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Definitions and examples 1

1.  Definitions and examples

(Q, 3§, P) probability space.
{&n, n = 0} increasing sequence of sub-o-fields of § =: Filtration.

A filtration models the evolution of the information: A € §,, means that at time n we can tell if
the event A has ocurred or not.

1.0.1 Def. X ={X,, n >0} is a martingale w.r.t. {§,, n > 0} if, Vn,
1) X, €L
2) X, is §n-measurable.
3) BE[Xnt1/3,] =X o

The martingale property is a property of the law of the process, just like the Markov dependence,
the independence of the variables of the process, etc.

Notation: {(Xy,,&n), n = 0}.

1.0.2 Def. {O‘{Xl, o Xnt, nz O} is the natural filtration of the process X.

{X,, n > 0} is a martingale if satisfies 1,2 of the previous definition and E [XnJrl/XO, o ;Xn] =
X, o

1.0.3 Def. X ={X,,, n > 0} is a submartingale (resp. supermartingale) w.r.t. {§,, n > 0} if, Vn,
1) X, eL.
2) X, is §n-measurable.
3) E [XnJrl/gn} > X, (resp. E [XnJrl/gn} >X,). o

1.0.4 First (obvious) property.
1) X submartingale = E[X, 1] > E[X,,].
2) X supermartingale = E[X,,;
3) X martingale = E[X,,11] = E

1.0.5 Example 1.
a) X, =Xo = {(Xn,8n), n >0} is a martingale.
b) Xnt1 = Xn = {(Xn,§n)s 0
¢) Xnt1 < Xn = {(Xn,8n), n

, 0} is a submartingale.

>
> 0} is a supermartingale.

)
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2 Definitions and examples

(assuming properties 1,2 satisfied).

The proof is very easy. For instance,

Xn+1 2 X” =E [Xn_i_l/gn} > E [Xn/gn] = X"

1.0.6 Example 2. If
a) {Y,, n >0} indep. r.v. in L', centred.
b) Xn = ZZ:O Y.
¢) §n=0{Yo,..., Y0}

then {(X,,&xn), n > 0} is a martingale.
Proof: .
n+1
E[Xnt1/5,] = E[Zito Ye/g,] = 3 Yi + E [Yat1/5,] = Xo + E[Yosa].
k=0

Note that if E[Y,,] > 0, ¥n, we obtain a submartingale; if E[Y,,] < 0, Vn, we obtain a supermartin-
gale.

1.0.7 Example 3. This is a particular case of Example 2, with additional comments.

Take
v — { +1, with prob. 1/2

—1, with prob. 1/2
and define X,, = zg + Y_,_; Y%. This process models the evolution of your fortune when you are

playing a game “heads/tails” or roulette “black/red”, with initial fortune xg.

By Example 2, this is a martingale. The property

E [Xn+1/y1’ LY, =Xa

says that, in each play, we don’t expect to win or lose anything.

Let us elaborate on this example. What about intelligent strategies for winning? For example:

e n=1: We bet 1 euro.
If we won at time n = 1, we bet 1 euro.
o n=2:

If we lost at time n = 1, we bet 2 euros.
[ ]

If we won at time n — 1, we bet 1 euro.
e At step n, . i
If we lost at time n — 1, we double the previous stake.

Our “strategy” is a process ¢, defined by ¢; = 1 and
p 1, ifY,.1=1
" 2¢n—1; if Y,o1=-1
Note that, after losing n times in a row, and then winning once, our net profit will always be

_20_21_22_”._277,—1_’_271:17

but if we abandon the game in the middle of a losing run, we can lose a lot of money.

Notice also that ¢, is a §,—1 measurable r.v. A process ¢ = {¢,, n > 1} with this property is
said to be predictable w.r.t. {§,, n > 0}.

In general, for any predictable strategy ¢, and assuming that the profit in each play per unit bet
is +1 or -1, then the quantity ¢,Y,, is the net profit in game n, and the total profit after n games
is

Z¢kYk = Z¢k(Xk — Xp—1) = (@ X)p.
=1 =1
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Definitions and examples 3

This process is called the stochastic integral of ¢ w.r.t. X. (The name comes from an analogous
concept in continuous time, which is not so easy to define).

In turns out that the stochastic integral ¢ @ X of a predictable process w.r.t. a §,-martingale is
again a §,-martingale, provided that its variables belong to L!. Indeed:

E[(¢eX)n+1/5.] = zn: Ok (X), — Xpo1) + E [Pn41(Xng1 = Xn) /5 ]

k=1
¢°X)n + ¢ont1-E [X""'l _X"/Sn} = (¢.X)" ’

Notice that a similar statement can be stated for sub- and supermartingales: If X is a sub- (resp.
super-) martingale, ¢ is predictable and ¢ > 0, then ¢ e X is a sub- (resp. super-) martingale.
(We will use this fact in Chapter 2.)

1.0.8 Example 4. IfY € L' and {F,, n > 0} is a filtration, then X,, := E [Y/S:n} is an §,-martingale.

Interpretation: This is the evolution of the best prediction of Y with the information known up
to time n.

Proof:
E[Xnt+1/5 | =E[E [Y/Snﬂ]/%n] =E[Y/5,] =Xu.

1.0.9 Example 5. (Dyadic martingales).
It’s a specific situation of Example 4, which helps visualizing what we are doing.
Q=10,1], § = B([0,1]), P = Unif([0, 1]).
So = {0}
$1 = o{[0,1/2], [1/2,1]}.
S22 ==0o{[0,1/4], [1/4,2/4], [2/4,3/4], [3/4,1]}.

Sn ==0{[0,1/2"],...,[(2" —1)/2™,1]}.
Take any Y:[0,1] — R in L.
Define
Xul) = py || Yo =B /5]

if w € Iy, with I} a dyadic interval of §,. So, by Example 4, {(X,,$»), n > 0} is a martingale.
[Picture 1]

We will prove later that X,, — Y as n — oo almost surely and in L*.

1.0.10 Properties.

0) (Xn,8n) is a (sub-, super-) martingale = X,, is a (sub-, super-) martingale w.r.t. its natural
filtration.

{(X,8n), n =0} is a (sub-, super-) martingale < E [Xntk/g, | is (>, <) = X
A sub- or supermartingale with E[X,,] = E[X(] is a martingale.

[N

{(Xn,8n), n =0} is a submartingale < {(—X,, ), n > 0} is a supermartingale.

=~ W
o o o o

X, Y submartingales w.r.t. §,, and a,b > 0 = aX + bY is a submartingale w.r.t. §,.

Ot

X, Y submartingales w.r.t. §, = max(X,Y’) submartingale.

=)

X submartingale; f:R — R convex, increasing; f(X) € L' = f(X) is a submartingale.
(For instance, X submartingale = X submartingale.)

7) X martingale; f:R — R convex; f(X) € L' = f(X) is a submartingale.
(For instance, if X is a martingale in L? (p > 1), then X? is a submartingale.)
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Definitions and examples

Proof of 6:
B[/(Xne)/,] > F(B[Xmr1/5,]) > £(X.)

The first inequality is Jensen’s, and the second is due to the submartingale property and the
increasing nature of f.

Proof of 7:
B[f(Xun)/z,] > £(B[Xnt1/5,]) = £(Xa) -

The first inequality is Jensen’s as before, and the equality is the martingale property.
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Convergence theorems 5

2.

2.1

Convergence theorems

Convergence of sequences of random variables is obviously an important issue in Statistics. We
have for instance the law of large numbers, which is a very satisfactory result in that it shows
that the (theoretic) mean of a random variable arises as a limit of averaging when the number
of observed values tends to infinity. Some statistical schools take this fact as a definition of
expectation, or even as a definition of probability, when the random variables are indicators.

The basic convergence theorem

2.1.1 Theorem

{(Xn,8n), n =0} sub- or supermartingale such that

supE[|X,]] < 0o (“bounded” in L').

Then,
Xn a.s. E

. with £ e L.

Proof: Let {(X,,8n), n = 0} be a supermartingale. We want to see that the set
{weQ: lim X,(w)# lim X,(w)}
has probability zero.
If for some fixed w, it holds that lim;, . X, (w) # lim, X, (w), then clearly we can find two

rational numbers a, b with

lim X,(w)<a<b< lim X,(w) .

This amounts to say that M?(w) = oo, where M?(w) is the number of upcrossings of the interval
[a,b]. We want to prove that
Pluocw: M(w)=00} =0

for all a,b € Q, and the countable union of these sets will have probability zero as well.
The following inequalities prove this fact (the first one will be proved later):

E[MY) < 5 L cupB[(X,—a)] = - L up [/{X <a}(ann)dP} < L(|a|+s%pE[|Xn|]) <.

—a n —a n b—a
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6 Convergence theorems

And we can easily see that the limit ¢ is integrable:

E[[(]] = E[ lim [X,|] < lim E[|X,|] <supE[[Xy[] < oo,

n—oo

using Fatou lemma.

Notice that we do not claim that the convergence takes place in L!. There are counterexamples.

2.1.2 Lemma

E[M}] < sup E[(X,, —a)7] .

1
b—a

Proof: Suppose that X,, — X,,_1 are your winnings per euro bet on game n. Consider the following
predictable strategy:

1. Wait until X gets below a.
2. Bet 1 euro until X gets above b.

3. Gotol.
Formally,
¢1:= 1ixy<a)-

For n>1, ¢n =1y, =1} " Lixooa<ty + 1gu1=0} " LiXaoi<a}
Define Y = ¢ X (your total winnings) = >7_; ¢x(Xp — Xi—1).
[Picture 2]
Then,
Vo) > (b= a) [ME()] () — (Xn(w) — ) . (2.11)

Y is a supermartingale (see Example 3 of Chapter 1, and notice that ¢ is bounded). Moreover
Yy =0, so that E[Y,,] < 0.

Taking expectations in (2.1.1),

0> (b—a)E[M(n)] —E[(Xn—a)],

= B[M!n)] < B [(X,—a)]

:E[M(ﬂ < supE [(Xn —a)7] .

b—a n

2.2 Uniformly integrable sequences

2.2.1 Def. A family {X,}ics of r.v. is uniformly integrable if

lim sup/ |X;|dP =0.
a—00 el J{|Xi|2a}

2.2.2 Remarks

1) If one has only one variable, then

lim |X|dP =0 (2.2.1)

o0 J{X|2a}
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Convergence theorems 7

is a necessary and sufficient condition for integrability. The necessity is obvious. It is sufficient
because, taking a such that f{|X‘>a} |X|dP < 1, then

E[|X|]:/ |X|dP+/ | X|dP <1+a.
{IX|>a} {|X|<a}

In the definition of u.i., we are saying that
Ve > 0, ﬂa:/ | X;|dP < e,
{IXi|za}

and that a can be taken to be the same for all variables in the family.

2) If X € L, then a stronger condition holds:
Ve >0, 30 >0: VA€eF, P(A)<6:>/ |X|dP < ¢ .
A

(2.2.1) can be deduced from this using Chebyshev inequality: since P{|X| > a} < L E[|X]] <
00, we can choose a such that P{|X| > a} < d, and we apply this statement to A = P{|X| >
a} <4.

2.2.3 Prop.
L. {Xi}ier ui. = sup,c; E[|X;]] < oo (bounded in L1).
2. sup,c; E[|X;|P] < oo (for some p > 1) = {X;}ier ui.
3. |Xi| <Y € L' = {Xi}ier uid.

The converse statements are false.

Proof:
1. Same argument as in Remark 2.2.2 (1) above.
2.
/ | X;|dP < al_p/ |X;[P dP < a' P sup B[| X;|?] .
{IXi|Za} {|X;|>a} i€l

The first inequality comes from

-1 -1 1—
r>a>0 = 27 > d” = x<2Pa 7P .

/ |Xi|dP</ YdP —— 0,
{1X:|>a} {(Y>a} a—00

by Remark 2.2.2.

2.2.4 Theorem (Extension of the Dominated Convergence Theorem)

n—oo

& X, 21X = h_angh_m/Xngﬁ/Xng/EXn.
{X,, n >0} ul

n—oo

X, . X }

Additional remarks about the basic convergence Theorem 2.1.1:

e The basic convergence theorem looks surprising. Two conditions that look like very weak give
a.s. convergence. Think of it as an stochastic analogue of

{zn}n bounded

{Zn}n mOnotonous} = {2y }n convergent
e In fact, we know that for real sequences

{z;}n, bounded from above

{2} increasing } = {x,}n convergent
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8 Convergence theorems

so for submartingales we may expect that sup,, E[X,I] < co must be enough. Indeed,

Xo| =X+ X, =2X+ X, - X =2X} - X, , =
E[|X,[] = 2E[X,] - E[X,] < 2E[X.]] - E[X] .

A similar statement holds for supermartingales.

2.2.5 Example of a uniformly integrable martingale Recall Example 4:

= {(E [Y/gn})} is a martingale

{&n, n > 0} filtration
Y eLl

Let us prove that it is uniformly integrable:
Fix e > 0.

Take § > 0 such that
VA €3, P(A)<6:>/|Y|dP<5.
A

Such a § exists because Y is u.i. (see Remark 2.2.2 (2)).

Take a > 0 such that )
—E[|Y|]<d.
a

Applying Chebyshev and Jensen inequalities,

P{EY /3]l >0} <E[[E /5]l < SE[EV/g,)] = 2 BOV] <5

Now, applying Jensen inequality and the definition of conditional expectation,

E[Y dP < E[lY] dP = Y|dP < ¢ .
/{IE[Y/%H»}} /sl /{IE[Y/&J\»} /s /{\E[Y/sn}lw}" ©

Finally, take sup,, and that’s it.

2.2.6 Remark
It Y € L', and {F;}ics is an arbitrary family of sub-o-fields of §, then {E [Y/&']’ i€ I} is an

w.i. family of r.v. (the proof is exactly the same).

2.2.7 Remark

Not every martingale is u.i.!
2.3 Convergence of uniformly integrable martingales

2.3.1 Theorem

= X, =E[Y/g] S BV ]

n—oo

{Fn, n >0} filtration, Foo = c{UFn} }
YelL!

(We know from 2.2.5 that X is a u.i. martingale).

Proof: We know from Proposition 2.2.3 (1) that X w.i. = sup, oy E[|X,|] < co.
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Convergence theorems 9

We can apply Theorem 2.1.1 (the “basic theorem”):

X, —— 1.

By Theorem 2.2.4, the convergence is also in L'. We therefore have to show that { = E [Y/ goo}:
Take A € §,,. Then:

/YdP:/E[Y/gn] :/XndP—> (dp,
A A A

n—oo A

because of L'-convergence. That means

/YdP:/EdP,
A A

for all A € §,,, Vn. By a monotone class argument, it is true also for A € §o,. On the other hand,
X, 18 §o-measurable = / is Fo-measurable.

/AYdP/AedP} LB,

{ is §oo-measurable.

Finally,

2.3.2 Theorem

> X, =E[V/g,] 2B [V/5,] .

n—oo

{Fn, n = 0} decreasing sequence of o-fields, Foo = NFn }
YelL!

2.3.3 Theorem {(X,,%,), n > 0} u.i. (sub-, super-) martingale. Then:
1.

a.s., Lt
X, ———— ¢

n—oo

2. Denoting §o = 0{UF,} and X = ¢, then

{(Xn,8n), n=0,...,00} is a (sub-, super-) martingale.

Proof: The proof of 1. is identical to the corresponding part of Theorem 2.3.1. Let’s prove 2. in
the submartingale case:

We know from property 1 in 1.0.10 that E [Xn+k/F | > X,,. That means, if A € §,,

A A

Letting £ — oo, and by L'-convergence,

/AE[Xoo/gn]:/AXoo>/AXn.

Since A € §, is arbitrary, this implies that
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10 Convergence theorems

which gives that {(X,,8n), n=0,...,00} is a submartingale.

2.3.4 Def.
If Foo D UFn and {(Xp,Sn), n=0,...,00} is a (sub-, super-) martingale, then the (sub-, super-)

martingale is said to have a last element, or that is closed. g

A consequence of Theorem 2.3.3 in the martingale case:
X ={X,,%n), n > 0} martingale.

X ui. = X ={X,,,8.), n=0,..., X} is a martingale (where X, = (a.s.,L!) — lim X,,)) =
E [Xoo/3,] = Xn = X is ui. (see Example 2.2.5).

So, we obtain the following

2.3.5 Corollary

X = {X,,,§n), n >0} is a wi. martingale iff 3V € L' such that X,, = E[Y /5 ]. And in that
case,

X B )

n—oo

Moreover, if we require Y to be Fo.-measurable, then it is unique (coincides with X, (the limit)
a.s.)

2.3.6 Remark

Closed # u.i. for sub- or supermartingales. g
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3. Applications

3.1 Kolmogorov 0-1 law

{Xn, n > 0} independent r.v.
B, = O'{Xn+1; Xny2, ... }, &=N3G,.

Then,
VAe &, P(A)=0or1.
Proof:
Sn = U{Xla v 7Xn}; Soo = O—{%Sn}
Y =14.

Y € L', obviously, so
Y=E[Y/z ]=lim E[Y/5 ] as.

But Y is &,,-measurable, and &,, and §, are independent. Therefore,
E[Y/3,] = ElY] = P(4)

and we obtain
Y=P(A)as. = Y=0orlas.

3.2 Strong law of large numbers

{Xp, n>1}iidrv. in L', with expectation m € R
Spi= X1+ X,

(Note: Not only a.s. convergence, but also in L1).

Proof:
N = J{Sn7 Sntt1, Sng2y. .- }7 Hoo = Qf)”
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Applications

Sn a.s., L'
—=E[%1/s,] ﬁ’ E[X1/5,]

The first equality is left as exercise, but it is intuitively obvious. The convergence comes from
Theorem 2.3.2.

This gives the existence of a limit. We want to see that this limit is the constant m.

. n
lim — = lim
n—oo N n—oo

which is measurable w.r.t. & := 0{ X, Xgy1,...}, Vk. Therefore,

(&+m+m4+m+m+m)

n n

S,
lim == is N &j-measurable.
n—oo N k
By Kolmogorov 0-1 law, this o-field has only events of probability 0 or 1, and we conclude that
the limit is a constant. Which constant? That’s easy: From the L'-convergence,
Sn

S, 1
E[hm—} :limE{—} —lm=E[X; 4+ X, = 2 =
n n n n n n

3.3 Extinction of family names

Assume that family names are transmitted by men. We are interested in the evolution of the num-
ber of men with a given family name. Assume the time evolves in a discrete fashion (generations),
so we are considering a process {X,, n > 0}.

Assume:
e Xy=1.
o If X, =k, then X,,41 = Y1+ + Y%, where Y’s are i.i.d.r.v. with some law P{Y; =r} = p,,
r € N, and represent the number of male offspring of men ¢ =1,... k.

This process is clearly a Markov chain, by construction.

Set m := E[Y;]. Assume 0 < m < oo. Then:

X,
{—" n > 0} is a martingale (w.r.t. its natural filtration).

—
Indeed: Yo .
E {W/XO T e zn} = —m B[Xr/x, =)
Zﬁ%Em+“HMZ%£Z%p
éE[iZE/XO,...,Xn} = % SO

Now we will consider different cases and subcases:

e Case 1: m< 1

E[Xn+1/Xn:k] =k-EYi]=k-m, = E[XnJrl/Xn} =m-X, ,
= EXpu]=m EX,]=-=m",

= E[an} :imn<oo,
n=0 n=0

= X, —250.

n—oo
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But X, are integer valued. So, X, (w) = 0 for some n onwards. Extinction!

e Case 2: m>1

Define o
g(s)=> _ms", 0<s<1
k=0
Then:
9(0) = po
g(1)=1
g0)=p <1
gy =m>1

Let r be the root of g(s) = s in [0,1).
- Case 2.1: 1 >0
The process {r*", n > 0} is a martingale (exercise; it’s very similar to X,,/m™).
It is a positive martingale. But any positive (super-)martingale converges almost surely, because
sup,, E[X,,] = 0 < oo, which is equivalent (for supermartingales) to sup,, E[|X,|] < occ.
This implies that the process in the exponent {X,,} converges a.s., and, since it takes values on
N, we must have, either
Xp(w) = K from some ng onwards, for some K € N
or
Xn(w) — 0 .
Let us prove that K can only be zero: Assume K > 1. Then, using the Markov property,
P{X, =K foralln>no} = P{X,, = K} - lim P{Xnn1=K/x _ gV =0,
the last equality coming from the fact that the conditional probability is less than 1, because we
are assuming that po > 0.

Therefore, we conclude that
X, 22 Xoo=0o0r oo .
Now, using that X, is a martingale and the Dominated Convergence Theorem,
E[r¥] = E[r¥"] — E[r¥=] = P{X, =0} .
Therefore, the probability of extinction is exactly . With probability 1 — r we have explosion of
the family name.

- Case 2.2: r=0 (&py=0)

po=0=X,4+1 =2 X,, > 1= X, increases to a limit X, which is never 0.
Forany K e N, K > 1,
P{X, =K foralln>no} = P{X,, = K} lim P{Xns1=K/x _ g}
j—oo
1, ifpr=1(=K=1).
~ 10, ifp; <1 (reasoning as before) .

The first is the trivial case in which each father has exactly one son (no extinction, no explosion).
In the second case, P{X. = oo} = 1, we have explosion.

e Case 3: m=1

X

We know that {—Z, n = 0} is a positive martingale. Therefore it converges a.s. to a limit
m

X € L.

With the same analysis as in case 2, we find that X,, cannot converge to any constant > 1. Hence,
X, — 0, a.s. Extinction.
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