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Definitions and examples 1

1. Definitions and examples

(Ω, F, P ) probability space.

{Fn, n > 0} increasing sequence of sub-σ-fields of F =: Filtration.

A filtration models the evolution of the information: A ∈ Fn means that at time n we can tell if

the event A has ocurred or not.

1.0.1 Def. X = {Xn, n > 0} is a martingale w.r.t. {Fn, n > 0} if, ∀n,

1) Xn ∈ L1.

2) Xn is Fn-measurable.

3) E
[

Xn+1/Fn

]

= Xn.

The martingale property is a property of the law of the process, just like the Markov dependence,

the independence of the variables of the process, etc.

Notation: {(Xn, Fn), n > 0}.

1.0.2 Def.
{

σ{X1, . . . , Xn}, n > 0
}

is the natural filtration of the process X .

{Xn, n > 0} is a martingale if satisfies 1,2 of the previous definition and E
[

Xn+1/X0, . . . , Xn

]

=

Xn.

1.0.3 Def. X = {Xn, n > 0} is a submartingale (resp. supermartingale) w.r.t. {Fn, n > 0} if, ∀n,

1) Xn ∈ L1.

2) Xn is Fn-measurable.

3) E
[

Xn+1/Fn

]

> Xn (resp. E
[

Xn+1/Fn

]

> Xn).

1.0.4 First (obvious) property.

1) X submartingale ⇒ E[Xn+1] > E[Xn].

2) X supermartingale ⇒ E[Xn+1] 6 E[Xn].

3) X martingale ⇒ E[Xn+1] = E[Xn] = E[X0].

1.0.5 Example 1.

a) Xn ≡ X0 ⇒ {(Xn, Fn), n > 0} is a martingale.

b) Xn+1 > Xn ⇒ {(Xn, Fn), n > 0} is a submartingale.

c) Xn+1 6 Xn ⇒ {(Xn, Fn), n > 0} is a supermartingale.
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2 Definitions and examples

(assuming properties 1,2 satisfied).

The proof is very easy. For instance,

Xn+1 > Xn ⇒ E
[

Xn+1/Fn

]

> E
[

Xn/Fn

]

= Xn

1.0.6 Example 2. If

a) {Yn, n > 0} indep. r.v. in L1, centred.

b) Xn =
∑n

k=0 Yk.

c) Fn = σ{Y0, . . . , Yn}.

then {(Xn, Fn), n > 0} is a martingale.

Proof:

E
[

Xn+1/Fn

]

= E
[

∑n+1

k=0 Yk/Fn

]

=

n
∑

k=0

Yk + E
[

Yn+1/Fn

]

= Xn + E[Yn+1].

Note that if E[Yn] > 0, ∀n, we obtain a submartingale; if E[Yn] 6 0, ∀n, we obtain a supermartin-

gale.

1.0.7 Example 3. This is a particular case of Example 2, with additional comments.

Take

Yn =

{

+1, with prob. 1/2

−1, with prob. 1/2

and define Xn = x0 +
∑n

k=1 Yk. This process models the evolution of your fortune when you are

playing a game “heads/tails” or roulette “black/red”, with initial fortune x0.

By Example 2, this is a martingale. The property

E
[

Xn+1/Y1, . . . , Yn

]

= Xn

says that, in each play, we don’t expect to win or lose anything.

Let us elaborate on this example. What about intelligent strategies for winning? For example:

• n = 1: We bet 1 euro.

• n = 2:

{

If we won at time n = 1, we bet 1 euro.

If we lost at time n = 1, we bet 2 euros.
• . . .

• At step n,

{

If we won at time n − 1, we bet 1 euro.

If we lost at time n − 1, we double the previous stake.

Our “strategy” is a process φ, defined by φ1 = 1 and

φn =

{

1, if Yn−1 = 1

2φn−1, if Yn−1 = −1

Note that, after losing n times in a row, and then winning once, our net profit will always be

−20 − 21 − 22 − · · · − 2n−1 + 2n = 1 ,

but if we abandon the game in the middle of a losing run, we can lose a lot of money.

Notice also that φn is a Fn−1 measurable r.v. A process φ = {φn, n > 1} with this property is

said to be predictable w.r.t. {Fn, n > 0}.

In general, for any predictable strategy φ, and assuming that the profit in each play per unit bet

is +1 or -1, then the quantity φnYn is the net profit in game n, and the total profit after n games

is
n

∑

k=1

φkYk =

n
∑

k=1

φk(Xk − Xk−1) =: (φ • X)n.
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Definitions and examples 3

This process is called the stochastic integral of φ w.r.t. X . (The name comes from an analogous

concept in continuous time, which is not so easy to define).

In turns out that the stochastic integral φ • X of a predictable process w.r.t. a Fn-martingale is

again a Fn-martingale, provided that its variables belong to L1. Indeed:

E
[

(φ • X)n+1/Fn

]

=

n
∑

k=1

φk(Xk − Xk−1) + E
[

φn+1(Xn+1 − Xn)/Fn

]

= (φ • X)n + φn+1 · E
[

Xn+1 − Xn/Fn

]

= (φ • X)n .

Notice that a similar statement can be stated for sub- and supermartingales: If X is a sub- (resp.

super-) martingale, φ is predictable and φ > 0, then φ • X is a sub- (resp. super-) martingale.

(We will use this fact in Chapter 2.)

1.0.8 Example 4. If Y ∈ L1 and {Fn, n > 0} is a filtration, then Xn := E
[

Y /Fn

]

is an Fn-martingale.

Interpretation: This is the evolution of the best prediction of Y with the information known up

to time n.

Proof:

E
[

Xn+1/Fn

]

= E
[

E
[

Y /Fn+1

]

/Fn

]

= E
[

Y /Fn

]

= Xn .

1.0.9 Example 5. (Dyadic martingales).

It’s a specific situation of Example 4, which helps visualizing what we are doing.

Ω = [0, 1], F = B([0, 1]), P = Unif([0, 1]).

F0 = {∅, Ω}.

F1 = σ{[0, 1/2], [1/2, 1]}.

F2 == σ{[0, 1/4], [1/4, 2/4], [2/4, 3/4], [3/4, 1]}.

Fn == σ{[0, 1/2n], . . . , [(2n − 1)/2n, 1]}.

Take any Y : [0, 1] → R in L1.

Define

Xn(ω) =
1

P (Ik)

∫

Ik

Y (ω) dω = E
[

Y /Fn

]

(ω) ,

if ω ∈ Ik , with Ik a dyadic interval of Fn. So, by Example 4, {(Xn, Fn), n > 0} is a martingale.

[Picture 1]

We will prove later that Xn → Y as n → ∞ almost surely and in L1.

1.0.10 Properties.

0) (Xn, Fn) is a (sub-, super-) martingale ⇒ Xn is a (sub-, super-) martingale w.r.t. its natural
filtration.

1) {(Xn, Fn), n > 0} is a (sub-, super-) martingale ⇔ E
[

Xn+k/Fn

]

is (>, 6) = Xn.

2) A sub- or supermartingale with E[Xn] ≡ E[X0] is a martingale.

3) {(Xn, Fn), n > 0} is a submartingale ⇔ {(−Xn, Fn), n > 0} is a supermartingale.

4) X , Y submartingales w.r.t. Fn, and a, b > 0 ⇒ aX + bY is a submartingale w.r.t. Fn.

5) X , Y submartingales w.r.t. Fn ⇒ max(X, Y ) submartingale.

6) X submartingale; f : R → R convex, increasing; f(X) ∈ L1 ⇒ f(X) is a submartingale.
(For instance, X submartingale ⇒ X+ submartingale.)

7) X martingale; f : R → R convex; f(X) ∈ L1 ⇒ f(X) is a submartingale.
(For instance, if X is a martingale in Lp (p > 1), then Xp is a submartingale.)
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4 Definitions and examples

Proof of 6:

E
[

f(Xn+1)/Fn

]

> f
(

E
[

Xn+1/Fn

]

)

> f(Xn) .

The first inequality is Jensen’s, and the second is due to the submartingale property and the

increasing nature of f .

Proof of 7:

E
[

f(Xn+1)/Fn

]

> f
(

E
[

Xn+1/Fn

]

)

= f(Xn) .

The first inequality is Jensen’s as before, and the equality is the martingale property.
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Convergence theorems 5

2. Convergence theorems

Convergence of sequences of random variables is obviously an important issue in Statistics. We

have for instance the law of large numbers, which is a very satisfactory result in that it shows

that the (theoretic) mean of a random variable arises as a limit of averaging when the number

of observed values tends to infinity. Some statistical schools take this fact as a definition of

expectation, or even as a definition of probability, when the random variables are indicators.

2.1 The basic convergence theorem

2.1.1 Theorem

{(Xn, Fn), n > 0} sub- or supermartingale such that

sup
n

E[|Xn|] < ∞ (“bounded” in L1).

Then,

Xn
a.s.

−−−→
n→∞

` , with ` ∈ L1.

Proof: Let {(Xn, Fn), n > 0} be a supermartingale. We want to see that the set

{ω ∈ Ω : lim
n→∞

Xn(ω) 6= lim
n→∞

Xn(ω)}

has probability zero.

If for some fixed ω, it holds that limn→∞ Xn(ω) 6= limn→∞ Xn(ω), then clearly we can find two

rational numbers a, b with

lim
n→∞

Xn(ω) 6 a < b 6 lim
n→∞

Xn(ω) .

This amounts to say that M b
a(ω) = ∞, where M b

a(ω) is the number of upcrossings of the interval

[a, b]. We want to prove that

P{ω ∈ ω : M b
a(ω) = ∞} = 0

for all a, b ∈ Q, and the countable union of these sets will have probability zero as well.

The following inequalities prove this fact (the first one will be proved later):

E[M b
a] 6

1

b − a
sup

n
E[(Xn−a)−] =

1

b − a
sup

n

[

∫

{Xn6a}

(a−Xn) dP
]

6
1

b − a

(

|a|+sup
n

E[|Xn|]
)

< ∞ .

Draft Version: 2004/4/15. A. Alabert



6 Convergence theorems

And we can easily see that the limit ` is integrable:

E[|`|] = E[ lim
n→∞

|Xn|] 6 lim
n→∞

E[|Xn|] 6 sup
n

E[|Xn|] < ∞ ,

using Fatou lemma.

Notice that we do not claim that the convergence takes place in L1. There are counterexamples.

2.1.2 Lemma

E[M b
a] 6

1

b − a
sup

n
E[(Xn − a)−] .

Proof: Suppose that Xn−Xn−1 are your winnings per euro bet on game n. Consider the following

predictable strategy:

1. Wait until X gets below a.

2. Bet 1 euro until X gets above b.

3. Go to 1.

Formally,

φ1 := 1{X0<a}.

For n > 1, φn := 1{φn−1=1} · 1{Xn−16b} + 1{φn−1=0} · 1{Xn−1<a}

Define Y = φ • X (your total winnings) =
∑n

k=1 φk(Xk − Xk−1).

[Picture 2]

Then,

Yn(ω) > (b − a)
[

M b
a(n)

]

(ω) − (Xn(ω) − a)− . (2.1.1)

Y is a supermartingale (see Example 3 of Chapter 1, and notice that φ is bounded). Moreover

Y0 ≡ 0, so that E[Yn] 6 0.

Taking expectations in (2.1.1),

0 > (b − a) E
[

M b
a(n)

]

− E
[

(Xn − a)−
]

,

⇒ E
[

M b
a(n)

]

6
1

b − a
E

[

(Xn − a)−
]

,

⇒ E
[

M b
a

]

6
1

b − a
sup

n
E

[

(Xn − a)−
]

.

2.2 Uniformly integrable sequences

2.2.1 Def. A family {Xi}i∈I of r.v. is uniformly integrable if

lim
a→∞

sup
i∈I

∫

{|Xi|>a}

|Xi| dP = 0 .

2.2.2 Remarks

1) If one has only one variable, then

lim
a→∞

∫

{|X|>a}

|X | dP = 0 (2.2.1)
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Convergence theorems 7

is a necessary and sufficient condition for integrability. The necessity is obvious. It is sufficient
because, taking a such that

∫

{|X|>a} |X | dP 6 1, then

E[|X |] =

∫

{|X|>a}

|X | dP +

∫

{|X|<a}

|X | dP 6 1 + a .

In the definition of u.i., we are saying that

∀ε > 0, ∃a :

∫

{|Xi|>a}

|Xi| dP < ε ,

and that a can be taken to be the same for all variables in the family.

2) If X ∈ L1, then a stronger condition holds:

∀ε > 0, ∃δ > 0 : ∀A ∈ F, P (A) < δ ⇒

∫

A

|X | dP < ε .

(2.2.1) can be deduced from this using Chebyshev inequality: since P{|X | > a} 6
1
a E[|X |] <

∞, we can choose a such that P{|X | > a} < δ, and we apply this statement to A = P{|X | >
a} < δ.

2.2.3 Prop.

1. {Xi}i∈I u.i. ⇒ supi∈I E[|Xi|] < ∞ (bounded in L1).

2. supi∈I E[|Xi|p] < ∞ (for some p > 1) ⇒ {Xi}i∈I u.i.

3. |Xi| 6 Y ∈ L1 ⇒ {Xi}i∈I u.i.

The converse statements are false.

Proof:

1. Same argument as in Remark 2.2.2 (1) above.

2.
∫

{|Xi|>a}

|Xi| dP 6 a1−p

∫

{|Xi|>a}

|Xi|
p dP 6 a1−p sup

i∈I
E[|Xi|

p] .

The first inequality comes from

x > a > 0 ⇒ xp−1
> ap−1 ⇒ x 6 xpa1−p .

3.
∫

{|Xi|>a}

|Xi| dP 6

∫

{Y >a}

Y dP −−−→
a→∞

0 ,

by Remark 2.2.2.

2.2.4 Theorem (Extension of the Dominated Convergence Theorem)

Xn
Pr

−−−→
n→∞

X

{Xn, n > 0} u.i.

}

⇔ Xn
L1

−−−→
n→∞

X ⇒

∫

lim Xn 6 lim

∫

Xn 6 lim

∫

Xn 6

∫

lim Xn .

Additional remarks about the basic convergence Theorem 2.1.1:

• The basic convergence theorem looks surprising. Two conditions that look like very weak give
a.s. convergence. Think of it as an stochastic analogue of

{xn}n bounded
{xn}n monotonous

}

⇒ {xn}n convergent

• In fact, we know that for real sequences

{xn}n bounded from above
{xn}n increasing

}

⇒ {xn}n convergent
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8 Convergence theorems

so for submartingales we may expect that supn E[X+
n ] < ∞ must be enough. Indeed,

|Xn| = X+
n + X−

n = 2X+
n + X−

n − X+
n = 2X+

n − Xn , ⇒

E[|Xn|] = 2 E[X+
n ] − E[Xn] 6 2 E[X+

n ] − E[X0] .

A similar statement holds for supermartingales.

2.2.5 Example of a uniformly integrable martingale Recall Example 4:

{Fn, n > 0} filtration
Y ∈ L1

}

⇒ {
(

E
[

Y /Fn

])

} is a martingale

Let us prove that it is uniformly integrable:

Fix ε > 0.

Take δ > 0 such that

∀A ∈ F, P (A) < δ ⇒

∫

A

|Y | dP < ε .

Such a δ exists because Y is u.i. (see Remark 2.2.2 (2)).

Take a > 0 such that
1

a
E[|Y |] < δ .

Applying Chebyshev and Jensen inequalities,

P
{

∣

∣ E
[

Y /Fn

]∣

∣ > a
}

6
1

a
E

[

∣

∣E
[

Y /Fn

]∣

∣

]

6
1

a
E

[

E
[

|Y |/Fn

]

]

=
1

a
E[|Y |] < δ .

Now, applying Jensen inequality and the definition of conditional expectation,

∫

{
∣

∣E

[

Y /Fn

]
∣

∣>a}

∣

∣E
[

Y /Fn

]∣

∣ dP 6

∫

{
∣

∣E

[

Y /Fn

]
∣

∣>a}

E
[

|Y |/Fn

]

dP =

∫

{
∣

∣E

[

Y /Fn

]
∣

∣>a}

|Y | dP < ε .

Finally, take supn and that’s it.

2.2.6 Remark

It Y ∈ L1, and {Fi}i∈I is an arbitrary family of sub-σ-fields of F, then
{

E
[

Y /Fi

]

, i ∈ I
}

is an

u.i. family of r.v. (the proof is exactly the same).

2.2.7 Remark

Not every martingale is u.i.!

2.3 Convergence of uniformly integrable martingales

2.3.1 Theorem

{Fn, n > 0} filtration, F∞ = σ{∪
n

Fn}

Y ∈ L1

}

⇒ Xn := E
[

Y /Fn

] a.s., L1

−−−−→
n→∞

E
[

Y /F∞

]

.

(We know from 2.2.5 that X is a u.i. martingale).

Proof: We know from Proposition 2.2.3 (1) that X u.i. ⇒ supn∈N E[|Xn|] < ∞.
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We can apply Theorem 2.1.1 (the “basic theorem”):

Xn
a.s.

−−−→
n→∞

` .

By Theorem 2.2.4, the convergence is also in L1. We therefore have to show that ` = E
[

Y /F∞

]

:

Take A ∈ Fn. Then:

∫

A

Y dP =

∫

A

E
[

Y /Fn

]

=

∫

A

Xn dP −−−→
n→∞

∫

A

` dP ,

because of L1-convergence. That means

∫

A

Y dP =

∫

A

` dP ,

for all A ∈ Fn, ∀n. By a monotone class argument, it is true also for A ∈ F∞. On the other hand,

Xn is F∞-measurable ⇒ ` is F∞-measurable.

Finally,
∫

A

Y dP =

∫

A

` dP

` is F∞-measurable.

}

⇒ ` = E
[

Y /F∞

]

.

2.3.2 Theorem

{Fn, n > 0} decreasing sequence of σ-fields, F∞ = ∩
n

Fn

Y ∈ L1

}

⇒ Xn := E
[

Y /Fn

] a.s., L1

−−−−→
n→∞

E
[

Y /F∞

]

.

2.3.3 Theorem {(Xn, Fn), n > 0} u.i. (sub-, super-) martingale. Then:

1.

Xn
a.s., L1

−−−−→
n→∞

`

2. Denoting F∞ = σ{∪
n

Fn} and X∞ = `, then

{(Xn, Fn), n = 0, . . . ,∞} is a (sub-, super-) martingale.

Proof: The proof of 1. is identical to the corresponding part of Theorem 2.3.1. Let’s prove 2. in

the submartingale case:

We know from property 1 in 1.0.10 that E
[

Xn+k/Fn

]

> Xn. That means, if A ∈ Fn,

∫

A

Xn+k >

∫

A

Xn .

Letting k → ∞, and by L1-convergence,

∫

A

E
[

X∞/Fn

]

=

∫

A

X∞ >

∫

A

Xn .

Since A ∈ Fn is arbitrary, this implies that

E
[

X∞/Fn

]

> Xn ,
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10 Convergence theorems

which gives that {(Xn, Fn), n = 0, . . . ,∞} is a submartingale.

2.3.4 Def.

If F∞ ⊃ ∪
n

Fn and {(Xn, Fn), n = 0, . . . ,∞} is a (sub-, super-) martingale, then the (sub-, super-)

martingale is said to have a last element, or that is closed.

A consequence of Theorem 2.3.3 in the martingale case:

X = {Xn, Fn), n > 0} martingale.

X u.i. ⇒ X = {Xn, Fn), n = 0, . . . , X∞} is a martingale (where X∞ = (a.s., L1) − lim Xn)) ⇒

E
[

X∞/Fn

]

= Xn ⇒ X is u.i. (see Example 2.2.5).

So, we obtain the following

2.3.5 Corollary

X = {Xn, Fn), n > 0} is a u.i. martingale iff ∃Y ∈ L1 such that Xn = E
[

Y /Fn

]

. And in that

case,

Xn
a.s., L1

−−−−→
n→∞

E
[

Y /F∞

]

.

Moreover, if we require Y to be F∞-measurable, then it is unique (coincides with X∞ (the limit)

a.s.)

2.3.6 Remark

Closed 6⇒ u.i. for sub- or supermartingales.
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3. Applications

3.1 Kolmogorov 0-1 law

{Xn, n > 0} independent r.v.

Gn := σ{Xn+1, Xn+2, . . . }, G = ∩
n

Gn.

Then,

∀A ∈ G, P (A) = 0 or 1 .

Proof:

Fn := σ{X1, . . . , Xn}, F∞ := σ{∪
n

Fn}.

Y = 1A.

Y ∈ L1, obviously, so

Y = E
[

Y /F∞

]

= lim
n→∞

E
[

Y /Fn

]

a.s.

But Y is Gn-measurable, and Gn and Fn are independent. Therefore,

E
[

Y /Fn

]

= E[Y ] = P (A)

and we obtain

Y = P (A) a.s. ⇒ Y = 0 or 1 a.s.

3.2 Strong law of large numbers

{Xn, n > 1} i.i.d.r.v. in L1, with expectation m ∈ R

Sn := X1 + · · ·Xn

}

⇒
Sn

n

a.s., L1

−−−−→
n→∞

m .

(Note: Not only a.s. convergence, but also in L1).

Proof:

Hn := σ{Sn, Sn+1, Sn+2, . . . }, H∞ = ∩
n

Hn.
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Sn

n
= E

[

X1/Hn

] a.s., L1

−−−−−→
n→∞

E
[

X1/H∞

]

The first equality is left as exercise, but it is intuitively obvious. The convergence comes from

Theorem 2.3.2.

This gives the existence of a limit. We want to see that this limit is the constant m.

lim
n→∞

Sn

n
= lim

n→∞

(X1 + · · · + Xk−1

n
+

Xk + · · · + Xn

n

)

= lim
n→∞

Xk + · · · + Xn

n
,

which is measurable w.r.t. Gk := σ{Xk, Xk+1, . . . }, ∀k. Therefore,

lim
n→∞

Sn

n
is ∩

k
Gk-measurable.

By Kolmogorov 0-1 law, this σ-field has only events of probability 0 or 1, and we conclude that

the limit is a constant. Which constant? That’s easy: From the L1-convergence,

E
[

lim
n

Sn

n

]

= lim
n

E
[Sn

n

]

= lim
n

1

n
E

[

X1 + · · · + Xn

]

=
nm

n
= m .

3.3 Extinction of family names

Assume that family names are transmitted by men. We are interested in the evolution of the num-

ber of men with a given family name. Assume the time evolves in a discrete fashion (generations),

so we are considering a process {Xn, n > 0}.

Assume:

• X0 = 1.

• If Xn = k, then Xn+1 = Y1 + · · ·+Yk, where Y ’s are i.i.d.r.v. with some law P{Yi = r} = pr,
r ∈ N, and represent the number of male offspring of men i = 1, . . . , k.

This process is clearly a Markov chain, by construction.

Set m := E[Yi]. Assume 0 < m < ∞. Then:

{Xn

mn
, n > 0

}

is a martingale (w.r.t. its natural filtration).

Indeed:

E
[Xn+1

mn+1 /X0 = i0, . . . , Xn = in

]

=
1

mn+1
E

[

Xn+1/Xn = in
]

=
1

mn+1
E

[

Y1 + · · · + Yin

]

=
in · m

mn+1
=

in
mn

,

⇒ E
[Xn+1

mn+1 /X0, . . . , Xn

]

=
Xn

mn
.

Now we will consider different cases and subcases:

• Case 1: m < 1

E
[

Xn+1/Xn = k
]

= k · E[Yi] = k · m , ⇒ E
[

Xn+1/Xn

]

= m · Xn ,

⇒ E[Xn+1] = m · E[Xn] = · · · = mn ,

⇒ E
[

∞
∑

n=0

Xn

]

=

∞
∑

n=0

mn < ∞ ,

⇒ Xn
a.s.

−−−→
n→∞

0 .
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But Xn are integer valued. So, Xn(ω) = 0 for some n onwards. Extinction!

• Case 2: m > 1

Define

g(s) =
∞
∑

k=0

pksk , 0 6 s 6 1 .

Then:
g(0) = p0

g(1) = 1

g′(0) = p1 < 1

g′(1) = m > 1

Let r be the root of g(s) = s in [0, 1).

- Case 2.1: r > 0

The process {rXn , n > 0} is a martingale (exercise; it’s very similar to Xn/mn).

It is a positive martingale. But any positive (super-)martingale converges almost surely, because

supn E[X−
n ] = 0 < ∞, which is equivalent (for supermartingales) to supn E[|Xn|] < ∞.

This implies that the process in the exponent {Xn} converges a.s., and, since it takes values on

N, we must have, either

Xn(ω) = K from some n0 onwards, for some K ∈ N

or

Xn(ω) −→ ∞ .

Let us prove that K can only be zero: Assume K > 1. Then, using the Markov property,

P{Xn = K for all n > n0} = P{Xn0
= K} · lim

j→∞
P

{

Xn+1 = K/Xn = K
}j

= 0 ,

the last equality coming from the fact that the conditional probability is less than 1, because we

are assuming that p0 > 0.

Therefore, we conclude that

Xn
a.s.

−−−→
n→∞

X∞ ≡ 0 or ∞ .

Now, using that Xn is a martingale and the Dominated Convergence Theorem,

E[rX0 ] = E[rXn ] −→ E[rX∞ ] = P{X∞ = 0} .

Therefore, the probability of extinction is exactly r. With probability 1 − r we have explosion of

the family name.

- Case 2.2: r = 0 (⇔ p0 = 0)

p0 = 0 ⇒ Xn+1 > Xn > 1 ⇒ Xn increases to a limit X∞ which is never 0.

For any K ∈ N, K > 1,

P{Xn = K for all n > n0} = P{Xn0
= K} · lim

j→∞
P

{

Xn+1 = K/Xn = K
}j

=

{

1, if p1 = 1 (⇒ K = 1) .

0, if p1 < 1 (reasoning as before) .

The first is the trivial case in which each father has exactly one son (no extinction, no explosion).

In the second case, P{X∞ = ∞} = 1, we have explosion.

• Case 3: m = 1

We know that
{Xn

mn
, n > 0

}

is a positive martingale. Therefore it converges a.s. to a limit

X∞ ∈ L1.

With the same analysis as in case 2, we find that Xn cannot converge to any constant > 1. Hence,

Xn → 0, a.s. Extinction.
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