluster formed in the line labeled
with that letter. We observe that the dendrogram here looks
more correlated with the exact result of Sect. 4 than the com-
plete or even the single linkage dendrogram. The clearest cut
point produces the same partitions in two and three clusters
and, moreover, the separation of the group {3, 7} is more
apparent here. Therefore, we believe that this method is the
one with results more similar to the exact method correspond-
ing to criterion 4-b that we have applied. We will adopt it
for the classification of the twenty-one letters a in the next
section.

6 Cluster analysis for letter a

In the previous Sect. 5, we have compared several approxi-
mate clustering methods with the exact cluster analysis per-
formed with our optimality criterion. We concluded that the
average linkage method was the one with the best results.
We thus apply this method to classify the twenty-one a taken
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Table 3 Dissimilarity table for the a

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21

a1 .1277 .1165 .1892 .1338 .1196 .1301 .1536 .1049 .1741 .2653 .2509 .3712 .1489 .1315 .2345 .1866 .1375 .1939 .0868 .2262

a2 .1277 .1160 .2370 .1543 .1391 .1173 .1347 .1617 .1643 .2845 .1522 .2817 .1422 .1464 .1169 .1114 .1723 .1861 .1834 .1606

a3 .1165 .1160 .1668 .0769 .1119 .1474 .1353 .1471 .2447 .2214 .2015 .3191 .0990 .0897 .1919 .1715 .1186 .1720 .0958 .1771

a4 .1892 .2370 .1668 .1468 .1637 .2363 .3173 .1133 .3779 .3533 .4261 .5766 .2478 .1402 .3280 .2332 .2330 .2460 .1057 .3028

a5 .1338 .1543 .0769 .1468 .1128 .1026 .1214 .1395 .2114 .2070 .2094 .3265 .1582 .0906 .1677 .1749 .0940 .1252 .0964 .1563

a6 .1196 .1391 .1119 .1637 .1128 .1256 .1274 .1184 .1778 .2264 .2161 .3179 .1294 .0754 .1651 .1132 .0938 .1834 .1421 .1254

a7 .1301 .1173 .1474 .2363 .1026 .1256 .1131 .1669 .1856 .1928 .2188 .3023 .1735 .1425 .1223 .1489 .1190 .1161 .1835 .1296

a8 .1536 .1347 .1353 .3173 .1214 .1274 .1131 .2087 .1327 .1907 .1179 .2089 .1105 .1108 .0972 .1221 .1289 .1721 .2228 .1041

a9 .1049 .1617 .1471 .1133 .1395 .1184 .1669 .2087 .2454 .3359 .3063 .4550 .1769 .1224 .2264 .1415 .1986 .2144 .1320 .2119

a10 .1741 .1643 .2447 .3779 .2114 .1778 .1856 .1327 .2454 .2371 .1281 .1843 .1964 .2129 .1809 .1558 .1694 .3145 .3417 .2009

a11 .2653 .2845 .2214 .3533 .2070 .2264 .1928 .1907 .3359 .2371 .2189 .2366 .1738 .2451 .1890 .2468 .1972 .2894 .3544 .2449

a12 .2509 .1522 .2015 .4261 .2094 .2161 .2188 .1179 .3063 .1281 .2189 .1226 .1593 .2342 .1295 .2077 .2282 .2843 .3288 .1815

a13 .3712 .2817 .3191 .5766 .3265 .3179 .3023 .2089 .4550 .1843 .2366 .1226 .1923 .3397 .2185 .2995 .3113 .5016 .5017 .2912

a14 .1489 .1422 .0990 .2478 .1582 .1294 .1735 .1105 .1769 .1964 .1738 .1593 .1923 .1444 .1752 .1514 .1907 .2673 .1665 .1432

a15 .1315 .1464 .0897 .1402 .0906 .0754 .1425 .1108 .1224 .2129 .2451 .2342 .3397 .1444 .1586 .1224 .1159 .1655 .1307 .1629

a16 .2345 .1169 .1919 .3280 .1677 .1651 .1223 .0972 .2264 .1809 .1890 .1295 .2185 .1752 .1586 .1392 .1809 .1737 .2762 .1106

a17 .1866 .1114 .1715 .2332 .1749 .1132 .1489 .1221 .1415 .1558 .2468 .2077 .2995 .1514 .1224 .1392 .1881 .2208 .1880 .1372

a18 .1375 .1723 .1186 .2330 .0940 .0938 .1190 .1289 .1986 .1694 .1972 .2282 .3113 .1907 .1159 .1809 .1881 .1668 .1922 .1545

a19 .1939 .1861 .1720 .2460 .1252 .1834 .1161 .1721 .2144 .3145 .2894 .2843 .5016 .2673 .1655 .1737 .2208 .1668 .1756 .1438

a20 .0868 .1834 .0958 .1057 .0964 .1421 .1835 .2228 .1320 .3417 .3544 .3288 .5017 .1665 .1307 .2762 .1880 .1922 .1756 .2233

a21 .2262 .1606 .1771 .3028 .1563 .1254 .1296 .1041 .2119 .2009 .2449 .1815 .2912 .1432 .1629 .1106 .1372 .1545 .1438 .2233

from the first page of the Gospel of Matthew. The correspond-
ing dissimilarity measures can be seen in Table 3.

6.1 Dendrograms for letter a

The dendrogram corresponding to the average linkage vari-
ant of the hierarchical clustering is displayed in Fig. 7.

The order in which the different clusters are sorted hor-
izontally does not have any special meaning. Here, we fol-
low the convention of drawing to the left the more compact
cluster, that is, the one formed at the lowest level. The corre-
sponding sequence of cluster formation, sorted by merging
level, is given in Table 4. We follow the same convention of
the analogous list above.

Concerning the choice of the clustering in the hierarchy,
which amounts to determine the number of clusters, the usual
heuristic, when no other information is available, is to “cut”
the dendrogram wherever the jumps in the distances of con-
secutive mergings are higher than a threshold magnitude. For
instance, the jump from 0.1752 to 0.2309 between lines r
and s would give us a partition in three clusters that looks
quite clear.

But we do have an additional information to determine
the number and composition of clusters. This information is
given by a set of dissimilarities measured from a test printing
of newly created types. We have used types belonging to the
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Fig. 7 Dendrogram for letter a with the average linkage method

typographic collection of the Bauer Neufville Type Foundry,
kept at the Universitat de Barcelona. These will play the role
of “control group”, since we know for sure that they come
from the same matrix. If we try to divide them in clusters,
all of them must therefore become members of the same and
only cluster. Comparing these letters in the same way as we
did with the microfilmed letters of the Gospel of Matthew,
we can see the magnitude of the dissimilarities that we can
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Table 4 Merging order and distances for letter awith the average link-
age method

Merge Distance

a 6 – 15 .0754

b 3 – 5 .0769

c 1 – 20 .0868

d 8 – 16 .0972

e a – b .1012

f 18 – e .1056

g 21 – d .1074

h 2 – 17 .1114

i 4 – 9 .1133

j 7 – 19 .1161

k 12 – 13 .1226

l c – f .1296

m g – h .1351

n 14 – m .1445

o i – l .1506

p 10 – k .1562

q j – n .1640

r o – q .1752

s 11 – p .2309

t r – s .2584

expect and that are attributable only to the errors of construc-
tion of the metal types and to printing errors.

The actual size of the types of the control group is of course
different from the one of the microfilmed letters, so that the
absolute values of the dissimilarities cannot be directly used
to compare the two groups. We have to define a common
comparison base that will not be influenced by the different
size. A natural and easy way to establish a common unit of
measure is the following:

1. The control group is organized around a model letter,
with the same procedure used with letters i in Sect. 4
(all of them in the same cluster, obviously), obtaining a
set of distances to the model.

2. The quotient is computed between the largest and the
smallest distance to the model, as a measure of disper-
sion of these distances, which is a value independent of
the units of measure.

We have applied this procedure to the letters m, i, a, o,
with five specimens each, and the results are summarized in
Table 5.

The quotient between the largest and the smallest distance
to the model gives us an estimate of the variability that we
can expect from a unique matrix. We see that the quotients
range between 1.1307 and 2.0625.

We will use this estimate in the following way for our set
of a: We take the two letters that are the closest and declare
them, obviously, as belonging to the same cluster. This min-
imum distance is 0.0754, and it is found between letters a6
and a15. According to the data obtained from the control
group, the letters at a distance up to 2.0625 times this min-
imum distance (i.e. distances up to 0.1555) may perfectly
belong to the same cluster.

Therefore, we can draw a cutting line in the dendrogram
at level 0.1555 (the red line in Fig. 7) and declare all clusters
grouped below this line as indivisible.

Thus, we obtain six clusters. We can now construct the
stars corresponding to these clusters, finding their model let-
ters and the distances from the remaining letters to its model
(see Table 6).

Our conclusion up to this moment is that the maximum
number of clusters that we obtain from the twenty-one letters
a is six, because splitting any one of them would be analo-
gous to declare that the metal types of the studied control
group came from more than one matrix, which is false.

6.2 Validation of clusters

We are now interested in checking whether we have actually
gone too far in the number of clusters found, and some of
them should better be merged into larger ones, following our
conservative criterion to declare two letters as coming from
the same matrix if there is no strong evidence against this
hypothesis. Take also into account that the dendrogram is
the result of an approximate method, built upon a somewhat
arbitrary choice of the criterion with which the hierarchy is
constructed; it is therefore absolutely necessary to validate
the present clusters with some sieve reflecting the conserva-
tive spirit.

To this end, we use a statistical test for the detection of
outliers. In general, an outlier in a set of numerical data is a
datum markedly different from the rest, that seems to result
from some sort of measuring error or typo, or in summary
that should not be there, because it does not really belong to
that data set.

As an example, let us take cluster number 3. The model is
letter a8, and so we can draw a star with center in a8 and the
corresponding distance to the other letters. These distances
are sorted in increasing order:

0.0972 0.1041 0.1105 0.1221 0.1347

Take now any other letter, not belonging to cluster 3, and
observe its distance to the model a8. For instance, a1 hap-
pens to be at a distance 0.1536 from a8. Is this distance too
large to include also a1 in cluster 3? Or, on the contrary, it
is not much different from the others, and the larger distance
is only the product of chance?
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Table 5 Distances obtained
with brand new metal types, and
five specimens per glyph

Distances to model Mean Max/ min

m 5.9731, 3.9409, 5.5055, 3.9967 4.8540 1.5156

i 3.2364, 5.9557, 2.8876, 3.9188 3.9996 2.0625

a 7.4534, 4.8179, 4.6993, 3.7450 5.1789 1.9902

o 1.7965, 1.8714, 2.0286, 1.7940 1.8726 1.1307

Table 6 Preliminary clustering
for letter a Cluster Model Mean of distances Minimum, maximum Max/ min

1 {4,9,1,20,18,6,15,3,5} 5 .1114 .0769, .1468 1.9090

2 {7,19} 7,19 .1161

3 {14,21,8,16,2,17} 8 .1137 .0972, .1347 1.3858

4 {11} 11 –

5 {10} 10 –

6 {12,13} 12,13 .1226

The conservative hypothesis, and therefore the one that
it is considered true a priori, as in any statistical test, is the
second possibility above: the distance between a1 and a8 is
not exceedingly large, and in consequence, a1 should also
belong to cluster 3. This null hypothesis will be abandoned
only if there is enough evidence against it. The evidence is
measured in terms of the p-value, the probability of rejecting
the null hypothesis when it was in fact true. If the p-value is
less than a certain threshold fixed beforehand (typically 10,
5 or 1%), then the null hypothesis is rejected; otherwise, it is
kept, conservatively, as the good one (albeit with a probabil-
ity to err with this conclusion that can be very high).

We are going to apply the so-called Dixon’s test, the usual
one to test for the presence of one outlier in a data set.
Let x1, . . . , xn be the data set, sorted in increasing order,
including as xn the suspect datum. Dixon’s test computes the
statistic

Q := xn − xn−1

xn − x1
.

Intuitively, a large value for this quotient indicates that there
is a large difference between the last value and the one before
last (relatively to the dispersion of the whole data set), induc-
ing us to believe that the last value is an outlier and to reject
the working hypothesis. If, on the contrary, the quotient is
small, then the difference between xn−1 and xn is small, and
there is no reason to declare xn as outlier.

Continuing the example above, if we want to see whether
letter a1 belongs to cluster 3, we compute the value of the
Dixon’s statistic:

Q = 0.1536 − 0.1347

0.1536 − 0.0972
= 0.3351.

In order to apply reliably Dixon’s test to determine
whether the value 0.3351 is too large or not, the data must
satisfy two assumptions that in our case are fulfilled:

a) The data follow a Gaussian law, and
b) they are statistically independent.

Gaussianity is justified by the fact that each datum is the
sum of a large quantity of very small values (the distances
from points of one contour to segments of the other, divided
by its number, see Sect. 3). Therefore, independently of the
underlying probability law of those small values, the sum
will very approximately follow a Gaussian law, thanks to the
Central Limit Theorem.

The independence is obvious because the result of mea-
suring the distance from any letter to the “model” letter does
not influence the result of the distance between a third letter
and the model. (Notice that if we include the distance among
the letters which are not models, the independence would be
lost.)

Under these conditions, the probability distribution of the
random variable Q, assuming that there are no outliers, is
known. This allows to compute the probability that Q attains
a value greater than or equal to the observed one if xn is not
an outlier. In the case of our example, the probability of the
event {Q ≥ 0.3351} is approximately 0.27. This is the prob-
ability of mistakenly declare that xn is an outlier. Of course,
it is too high to take the risk.

Notice that the test takes into account the sample size in
the computation of the p-value. It is not an approximate or
asymptotic test, and therefore, the sample need not be large
to ensure the reliability of the p-value.
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Table 7 Final classification in
clusters for of letters a Cluster Model Mean of distances Minimum, maximum Max/ min

A {4,9,1,20,18,6,15,3,5,7,19} 5 .1114 .0769, .1468 1.9090

B {14,21,8,16,2,17} 8 .1137 .0972, .1347 1.3858

C {11} 11 –

D {10,12,13} 12 .1254 .1225, .1281 1.0457

Letter a1 may therefore be included in cluster 3. But we
have said that cluster 1 will not be split. So, let us check what
happens with the remaining letters in cluster 1, namely a4,
a9, and a20, which are at distances 0.3173, 0.2087, 0.2228
from the model a8 of cluster 3 (see Table 3). Using Dixon’s
test, one finds that all three of them fall below the 5% thresh-
old of probability of a mistake if we declare them outside
cluster 3 (< 0.0001, 0.0156, and 0.0095, respectively). So
this is what we do and we keep definitively separated clusters
1 and 3.

Repeating the same idea with the remaining clusters, we
obtain that:

– Cluster 5 integrates in cluster 6 (in fact, they were close
to be already merged when we drew the horizontal line
in the dendrogram).

– Cluster 2 can easily be integrated in cluster 1. In this case,
both distances to the model a5 are even smaller than
those of some other letters already included in cluster 1.
Cluster 2 could also be integrated in cluster 3, but not so
clearly, since the p-value for letter a19 is 0.0860, so that
with the milder threshold of 10% as error probability it
will not be integrated.

– Cluster 4 (letter a11) does not integrate in the new cluster
union of 5 and 6 (letters a10, a12, a13), with p-value
0.0485. Similarly, it cannot be integrated in the cluster
union of 1 and 2 (with p-value 0.0193), nor in cluster 3
(p-value 0.0332). Thus letter a11 remains alone defini-
tively.

– It can be checked that there are no other possibilities for
merging the new clusters among them.

We arrive then to the final classification in four clusters
given in Table 7.
We remark once again that the procedure we have used is
conservative: we are pretty sure that there is more than one
cluster (four at least) in the 21 letters a studied, but it is
perfectly possible that there are actually more than 4.

We also remark that sometimes an outlier can be masked
by the presence of another questionable datum. There exist
statistical tests to expose the existence of two outliers at
once (e.g. Grubbs’ test, see [2]); however, following our
conservative spirit, we have preferred not to try to iden-

tify such situations and, if it happens, to accept both data
as genuine.

At first sight, the decision of declaring as separate two
clusters when just one of the letters of the first cluster is
rejected as admissible by the second one may seem more
risky. But one should take into account that it is still more
risky to split a cluster which has been first declared indivisi-
ble. Suppose, on the other hand, that we do not want to split
the first cluster but we want to know whether it should be
completely integrated in the second. Recall that this must be
the null hypothesis of the test. Now, the probability of error
in declaring mistakenly out of a cluster more than one letter
is still smaller than the probability of declaring out of the
cluster each one of them. Therefore, if one of the letters does
not exceed the fixed 5% of probability of error, a set of more
than one letter will not exceed that value either.

Table 8 show the computed probabilities that have allowed
to conclude the final classification of Table 7 from the pre-
liminary classification of Table 6, through Dixon’s test. For
each possible destination cluster, we list the candidate letters,
with the cluster to which they belong. Only the rejections
(p-values less than 5%) are shown. 1 ∪ 2 and 5 ∪ 6 mean the
union of these clusters, whose model letters turn out to be
a5 and a12, respectively.

To close the section, we return for a moment to the anal-
ysis of the ten letters i, in connection with the validation of
clusters.

In Sect. 4, we obtained the optimal (exact) clusterings,
conditioned to the existence of exactly two or three clusters.
We can also apply Dixon’s test for outliers to those clus-
terings, and the result confirms the partitions seen. It is also
natural to use the test to check whether a partition in 4 clusters
could be reasonable. The result is negative:

The best clustering with four clusters (exact, with the cri-
terion introduced in Sect. 4) is

α = {1}, β = {3}, γ = {5}, δ = {2, 4, 6, 7, 8, 9, 10}.
But Dixon’s test does not support i5 out of cluster δ.
It does for i1 and i3, with p-values < 0.0001 and 0.0117,
respectively.

The second best clustering with four clusters turns out
to be

α = {1}, β = {3}, γ = {7}, δ = {2, 4, 5, 6, 8, 9, 10}.
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Table 8 Significant p-values that support the final classification in
clusters

Letter From cluster To cluster p-value

10 5 1 .0294

11 4 1 .0368

12 6 1 .0326

13 6 1 <.0001

4 1 3 <.0001

9 1 3 .0156

11 4 3 .0332

13 6 3 .0155

20 1 3 .0095

10 5 1 ∪ 2 .0146

11 4 1 ∪ 2 .0193

12 6 1 ∪ 2 .0167

13 6 1 ∪ 2 <.0001

1 1 5 ∪ 6 .0360

6 1 5 ∪ 6 .0500

7 2 5 ∪ 6 .0485

9 1 5 ∪ 6 .0250

11 4 5 ∪ 6 .0485

15 1 5 ∪ 6 .0416

18 1 5 ∪ 6 .0441

19 2 5 ∪ 6 .0284

20 1 5 ∪ 6 .0223

which looks more consistent with our previous partition in
three clusters. Again i1 and i3 cannot be integrated in δ,
with p-values 0.0032 and 0.0075, respectively, and although
i7 could be, we should integrate first i3, from the dendro-
gram, given that we cannot perform an outliers test against a
cluster with one only element.

As a curiosity, it turns out that the model letters (center of
the star) for clusters δ in the two cases above are different.
They arei8 in the first case and i2 in the second. In fact, they
are very close letters, and these changes are not surprising
when changing slightly the composition of a cluster.

In conclusion, this study forcing four clusters does not
bring us more than what was already shown: We can
postulate with confidence the existence of three clusters,
and concerning its composition, the safest bet is our first
option

α = {1}, β = {3, 7}, δ = {2, 4, 5, 6, 8, 9, 10},

with a certain risk, coarsely bounded by a probability of 0.32
of error in separating letter 7 from cluster δ. The clustering
with two clusters, merging β and δ, looks to us extremely
conservative.

7 Graphical representation of clusterings

The Multidimensional Scaling (MDS) is a technique that
allows to represent graphically in dimensions 2 or 3 the set of
objects that are being classified, providing a visual impres-
sion of the closeness among different objects or clusters of
objects. The distances in the display are not the true dissimi-
larities; they are the best possible approximation (according
to some loss function) so that the data can be embedded in
the 2- or 3-dimensional space.

The specific coordinates of the points have no intrinsic
meaning; only the relative position among objects is to be
read. In particular, any rotation, symmetry or translation of
the picture gives rise to another picture with exactly the same
meaning. Yet it can be assured that the mapping is monotone:
if an object possesses dissimilarities d1 and d2 with other two
objects, and d1 < d2, then the corresponding distances in the
picture d̂1 and d̂2 also satisfy d̂1 < d̂2.

The MDS in dimension 2 for the 10 letters i and the 21
letters a are shown in Figs. 8 and 9. The stars of the optimal
clustering found have also been displayed, and we see that
the clusters appear quite clearly in the pictures.

The extent to which a possible graphical representation of
a set of objects differs from the real dissimilarities is called
stress and can be defined in several reasonable ways. The
representation used here is the variant known as Kruskal
Non-metric Multidimensional Scaling. The stress S is defined
as

S =
√√√√

∑
( f (di j ) − d̂i j )2

∑
d̂2

i j
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Fig. 8 MDS in dimension 2 for letter i
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where d are the given dissimilarities among the objects, d̂
are the distances in the graphic, and f is a monotonically
increasing transformation that gives an extra flexibility to the
adjustment. The position of the points is obtained by seeking
the distances d̂ and the transformation f that minimize the
stress. The monotonicity of f ensures that if one dissimilar-
ity is smaller than another, then the corresponding distances
in the picture preserve that order.

More details on Kruskal Non-metric Multidimensional
Scaling can be seen, for instance, in Chap. 3 of [5], or in
Chap. 11 of [14].

8 Conclusion and open questions

We have reached the statistical conclusion that letters i and
a had coexisting metal types coming from different matri-
ces. We have used cluster analysis on the shape of printed
letters, together with the technological facts that induce to
rule out other possibilities for the observation of clusters, as
explained in Sect. 1. Although only two of the most frequent
letters have been submitted to the study, it is likely that the
property is also shared by all but maybe the less common
glyphs.

From the historical research point of view, finding out
which tools were used or developed by Schöffer and
Gutenberg to complete their monumental work is one of the
most interesting items. The fact that metal types built from
multiple matrices were used concurrently, as we prove here,
is a new aspect that indicates that matrix construction was
quite evolved. The use of punches and counterpunches to
sculpt the inner contours is agreed today; the tools used for
the outer contours are not so clear. The letters a, and other
letters with counters, offer the additional possibility to shed
light in this respect.

We have carried out a prospective study with the inner
lower contour of letter a (in the gothic textura typeface it has
indeed two inner contours), and the results seem to indicate
that different outer contours combine with different inner

contours. This may imply that punches were also used to
delineate the external shape of the matrix. However, we feel
that we should first gather many more experimental data,
implementing also an improved measuring protocol, and we
have therefore decided not to include those results here.

We have also started to measure letters coming from the
subsequent pages of the same bible book, the Gospel of
Matthew. We have computed their distances with the twenty-
one letters of the first page, just to see whether they can be
integrated into the existing clusters or not. What we observe
is that most of them integrate well in the clusters, but that a
few new “models” appear. This was absolutely in line with
what we expected after obtaining the results concerning the
first page (see [4] for pictures similar to Fig. 3 with the new
letters).

Notice that, using letters coming from different pages,
and that may therefore be printed from the same metal type,
three levels of similarity should be observed: Letters very
similar among them, appearing for sure in different pages,
printed with the same metal type; similar letters, but not that
much, printed with different types but with a common matri-
cial origin; and letters with low similarity, printed from types
coming from different matrices. We do not have yet enough
data to confirm this, but we believe it is feasible to carry out
this program in the future.
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