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Abstract

We study the uniqueness in the path-by-path sense (i.e. ω-by-ω) of solutions to stochastic differential 
equations with additive noise and non-Lipschitz autonomous drift. The notion of path-by-path solution in-
volves considering a collection of ordinary differential equations and is, in principle, weaker than that of a 
strong solution, since no adaptability condition is required. We use results and ideas from the classical the-
ory of ode’s, together with probabilistic tools like Girsanov’s theorem, to establish the uniqueness property 
for some classes of noises, including Brownian motion, and some drift functions not necessarily bounded 
nor continuous.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Consider the stochastic differential equation (sde)

Xt = x0 +
t∫

0

b(Xs) ds + Wt , t ∈ [0, T ] , (1)
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where W is some noise process with continuous paths. That means, W is a random variable 
defined on some complete probability space (�, F, P) with values in the space C([0, T ]) of 
real continuous functions on [0, T ], endowed with its Borel σ -field. A canonical example is 
Brownian motion. The function b : R → R is supposed to be measurable at least, and x0 is a 
given real number. We refer the reader to Karatzas and Shreve [14] for the concepts on stochastic 
processes that we use in this paper.

We recall that a strong solution of the equation above is a stochastic process X, with mea-
surable paths, adapted to the filtration generated by W , and such that, for every t , the random 
variable Xt − x0 − ∫ t

0 b(Xs) ds is well defined and is equal to Wt almost surely. In fact, the 
form of the equation implies that X must have also continuous paths, hence the processes 
{Xt − x0 − ∫ t

0 b(Xs) ds, t ∈ [0, T ]} and {Wt, t ∈ [0, T ]} will be indistinguishable, i.e. they 
will be equal as C([0, T ])-valued random variables. It makes sense also to speak about local 
solutions, where the process X exists only up to some (random) time τ .

Uniqueness of solutions for the sde’s (1) (sometimes called strong uniqueness or pathwise 
uniqueness) means that given a probability space, a process with the law of W defined on it, 
and the initial condition x0, two strong solutions are indistinguishable. The classical existence 
and uniqueness result for sde of the type (1) is the following (see, e.g. [14, Theorems 5.2.5 and 
5.2.9]):

Theorem 1.1. If b is a Lipschitz function, then there is a unique strong solution to (1).

Existence and uniqueness of a strong solution can be proved under much weaker conditions 
on b, at least for the case of a Brownian motion W . Indeed, it was shown by Veretennikov [20]
that it is enough that b be bounded and measurable, also under some non-additive noises. This 
type of result was extended to parabolic differential equations in one space dimension driven 
by a space–time white noise by Bally, Gyöngy and Pardoux [3], Gyöngy [10] and Alabert and 
Gyöngy [2]. In the latter, as well as in Gyöngy and Martínez [11] in R

d , the drift b is allowed 
to be locally unbounded, provided a suitable integrability condition holds. We refer the reader 
to Flandoli [8, Chapter 2] for a more complete discussion on the topic. For processes other 
than Brownian Motion, we can mention Nualart and Ouknine [16,17]. We cite also Catellier and 
Gubinelli [5], where a slightly different problem is considered: The coefficient b is generalized to 
non-functions, that means, to distributional fields, leading to delicate problems about the meaning 
of the composition b(X) and the definition of solution itself.

Now we introduce an ordinary differential equation similar to (1): Given a real continuous 
function ω ∈ C([0, T ]), we may write

xt = x0 +
t∫

0

b(xs) ds + ωt , t ∈ [0, T ] . (2)

If b is a function for which the existence of a strong solution of the related sde (1) has been 
stated, one can say immediately that there exists a solution to (2) for almost all continuous func-
tions ω with respect to the law of W . Nothing can be said of any particular ω, however.

Assume, on the other hand, that we could prove the existence of a solution to (2) for a certain 
class of functions ω having probability one with respect to the law of W . Would this yield an ex-
istence theorem for the sde? This is not clear, since the condition of adaptability in the definition 
of strong solution need not be satisfied, in principle.
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According to Flandoli [8], we will call path-by-path solution of the sde (1) a solution obtained 
by solving ω-by-ω the corresponding class of ode’s (2). Existence of a strong solution implies 
existence of a path-by-path solution, but the converse is not known to be true, in general. Simi-
larly, uniqueness of the path-by-path solution does imply uniqueness in the strong sense, but not 
the other way round.

We ask ourselves if this gap can always be closed or, on the contrary, if it is possible to 
find counterexamples. This seems to be a difficult problem. Notice that in the classical case 
(b Lipschitz), it is true that a path-by-path solution is also strong. This is due to the Picard 
iteration scheme, which implies the existence of a strong solution, and to Gronwall’s lemma, 
which gives the uniqueness in the path-by-path sense. Therefore, the question concerns only the 
non-Lipschitz cases.

We insist on the fact that establishing existence and uniqueness for a fixed particular ω ∈
C([0, T ]) is a different problem. For example, if b(x) = √|x|, x0 = 0 and ω ≡ 0, it is easy to 
see that the equation has exactly two local solutions (infinitely many, in a global sense), namely 
x ≡ 0 and xt = t2/4. However, the corresponding stochastic equation with a Brownian Motion W

has a unique strong solution (see, e.g. [11]). Our results in Section 2 show in particular that the 
solution is unique also in the path-by-path sense.

Concerning uniqueness of path-by-path solutions, we only know the works of Davie [6,7] and 
the remarks on them made by Flandoli [9]. In [6] it is proved, by means of an estimate quite com-
plicated to obtain, that for a bounded measurable function b there is a unique solution to (2), for 
a class of continuous functions ω which has probability one with respect to the law of Brownian 
Motion. Hence, the solution to the corresponding sde, which was already known to exist in the 
strong sense, is not only strongly unique, but also path-by-path unique. In [7] a diffusion coef-
ficient is introduced, and the equation interpreted in the rough path sense. We provide a simpler 
proof of the path-by-path uniqueness in cases where b is not necessarily bounded or continu-
ous; however, we have to restrict ourselves to dimension one, whereas in [6,7] the equations are 
d-dimensional and the function b may also depend on time.

In this paper we apply some ideas from the theory of ordinary differential equations to study 
the path-by-path uniqueness of equation (1). Existence theorems are very general (e.g. Peano 
and Carathéodory theorems, that can be found in classical books like Hartman [12]); however, 
uniqueness (and non-uniqueness) results are poor and fragmented in comparison, and particularly 
scarce for equations of the form (2) (see, for instance, the book by Agarwal and Lakshmikan-
tham [1], dedicated to the subject).

The paper is organized as follows. In Section 2 we use an extension of Iyanaga’s uniqueness 
theorem (Theorem 2.3) for ode’s, and Girsanov’s theorem, to establish our main result: the path-
by-path uniqueness of equation (1) for a Brownian motion W . Next, we see that the hypotheses 
on b can be relaxed if the noise has a constant sign, leading to similar theorems for the absolute 
value of the Brownian motion |Wt | and for −|Wt |. In Section 3 we consider the particular case 
of the square root: Using Lakshmikantham’s theorem (Lemma 3.4), we obtain a simpler proof 
when b(x) = √|x| and the noise is non-negative; moreover, a discontinuous version of the square 
root exemplifies that continuity is not essential for the techniques of Section 2 to work. Finally, 
in Section 4 we use the idea behind the proof of Peano’s uniqueness theorem to deal with some 
differentiable noises.
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2. Main results

Let ω : [0, T ] →R be a fixed continuous function, with ω0 = 0, and b : R →R a measurable 
function. Consider the equation

xt =
t∫

0

b(xs) ds + ωt , t ∈ [0, T ] . (3)

Taking yt := xt − ωt as a new unknown function, (3) is equivalent to

yt =
t∫

0

b(ys + ωs)ds , t ∈ [0, T ] . (4)

Let us assume that this equation has at least one continuous solution y : [0, T ] −→ R, which 
is true by the Peano existence theorem if b is continuous (see, for instance, Lakshmikantham and 
Leela [15, Theorem 1.1.2]).

We will find some sufficient conditions on ω ensuring the uniqueness of that solution. Towards 
this end, consider the following set of hypotheses on function b:

H1. b(0) = 0.
H2. b is non-decreasing on (0, ∞).
H3. b is continuous on [0, ∞), and of class C1 with b′ non-increasing on (0, ∞).
H4. b(|x|) ≤ b(−|x|).
H5. b is non-increasing on (−∞, 0].

Notice that, under these hypotheses, any solution y of (4) is non-negative and non-decreasing. 
We will make use of the following two lemmas:

Lemma 2.1. Assume hypotheses H1–H5 hold true. Then, for any two solutions y and ȳ of equa-
tion (4), such that y ≤ ȳ, and for any continuous function ω with ω0 = 0 and not identically zero 
on the interval [0, T ], we have the inequality

b(ȳt + ωt) − b(yt + ωt) ≤ (ȳt − yt ) · b′(|yt + ωt |+) (5)

≤ (ȳt − yt ) ·
[
1{ωt≥0} · b′((

ωt +
t∫

0

1{ωs>0}b(ωs) ds
)

+
)

+ 1{ωt<0} · b′(|yt + ωt |+)
]

, t ∈ [0, T ] ,

where b′(z+) means limx↓z b′(x), and b′(0+) may be infinite.

Remark. We write right-limits only because b′ is not necessarily defined at zero.

Proof. The proof will be divided into several cases.
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CASE 1: t such that ωt ≥ 0.
By the mean value theorem, and using that b′ is non-increasing on the positive axis,

b(ȳt + ωt) − b(yt + ωt) ≤ (ȳt − yt ) · b′((yt + ωt)+) ,

which, together with (4), implies

b(ȳt + ωt) − b(yt + ωt) ≤ (ȳt − yt ) · b′((
ωt +

t∫
0

b(ys + ωs)ds
)

+
)

≤ (ȳt − yt ) · b′((
ωt +

t∫
0

1{ωs>0}b(ys + ωs)ds
)

+
)

≤ (ȳt − yt ) · b′((
ωt +

t∫
0

1{ωs>0}b(ωs) ds
)

+
)

.

CASE 2: t such that −yt ≤ ωt < 0.
Similarly to the case 1, the mean value theorem gives

b(ȳt + ωt) − b(yt + ωt) ≤ (ȳt − yt ) · b′(|yt + ωt |+) .

CASE 3: t such that − yt+ȳt

2 ≤ ωt < −yt .
We have ȳt + ωt ≥ −yt − ωt > 0. Therefore,

b(ȳt + ωt) − b(yt + ωt) ≤ b(ȳt + ωt) − b(−yt − ωt)

≤ (ȳt + yt + 2ωt) · b′(|yt + ωt |+) ≤ (ȳt − yt ) · b′(|yt + ωt |+) ,

where we have used hypothesis H4 in the first inequality.
CASE 4: t such that −ȳt ≤ ωt < − yt+ȳt

2 .
Now, yt + ωt < −ȳt − ωt ≤ 0. Using again hypothesis H4,

b(ȳt + ωt) − b(yt + ωt) ≤ b(ȳt + ωt) − b(−yt − ωt) ≤ 0 .

CASE 5: t such that ωt < −ȳt .
Here, we have yt + ωt ≤ ȳt + ωt < 0. Hence, by H5,

b(ȳt + ωt) − b(yt + ωt) ≤ 0 . �
Lemma 2.2. Let f, g, h : [0, T ] → R be continuous functions, and k : [0, T ] × R → R measur-
able. Assume

f (t) ≤ h(t) +
t∫
k(s, f (s)) ds and g(t) ≥ h(t) +

t∫
k(s, g(s)) ds , t ∈ [0, T ] ,
0 0
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and that k is non-decreasing in the second variable and

k(t, ȳ) − k(t, y) ≤ a(t)(ȳ − y) , for y, ȳ ∈R, y ≤ ȳ

for some integrable function a : [0, T ] → R.
Then f (t) ≤ g(t) for all t ∈ [0, T ].

Proof. See Pachpatte [18, Theorem 2.2.5]. �
Theorem 2.3. Let b satisfy hypotheses H1–H5 and y be a solution of (4). Assume that the func-
tion

a(t) =
[
1{ωt≥0} · b′((

ωt +
t∫

0

1{ωs>0}b(ωs) ds
)

+
)

+ 1{ωt<0} · b′(|yt + ωt |+)
]

(6)

belongs to L1([0, T ]). Let ȳ be another solution, with y ≤ ȳ. Then, y = ȳ.

Remarks 2.4.

1. If b is continuous, so that maximal and minimal solutions exist, one may say that a solution y

satisfying Condition (6) is maximal. And that, if the minimal solution satisfies (6), then the 
solution to (4) is unique.

2. This result could be seen as an extension of Iyanaga’s uniqueness theorem, where the func-
tion a(t) was assumed to be continuous. For details see [1, Theorem 1.13.1].

3. We could replace H3–H5 by the existence of a measurable non-negative function g such that 
inequality (5) holds with g(z) in place of b′(z+), and write g(|yt + ωt |) in place of a(t)

in (6).

Proof. Set φ = ȳ − y and k(t, z) = a(t)z, for t ∈ [0, T ] and z ∈ R. Suppose that there is t1 ∈
(0, T ) such that φt1 = z1 > 0 and consider the function u such that

{
u(t) = z0 + ∫ t

0 k(s, u(s))ds , t ∈ [0, T ]
u(t1) = z1 .

Note that the definition of k yields that z0 > 0. Hence, from Lemma 2.1, we have

φt = ȳt − yt =
t∫

0

[
b(ȳs + ωs) − b(ys + ωs)

]
ds ≤

t∫
0

k(s,φs)ds , t ∈ [0, T ] ,

and therefore

φt − u(t) ≤ −z0 +
t∫
k(s,φs − u(s)) ds , t ∈ [0, T ] .
0
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Thus, Lemma 2.2 applied to f (t) := φt − u(t), g(t) := −z0 exp{∫ t

0 a(s) ds} and h(t) := −z0, 
allows to write

φt − u(t) ≤ −z0 exp
{ t∫

0

a(s)ds
}

, t ∈ [0, T ] ,

which, for t = t1, gives 0 ≤ −z0 exp
{∫ t1

0 a(s)ds
}

< 0, a contradiction. Consequently, φ ≡ 0 on 
[0, T ] and the proof is complete. �

We use Theorem 2.3 in the proof of Theorem 2.6 below in order to show the path-by-path 
uniqueness for equation (4). Davie [6] computes a difficult estimate of the moments of the inte-
gral

T∫
0

(
b(Wt + x) − b(Wt)

)
dt

to replace Lipschitz-type conditions in the study of a multidimensional version of (4) with 
bounded b. The use of direct results on ordinary differential equations allows one to obtain a 
different and shorter proof in dimension one, valid for unbounded coefficients b. In the proof, 
besides Theorem 2.3, we make use of the following comparison theorem (see, for instance, Hart-
man [12, Theorem III.4.1]).

Lemma 2.5. Let h : [0, T ] ×R → R be a continuous function, c ∈ R and u the minimal solution 
to

u′ = h(t, u), u0 = c .

Also let v be a differentiable function such that v0 ≥ c and v′
t ≥ h(t, vt ), t ∈ [0, T ]. Then, on the 

interval of existence of u, vt ≥ ut .

The following is the main result of this section.

Theorem 2.6. Let W be a Brownian Motion on some probability space (�, F, P), and let 
b : R → R be a function satisfying hypotheses H1–H5 and:

H6. b is continuous and |b(x)| ≤ C(1 + |x|), ∀x.

H7. EP

[ T∫
0

b′(|Ws |+) ds
]

< ∞.

Then, the stochastic differential equation

Xt =
t∫

0

b(Xs) ds + Wt , t ∈ [0, T ] , (7)

has a unique path-by-path solution (which is also a strong solution).



6054 A. Alabert, J.A. León / J. Differential Equations 262 (2017) 6047–6067
Proof. Notice that, since b is continuous, there exist minimal and maximal solutions to Equa-
tion (7) for every continuous path ω of the Brownian motion W . First, we are going to construct 
a solution adapted to the natural filtration {Ft}t∈[0,T ] of W which coincides with the minimal 
solution to (7); secondly, we will see that this adapted solution also coincides with the maximal 
solution. In conclusion, we will get the path-by-path uniqueness of the given stochastic differen-
tial equation.

Let bn(x) := b(x) − 1
n

, n ≥ 1. Consider a polynomial pn(x) such that

|bn(x) − pn(x)| < εn , for x ∈ [−n,n] ,

with εn = 1
2n(n+1)

, and extend it as pn(x) ≡ pn(n), for x ≥ n, and pn(x) ≡ pn(−n), for x ≤ −n.
Let f (t, y) := b(y +ωt), and fn(t, y) := pn(y +ωt). The functions fn are bounded, continu-

ous and globally Lipschitz in the second variable, uniformly in the first. Therefore, the stochastic 
differential equation Yn

t = ∫ t

0 fn(s, Yn
s ) ds (equivalently, Xn

t = ∫ t

0 pn(X
n
s ) ds + Wt ) has a unique 

{Ft }-adapted solution, which is a path-by-path solution of the corresponding deterministic equa-
tion for almost all Brownian sample paths. Also, by H1, H2, H5 and the choice of εn, we have 
that −2 ≤ fn ≤ f and fn converges to f pointwise and monotonically from below.

By Lemma 2.5, applied to ⎧⎨
⎩

yn
t

′ = fn(t, y
n
t )

y′
t = f (t, yt ) ≥ fn(t, yt )

yn
0 = y0 = 0 ,

where y is any solution of (4), we get y ≥ yn, on [0, T ]. By the same comparison argument, 
since {fn}n is non-decreasing, the sequence of solutions yn is non-decreasing as n → ∞.

Clearly, there exists a compact set K ⊂ R such that yn : [0, T ] → K , for all n. Hence, by 
Dini’s theorem, the sequence fn converges uniformly to f when all functions are considered on 
[0, T ] × K .

We can then apply Theorem 1.2.4 of Hartman [12], which states that a certain subsequence ynk

is uniformly convergent on [0, T ] to a solution of y′ = f (t, y). But since {yn} is increasing, it 
must itself converge to that solution. Finally, given that yn is bounded from above by any solution 
of (4), the limit must be the minimal solution.

The stochastic process Yt constructed in this way is therefore a solution, {Ft}-adapted, of the 
stochastic differential equation Yt = ∫ t

0 b(Ys + Ws) ds. Hence, the process Xt := Yt + Wt is a 
strong solution of (7).

For the second part of the proof, we want to remark first that a similar argument for the max-
imal solution does not allow, with our hypotheses, to obtain a sequence of adapted processes 
converging to the maximal solution. Thus, we proceed differently. We start with the process X

just constructed, and prove first that 
∫ T

0 b′(|Xs |+) ds is finite almost surely. Indeed, let X̄ be 
a Brownian motion under some other probability Q on (�, F); thanks to the linear growth 
condition H6 and [14, Corollary 3.5.16], Girsanov’s theorem can be applied and there exists 
a probability P̄ equivalent to Q such that X̄t − ∫ t

0 b(X̄s) ds =: W̄t is a P̄ -Brownian motion. That 
means that (X̄, W̄ ) is a weak solution of equation (7).

By H7, and the equivalence of P̄ and Q, we obtain

P̄
( T∫

b′(|X̄s |+) ds < ∞
)

= 1 . (8)
0
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The processes X and X̄ have a.s. continuous paths under probabilities P and Q (hence P̄ ), 
respectively. Therefore, P

( ∫ T

0 b(Xs)
2 ds < ∞) = 1 and P̄

( ∫ T

0 b(X̄s)
2 ds < ∞) = 1, thanks 

to H6. Applying [14, Proposition 5.3.10], we obtain that the laws of the vector processes (X, W)

under P and (X̄, W̄ ) under P̄ are the same.
Consider the space of continuous functions C([0, T ]) with its Borel σ -field and the R-valued 

functional on C([0, T ]) given by �g(x) := ∫ T

0 g(|xs |) ds, with g : R+ → R continuous. �g is a 
continuous functional, and therefore measurable. This is also true when g is the indicator function 
of an interval, due to the dominated convergence theorem. By the usual monotone class argument, 
we get that �g is measurable for all bounded measurable functions g. And by the monotone 
convergence of the integrals, we get the same also for unbounded non-negative functions. That 
means that the law of the random variable �g(X) under P coincides with that of �g(X̄) under P̄ , 
and in particular, applied to g(z) := b′(|z|+),

P
( T∫

0

b′(|Xs |+) ds < ∞
)

= P̄
( T∫

0

b′(|X̄s |+) ds < ∞
)

,

which together with (8) yields that 
∫ T

0 b′(|Xs |+) ds is a.s. finite, as we wished to see. It means that 
the process Yt = Xt −Wt satisfies that t �→ b′(|Yt +Wt |+) is a.s. integrable on [0, T ]. Moreover, 
using hypotheses H3 and H7, the almost sure integrability of

1{ωt≥0} · b′((
ωt +

t∫
0

1{ωs>0}b(ωs) ds
)

+
)

is immediate. Applying Theorem 2.3 one concludes that Yt (ω) coincides a.s. with the maximal 
solution to the deterministic equation (4).

We have seen that Yt(ω) is both the minimal and maximal solution of (4). Hence, Xt = Yt +Wt

is the unique path-by-path solution to the stochastic differential equation (7). �
Remark 2.7. As a by-product of the proof, we have seen that under the conditions of the the-
orem, the unique path-by-path solution is also a strong solution, i.e. it is {Ft}-adapted. Also, 
Theorem 2.6 is valid replacing b′ by a function g satisfying the conditions of Remark 2.4(3) and 
hypothesis H7.

Examples 2.8. The paradigmatic function satisfying all our hypotheses is the square root: b(x) =√|x|. In fact, all functions of the form b(x) = |x|α , with 0 < α < 1, are continuous non-Lipschitz 
functions satisfying H1–H7. To check H7, just notice that Ws is Gaussian with variance s, and 
therefore

E[|Ws |α−1] = Cα · s α−1
2 , for some constant Cα , for every α > 0 .

The hypothesis of continuity of b is needed in the proof of Theorem 2.6 to guarantee the existence 
of the uniform approximations of b(x) − 1

n
on [−n, n] by polynomials. However, one can allow 

for some discontinuities and ideas similar to those of the preceding proof can be applied. For 
example, this is the true with the function
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b(x) =
{√

x, if x ≥ 0√−x + 1, if x < 0 .

We develop this particular case in the next section. �
Observe that the condition (6) for the uniqueness of solutions does not depend only on the 

noise function ω and the coefficient b, but also on the minimal solution y to (4). It is necessary to 
have an estimate of the type b′(|yt + ωt |+) ≤ F(t), with an integrable function F , to obtain the 
uniqueness from Theorem 2.3. Hypothesis H6 was only used to this purpose. For a non-negative 
noise however, Condition (6) becomes

b′((
ωt +

t∫
0

b(ωs) ds
)

+
)

∈ L1([0, T ]) (9)

and such an estimate is not necessary. Hypotheses H4 and H5 are not needed either. For instance, 
we can prove the following result, where the noise is the absolute value of a Brownian motion.

Proposition 2.9. Let Wt be a Brownian Motion, and consider the stochastic differential equation

Xt =
t∫

0

b(Xs) ds + |Wt | , t ∈ [0, T ] . (10)

Assume b satisfies hypotheses H1–H3 and H7. Then, equation (10) has at most one non-negative 
path-by-path solution, for almost all sample paths of W .

If, moreover, b ≥ 0 on an interval (−ε, 0), then this is the unique path-by-path solution.

Proof. As we have already pointed out, we only need to show that condition (9) holds true 
for almost all sample paths of |W |. But this is an easy consequence of the facts that b(|W |)
is non-negative, b′ is non-increasing on (0, ∞) and the expectation in H7 is finite. If b is also 
non-negative on an small interval to the left of 0, then any solution will be non-negative, and we 
get the path-by-path uniqueness. �
Remark 2.10. One can also deduce from Condition (9) a result for negative noise: If ω ≤ 0, 
equation (3) is equivalent to

zt =
t∫

0

b̃(zs) ds + ω̃t

where b̃(z) := −b(−z) and ω̃t := −ωt . Therefore we obtain in this case the uniqueness of a 
non-positive solution under condition (9) and the hypotheses

H1. b(0) = 0.
H2’. b non-decreasing on (−∞, 0).
H3’. b continuous on (−∞, 0], and of class C1 with b′ non-decreasing on (−∞, 0).
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Hence, in this situation, the stochastic differential equation (10) with −|Wt | instead of +|Wt |
has a unique path-by-path non-positive solution; and it is the unique path-by-path solution if 
moreover b ≤ 0 on some interval (0, ε).

Some known results for uniqueness in the theory of ordinary differential equations can be 
used in particular cases to obtain results similar to those above; this will be illustrated in the 
following sections. In Section 3 we consider the discontinuous case based on the square root 
that was mentioned in Examples 2.8, and the square root itself, b(x) = |x|1/2, for a non-negative 
disturbance. For the latter, the results are not really better than applying the general setting above, 
but they are easier to obtain by other means. In Section 4, we study the uniqueness of the solution 
to equation (4) for some differentiable noises.

3. The particular case of the square root

3.1. Example: square root with a discontinuity

One can allow the function b to have some discontinuities and still get uniqueness of solutions. 
We illustrate this point with

b(x) =
{√

x, if x ≥ 0√−x + 1, if x < 0 .

Defining

bn(x) =

⎧⎪⎨
⎪⎩

√
x − 1

n
, if x > 0√−x + 1 − 1

n
, if x < − 1

n

−(n + √
n)x − 1

n
, if − 1

n
≤ x ≤ 0 ,

we have that {bn : n ∈N} is a sequence of continuous functions on R such that, for x ∈R,

bn(x) ≤ b(x) and bn+1(x) − bn(x) ≥ 1

n(n + 1)
. (11)

As in the proof of Theorem 2.6 we consider a polynomial pn such that

|bn(x) − pn(x)| < εn , for x ∈ [−n,n] ,

with εn = 1
2n(n+1)

, and extend it as pn(x) ≡ pn(n), for x ≥ n, and pn(x) ≡ pn(−n), for x ≤ −n. 
The definitions of bn and pn, together with (11), allow us to deduce that, for x ∈R,

pn+1(x) − pn(x) ≥ 0 and b(x) ≥ pn(x) + εn . (12)

Hence, −εn − 1
n

≤ pn(x) < b(x), x ∈R. Therefore, using that b has linear growth, we can find a 
constant K > 0 such that

|pn(x)| ≤ K(1 + |x|) , for x ∈R and n ∈N . (13)
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Now we consider

Y
(m)
t = −ε̃m +

t∫
0

pm(Y (m)
s + Ws)ds , t ∈ [0, T ] , (14)

where ε̃m ↓ 0 as m → ∞, and W is a Brownian motion. Observe that the fact that pm is a bounded 
Lipschitz function implies that equation (14) has a unique solution, which is measurable on 
� ×[0, T ] and adapted with respect to the filtration {Ft} generated by W . In order to see that the 
minimal solution to equation (7) is also measurable and {Ft }-adapted, we establish the following 
lemma.

Lemma 3.1. Let Y be a solution of equation

Yt =
t∫

0

b(Ys + Ws)ds , t ∈ [0, T ] , (15)

m ∈ N and Y (m) the solution of (14). Then,

Yt ≥ Y
(m+1)
t ≥ Y

(m)
t , t ∈ [0, T ] .

Proof. By Lemma 2.5 and (12), we only need to see that Yt ≥ Y
(m)
t , for t ∈ [0, T ]. By the 

continuity of Y and Y (m), and ε̃m > 0, there is t0 ∈ (0, T ] such that Yt > Y
(m)
t , for t ∈ [0, t0]. 

Now suppose that there exist t1 < T and η > 0 such that

Yt1 = Y
(m)
t1

and Y
(m)
t > Yt , for t ∈ [t1, t1 + η] .

Then, for h > 0 small enough,

Y
(m)
t1+h − Y

(m)
t1

h
= Y

(m)
t1+h − Yt1

h
>

Yt1+h − Yt1

h
.

Consequently,

pm(Yt1 + Wt1) = pm(Y
(m)
t1

+ Wt1) ≥ D+Yt1 ,

with D+Yt1 = lim suph↓0
Yt1+h−Yt1

h
.

On the other hand, (12) allows to write

Yt1+h − Yt1

h
= 1

h

t1+h∫
t1

b(Ys + Ws)ds >
1

h

t1+h∫
t1

(pm(Ys + Ws) + εm)ds .

Therefore,
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D+Yt1 ≥ pm(Yt1 + Wt1) + εm > pm(Yt1 + Wt1) ,

a contradiction. The proof is complete. �
Now we introduce the measurable and {Ft}-adapted process Ȳt := limm→∞ Y

(m)
t , which is 

well-defined due to Lemma 3.1.

Lemma 3.2. The process Ȳ is absolutely continuous (i.e. it has absolutely continuous paths).

Proof. Let W ∗
T = supt∈[0,T ] |Wt |. Then (13) yields, for some constant K ,

|Y (n)
t | ≤ K

T∫
0

|Y (n)
s |ds + K(1 + T + T W ∗

T ) , t ∈ [0, T ] .

Thus, Gronwall’s lemma implies

|Y (n)
t | ≤ K(1 + T + T W ∗

T ) exp(KT ) , t ∈ [0, T ] . (16)

It therefore follows that there exists a positive constant C such that, for 0 ≤ t1 < t2 < . . . <

t� ≤ T ,

�−1∑
i=1

|Y (n)
ti+1

− Y
(n)
ti

| ≤ K

�−1∑
i=1

ti+1∫
ti

(
1 + |Y (n)

s + Ws |
)

ds ≤ C(1 + W ∗
T )

�−1∑
i=1

(ti+1 − ti ) . (17)

Finally, we prove the assertion of the lemma by letting n → ∞. �
Observe that an immediate consequence of Lemma 3.2 and (17) (with � = 2) is that there 

exists a measurable and {Ft}-adapted process A such that

Ȳt =
t∫

0

As ds and |At | ≤ C(1 + W ∗
T ) , t ∈ [0, T ] . (18)

Now we can state the main result of this example.

Theorem 3.3. The process Ȳ is the unique path-by-path solution of equation (15).

Proof. We first observe that (18) and Girsanov’s theorem (see Theorem 3.5.1 and Corol-
lary 3.5.16 in Karatzas and Shreve [14]) imply that Wt + Ȳt �= 0 for almost all t ∈ [0, T ], with 
probability 1. Now choose s ∈ [0, T ] so that Ws + Ȳs �= 0 a.s. Then∣∣∣pn(Y

(n)
s + Ws) − b(Ȳs + Ws)

∣∣∣
≤

∣∣∣pn(Y
(n)
s + Ws) − bn(Y

(n)
s + Ws)

∣∣∣ +
∣∣∣bn(Y

(n)
s + Ws) − b(Y (n)

s + Ws)

∣∣∣
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+
∣∣∣b(Y (n)

s + Ws) − b(Ȳs + Ws)

∣∣∣
≤ εn + 1

n
+

∣∣∣b(Y (n)
s + Ws) − b(Ȳs + Ws)

∣∣∣ .

So we can conclude that pn(Y
(n)
s + Ws) → b(Ȳs + Ws) a.s. as n → ∞ due to the continuity of b

on R − {0}. Hence, (13), (14) and (16) give

Ȳt =
t∫

0

b(Ȳs + Ws)ds , t ∈ [0, T ] .

We have obtained that the {Ft}-adapted process Ȳ is, by Lemma 3.1, the minimal solution, 
a.s. Now we can finish as in the proof of Theorem 2.6. Instead of the continuity of b it is enough 
that b be locally bounded to use that P {∫ t

0 b(Xs)
2 ds < ∞} = 1. �

3.2. Example: square root and non-negative noise

We assume in this section that ω : [0, T ] → [0, ∞) is a fixed continuous non-negative func-
tion. Consider the equation

xt =
t∫

0

√|xs |ds + ωt , t ∈ [0, T ] (19)

and its equivalent equation, defining yt = xt − ωt ,

yt =
t∫

0

√|ys + ωs |ds , t ∈ [0, T ] . (20)

Any solution y of (20) is clearly a continuously differentiable, positive and non-decreasing func-
tion. The absolute value inside the square root is therefore unnecessary.

We will make use of the following uniqueness theorem (see Agarwal and Lakshmikantham 
[1, Theorem 2.8.3]):

Lemma 3.4 (Lakshmikantham’s uniqueness theorem). Suppose that f (t, y) is defined in D :=
(0, T ]×[−a, a], measurable in t for each fixed y, continuous in y for each fixed t , and there 
exists an integrable function M on the interval [0, T ] such that |f (t, y)| ≤ M(t) on D. Consider 
the ordinary one-dimensional differential equation

y′(t) = f (t, y(t)) , y(0) = 0 , (21)

and define a classical solution of (21) on [0, T ] as a function y satisfying the initial condition, 
continuous in [0, T ], and differentiable and verifying the equation on (0, T ].
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Assume that:

i) Any two classical solutions y and ȳ of (21) satisfy

lim
t→0+

|ȳt − yt |
Bt

= 0 ,

where B is a continuous and positive function on (0, T ] with limt→0+ B(t) = 0.
ii) There is a continuous and non-negative function g : (0, T ] × [0, 2a] for which the only solu-

tion z of z′
t = g(t, z) on [0, T ] such that limt→0+ zt

Bt
= 0 is the trivial solution z ≡ 0.

iii) f is defined on D̄ (the closure of D), and for all (t, y) and (t, ȳ) in D, the inequality 
|f (t, ȳ) − f (t, y)| ≤ g(t, |ȳ − y|) is satisfied.

Then, equation (21) above has at most one classical solution on [0, T ].

Our equation reads y′
t = f (t, yt ), with f (t, y) = √

y + ωt . In this case, moreover, the func-
tion f is continuous, and Lakshmikantham theorem implies the uniqueness of ordinary solutions 
(i.e. of class C1 in [0, T ]).

Let y and ȳ be the minimal and maximal solutions of (20), respectively. By the mean value 
theorem applied to f (x) := √

x, we have

√
ȳt + ωt − √

yt + ωt = ȳt − yt

2
· (ωt + ξt )

−1/2 , t ∈ [0, T ] ,

for some ξt ∈ [yt , ȳt ]. Since ξt ≥ yt ≥ ∫ t

0 ω
1/2
s ds, we find the bound

√
ȳt + ωt − √

yt + ωt ≤ ȳt − yt

2
·
(
ωt +

t∫
0

ω
1/2
s ds

)−1/2
, t ∈ [0, T ] . (22)

We also have that (20) implies

(ȳt − yt )
′ ≤ √

ȳt − yt , t ∈ [0, T ] .

Using Lakshmikantham and Leela [15, Theorem 1.4.1], the difference ȳt − yt is bounded by 
the maximal solution to zt = ∫ t

0
√

zs ds, which is zt = t2/4. Now, taking B(t) = tα , with any 
α ∈ (0, 2), hypothesis (i) of Lemma 3.4 is clearly satisfied.

For conditions (ii) and (iii), notice that, by (22), we can take

g(t, z) := z

2
·
(
ωt +

t∫
0

ω
1/2
s ds

)−1/2
, t ∈ (0, T ] and z ∈R

+ ,

assuming the expression on the right makes sense. The differential equation z′
t = g(t, zt ) is linear, 

and all its solutions can be explicitly written as
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zt = c exp
{1

2

t∫
t0

(
ωs +

s∫
0

ω
1/2
r dr

)−1/2
ds

}

for some constant c and t0 ∈ (0, T ]. Then, if s �→ ωs + ∫ s

0 ωr dr is integrable at 0+, those solu-
tions can only tend to zero at the origin if z ≡ 0.

Thus, we have proved the following result.

Theorem 3.5. Assume that the noise ω is such that 
(
ω· + ∫ ·

0 ω
1/2
s ds

)−1/2 ∈ L1([0, T ]). Then, 
there exists a unique solution to equation (19).

As an immediate consequence of this theorem, we recover the result of Proposition 2.9 in an 
easier way:

Corollary 3.6. Let W be a Brownian Motion, and consider the stochastic differential equation

Xt =
t∫

0

√|Xs |ds + |Wt | , t ∈ [0, T ] . (23)

Then, equation (23) has a unique path-by-path solution, for almost all paths of W .

Proof. In view of Theorem 3.5, we only have to show that for almost all sample paths ω of a 
Brownian motion,

(
|ω·| +

·∫
0

|ωs |1/2 ds
)−1/2 ∈ L1([0, T ]) ,

and this has already been checked in Examples 2.8. �
4. Differentiable noise

In this section we analyze the uniqueness of a solution to equation (3) for some differentiable 
perturbations. Equivalently, we are dealing with the absolutely continuous solutions to

{
x′
t = b(xt ) + w′

t , t-a.e. on [0, T ]
x0 = 0 ,

(24)

where ω is a function in C1([0, T ]), and we want to keep at a minimum the hypotheses on b.
We state first a general result for noises with a strictly negative derivative. We mimic the proof 

of Peano’s uniqueness theorem (see, for instance, [1, Theorem 1.3.1]).

Theorem 4.1. Let ω be a C1 function on [0, T ] such that ω0 = 0 and with negative derivative 
(i.e. ω′

t < 0 for t ∈ [0, T ]).
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Assume that

i) b is measurable and limx→0 b(x) = b(0) = 0.
ii) For some η > 0, there exists an increasing continuous function g : [0, η) → R, of class C1

on (0, η), with g′ non-increasing, and such that:
H8. x �→ g′(−x)b(x) is non-increasing on (−η, 0).

iii) There exists either a maximal or a minimal solution to (24).

Then, there is a unique local solution to equation (24). Global uniqueness on [0, T ] is true if 
η = ∞.

Proof. Let x and x̄ be two solutions such that x ≤ x̄. We first observe that for some ε > 0, we 
have −η/2 ≤ x, x̄ < 0 on (0, ε) due to the continuity of ω′ and b at zero, and to ω′

0 < 0.
Define zt := g(−xt ) and z̄t := g(−x̄t ) on [0, ε). Both z and z̄ are absolutely continuous since 

g is C1 and x and x̄ are absolutely continuous, and

z′
t = −g′(−xt )(b(xt ) + ω′

t ) and z̄′
t = −g′(−x̄t )(b(x̄t ) + ω′

t ) , t -a.e. on (0, ε) .

The fundamental theorem of calculus gives, for 0 < δ < t < ε,

(zt − z̄t ) − (zδ − z̄δ) =
t∫

δ

[ − g′(−xs)b(xs) + g′(−x̄s)b(x̄s)
]
ds

+
t∫

δ

−ω′
s · (g′(−xs) − g′(−x̄s)

)
ds

≤
t∫

δ

−ω′
s · (g′(−xs) − g′(−x̄s)

)
ds ,

since, by H8, the first integral is non-positive. Letting δ → 0 and using ii), we obtain 0 ≤ zt −
z̄t ≤ 0. Consequently we have that z = z̄ on [0, ε). And, since g is increasing, we get x = x̄ on 
[0, ε].

Now assume that the function g is defined on [0, ∞), and that uniqueness holds up to t0 < T . 
Any solution x will satisfy

xt = xt0 +
t∫

t0

b(xs)ds + ωt − ωt0 , t ∈ [t0, T ] ,

where xt0 is a common value to all of them. Notice that every time x hits the origin, it is dif-
ferentiable at that point and its derivative is negative. Therefore, xt0 ≤ 0 and, by continuity, two 
solutions x and x̄ will be negative in some interval (t0, t0 + ε). We can proceed again as at the 
beginning of the proof to extend uniqueness beyond t0. �
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Remarks 4.2.

1. A well known sufficient condition for the existence of maximal and minimal solutions is the 
continuity of b. But weaker conditions exist in the literature. For instance, in the situation 
given, this is true if:
(a) b has linear growth, and
(b) lim supy→x− b(y) ≤ b(x) ≤ lim infy→x+ b(y), for all x.
These conditions follow easily from the general Theorem 3.1 in [13]. Even weaker condi-
tions, allowing jumps in the “wrong direction”, can be found in [19] and [4].

2. The continuity of b at zero can be replaced by other conditions ensuring that the solutions 
remain negative. For example, if
(a) lim supx→0 b(x) ≤ 0, or
(b) there is a non-decreasing continuous function f such that b ≤ f on an open interval 

containing 0 and f (0) + ω′
0 < 0,

then in this case,

xt =
t∫

0

(
b(xs) + ω′

s

)
ds ≤

t∫
0

(
f (xs) + ω′

s

)
ds

and x is bounded by the maximal solution of

ut =
t∫

0

(
f (us) + ω′

s

)
ds

(see Pachpatte [18, Theorem 2.2.4]), which is negative on an interval (0, η).
3. An example where the above remarks apply is given by

b(x) =
{√

x, if x ≥ 0√−x − 1, if x < 0 .

A maximal solution exists by the sufficient conditions of statement 1. Then both (a) and (b) 
of statement 2 are applicable with f (x) = √

x · 1{x≥0} in the second case.

The following result is also inspired in the proof of Peano’s uniqueness theorem. We consider 
a particular example of an ordinary differential equation driven by a differentiable noise, posi-
tive in a neighborhood of zero, but changing sign afterwards. By “piecewise Lipschitz” below 
we mean a function whose domain can be partitioned into intervals such that their interior is 
non-empty and the function is Lipschitz on each of them.

Example 4.3. Consider ωt = αt + t2+β sin(t−1), where α, β > 0, t ∈ (0, T ] and ω0 = 0.
Assume:

i) b is measurable and limx→0 b(x) = b(0) = 0.
ii) For some η > 0, there exists an increasing continuous function h : [0, η) → R, of class C1

on (0, η), with h′ non-increasing, and such that:
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H9. x �→ h′(x)b(x) is non-increasing on (0, η).
iii) There exists either a maximal or a minimal solution to (24).

Then, there is a unique local solution to equation (24). Global uniqueness on [0, T ] is true if, 
furthermore,

i’) b is non-negative, either piecewise Lipschitz or locally Lipschitz on (−∞, 0), and locally 
Lipschitz on (0, ∞).

ii’) η = ∞.
iv) There exists g : [0, ∞) → R satisfying assumption ii) of Theorem 4.1,

Then, equation (24) has a unique solution.

Proof. If x is a solution to (24) with the given noise ω, we can see, as in the preceding theorem, 
that there is an ε > 0 such that 0 < x < η/2 and ω′ > 0 on (0, ε). Given any two such solutions 
with x ≤ x̄, define zt := h(xt ) and z̄t := h(x̄t ), on [0, ε).

Hence, proceeding as in the proof of Theorem 4.1 but using hypothesis H9 instead of H8, we 
obtain that

0 ≤ z̄t − zt ≤
t∫

0

ω′
s · (h′(x̄s) − h′(xs)

)
ds ≤ 0 ,

and therefore equation (24) with the given ω has a unique solution on [0, ε].
For the second part, assume that uniqueness holds up to t0 < T . We distinguish the following 

cases:

CASE 1: xt0 > 0.
We only need to use that b is locally Lipschitz to extend the uniqueness to the right 

of t0.
CASE 2: xt0 ≤ 0, ω′

t0
< 0.

Here we use condition H8, and we finish as in Theorem 4.1.
CASE 3: xt0 ≤ 0, ω′

t0
≥ 0.

We can write

ω′′
t0

= 1 + β

t0
ω′

t0
− (β + 1)

α

t0
− (β + 1)t

β−1
0 cos(t−1

0 ) − t
β−2
0 sin(t−1

0 )

≥ −(β + 1)
α

t0
− (β + 1)t

β−1
0 cos(t−1

0 ) − t
β−2
0 sin(t−1

0 )

≥ −(β + 1)
α

t0
+ (β + 1)

[−α

t0
− (β + 2)t

β

0 sin(t−1
0 )

]
− t

β−2
0 sin(t−1

0 ) . (25)

On the other hand, the facts that xt0 ≤ 0 and b is non-negative imply ωt0 ≤ 0. Thus, 
−t

β+2
0 sin(t−1

0 ) ≥ αt0 > 0, which, together with (25), yields

ω′′
t0

> (β + 1)

[
−2

α − (β + 2)t
β

0 sin(t−1
0 )

]

t0
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≥ −(β2 + β)t
β

0 sin(t−1
0 ) > 0 .

Therefore, there exists ε > 0 such that ω′ > 0 on (t0, t0 + ε). If xt0 = 0, we can 
proceed as at the beginning of this proof; if xt0 < 0, and since b is non-negative, we have 
x′ > 0 on (t0, t0 + ε). Therefore xt is increasing and the piecewise Lipschitz property 
of b on (−∞, 0) gives the uniqueness beyond t0, even if b is discontinuous at t0. �

Hypotheses H8 and H9 in Theorem 4.1 and Example 4.3 are satisfied by functions of the form

b(x) =
{

r1(x) · s1(x) , x ≥ 0

r2(x) · s2(−x) , x < 0 ,

where r1 and r2 are non-negative and non-increasing, with r2 piecewise locally Lipschitz, and 
s1 and s2 are positive, non-decreasing, continuous on [0, ∞), with 1/s1 and 1/s2 integrable at 
zero. One can take h(x) = ∫ x

0 1/s1, and g(x) = ∫ x

0 1/s2. In particular, this family includes the 
non-Lipschitz functions b(x) = |x|α (0 < α < 1), and, more generally, b(x) = r(x) · |x|α , with 
convenient r ; it suffices to take g(x) = h(x) = 1

1−α
x1−α .
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