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1. INTRODUCTION

The definition of several types of stochastic integrals for anticipating
integrands put the basis for the development, in recent years, of an antici-
pating stochastic calculus. It is natural to consider, as an application, some
problems that can be stated formally as stochastic differential equations, but
that cannot have a sense within the theory of non-anticipating stochastic
integrals. For example, this is the case if we impose to an s.d.e. an initial
condition which is not independent of the driving process, or if we prescribe
boundary conditions for the solution.

In this paper, we will try to survey the work already done concerning
s.d.e. with boundary conditions, and to explain in some detail a method based
in transformations and change of measure in Wiener space. An alternative
approach is sketched in the last Section.

Transformations on Wiener space provide a natural method, among oth-
ers, to prove existence and uniqueness results for nonlinear equations. At the
same time, a Girsanov type theorem for not necessarily adapted transforma-
tions allows to study properties of the laws of the solutions from properties of
the solution to an associated linear equation. A natural first question about
these laws is to decide if they satisfy some kind of Markov (or conditional
independence) property.

In Section 2, we introduce stochastic differential equations with bound-
ary conditions, the particular instances that have been studied, and the kind
of results obtained concerning conditional independence properties of the
solutions. The short Section 3 outlines the idea of the method of transforma-
tions and change of measure. In Section 4, we recall the necessary elements
of Wiener space analysis in order to enounce the Girsanov type theorem we
want to apply. In Section 5, we describe the use of suitable transformations
to obtain existence and uniqueness results for nonlinear equations. Section
6 is devoted to explain how the change of measure induced by the same
transformations allows to derive characterizations of conditional indepen-
dence properties. Finally, in Section 7 we describe briefly other alternatives
to this method and the situations to which they have been applied.
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Consider the following general problem:

k

dXt = / ( * , Xt)dt + y <n(t, Xt) odWl , 0<t<
(2-1)

ft(X0,X!) =

where /,<7;: [0,1] x Md —> Rd, ft: M2d —> Md, and {Wu 0 < t < 1} is a
fc-dimensional Wiener process (fc < d). The customary initial condition for
XQ is replaced by the boundary condition ft(Xo,Xi) = 0.

By a solution to (2.1) we mean a d-dimensional continuous process Xt
verifying the system

( , X t = [ / ( s , X 5 ) d s + V I ai(s,X3)odWs
i , 0 < t < l

^ ' Jo ~[ Jo
h(Xo,X1) = 0

But here, unlike the initial-value problem, we cannot expect in general the
existence of a solution adapted to the Wiener process, since the boundary
condition makes XQ depend on X\, which in turn will depend on the whole
Wiener process, through the integral equation. Therefore, the stochastic
integral in (2.2) has to be understood as an anticipating stochastic integral.
With the circle we denote, as usual, the Stratonovich anticipating integral.

As stated in the Introduction, two problems have been tackled concern-
ing such equations: First, of course, the problem of existence and uniqueness
of a solution; and secondly, to find sufficient and necessary conditions on the
coefficients to have some conditional independence property for the solution.

Which kind of conditional independence property should be expected?
The classical Markov Process property will not hold in general because a
random variable Xt can hardly make independent the past and the future of
the process, given that the first and last variables are linked by the boundary
condition.

It turns out that the relevant property to study is the Markov Field prop-
erty. This is the natural Markov property for random fields, and therefore it
is more clearly formulated with a general parameter set:

A random field {Xu t G T}, with T C Rk, is a Markov Fie2d_(M.F.,
for short) if and only if for every Borel and bounded set D (with D c T ) ,
the families of random variables {X*, t G D} and {Xf, t G Dc} are condi-
tionally independent given {X<, t G dD}. Here 3D denotes the boundary of
D. It is enough to check this property for open sets D. Translated to the
one parameter case, with T = [0,1], the property can be stated as follows:
{Xf, t G [0,1]} is a Markov Field if and only if the families {Xw, u G [s,t]}
and {Xu, u G]s,£[c} are independent given X3 and X<. It is obvious that
every Markov Process is a Markov Field, but the converse is not true.
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Let us now take a look to the particular equations studied so far, and
the kind of results obtained concerning the Markov Field property. Our
aim here is only to sketch these results. We refer the reader to the original
references for the precise statements. Particularly, we remark that some
technical hypothesis on the coefficients of the equations are needed, first of
all, to obtain existence and uniqueness theorems, and then, to characterize
the Markov Field property.

A) First order equations: Equations like (2.1) are first order equations.
Within this setting, the first work was done by Ocone and Pardoux [19]
(1989), who considered linear equations:

dXt = (AXt + a(t)) dt + Y^BtX* + 6'W) ° dWt > 0 <* <
i=l

FQXQ + F\X\ = F

(affine drift, diffusion coefficient and boundary condition), where A, i? i , . . . ,
Bfc, Fo, F\ are d x d-matrices of constants, F E Md

1 and a(£), &i (£),..., bk(t)
are d-dimensional processes.

Their main result states that each of the following are sufficient condi-
tions to have a M.F.

a) B\ — - - - == Bk = 0 (Gaussian case).
b) a = b\ = • • • = bk = 0 and $* • QJ1 is a diagonal matrix, V£, 5, where $*

is the matrix solution of

(2 4) d$t = A$t dt + Yl Bi^ ° dWt ' ° *
i=l

$ 0 = 1
Notice that, in particular, in dimension one and with linear drift and diffu-
sion, the solution is always a M.F. Further results can be given for special
forms of the boundary condition (see [19]).

Nualart and Pardoux [16] considered the non-linear equation

* < l \
J

and proved that, in dimension 1 (d = 1), X is a M.F. iff / is affine. For
d > 1, they showed examples with nonlinear / for which X is a M.F. (or
even a Markov Process) and others where X is not a M.F. With certain
special structures of the function / one can recover dichotomy results (see
Ferrante [8] and Ferrante-Nualart [9]). ing

Donati-Martin [5] took the next step considering a linear diffusion coef-
ficient:

, dXt=f(Xt)dt + aXtodWt , 0
1 j
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In dimension 1, the solution is a M.F. iff / takes the form f(x) = Ax +
Bxlogx, with |J5| < 1.

B) Second order equations: In [17], Nualart and Pardoux studied the
following second order stochastic differential equation in dimension one, with
Dirichlet type boundary conditions:

Xt = f(Xt,Xt) + Wt , 0 < i <
X0=a,X1=b

A solution to (2.7) will be a C1 process verifying

Xt = X0+ I* f(Xa,Xa)ds + Wt , 0

X X bXo = a, X1 = b

In this problem, we cannot expect to have any type of conditional in-
dependence property for X, because in a C1 process the positions Xt do not
keep enough information to make independent the past and the future or the
interior and exterior of an interval.

However, the two-dimensional stochastic process {(Xf,X*), t £ [0,1]}
is a M.F. iff / is affine. The same result is true if we change Dirichlet to
Neumann boundary conditions (see Nualart [14]).

C) Partial differential equations: The following parabolic stochastic par-
tial differential equation with periodicity conditions has been considered by
Nualart and Pardoux [18]:

dxt,y d2Xtjy d2Wt,y

X(0,y) = X(l,y) , ye [0,1]

d2W .
where is a space-time White Noise. The condition / affine is again

otoy
necessary and sufficient for the Markov Field property of the Co,o([0,1])-
valued process Xt.

Donati-Martin [6], [7], considered the elliptic equation with Dirichlet
boundary condition:

(2.10)
f(Xt) + Wt , t£T\

A | - U J

where A is the Laplacian, T is a bounded domain of Mk (k < 3), and W
represents a White Noise in M . Here, the condition / affine is equiva-
lent to a slightly weaker conditional independence property: For any Borel
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and bounded set D (with D C U C T, for some open set U), the a-fields
a{Xf, t E £)} and cr{X<, t E £)c} are conditionally independent given the
<j-field p| cr{Xt, t E (<9D)£}, where (dD)£ denotes an ^-neighbourhood of

3D. X is said to be a Germ Markov Field (G.M.F.). n

All these results concerning nonlinear equations have been obtained us-
ing a common method, which is based in an argument of change of measure
in Wiener space. Our aim is to explain this method, and to illustrate it with
some examples. In a non-anticipating context, a change of measure for s.d.e.
would rely in the celebrated (Cameron-Martin-Maruyama)-Girsanov The-
orem. In our case, an extended version of this theorem, essentially due to
Ramer [20] and Kusuoka [12], and allowing for anticipating transformations,
is the basic tool to use.

3. IDEA OF THE CHANGE OF MEASURE METHOD

The idea of the change of measure to study nonlinear anticipating s.d.e.
is analogous to that of the classical Girsanov theorem for non-anticipating
ones. Starting with a nonlinear equation on a probability space (fi, J7, P),
with solution process Xt, one considers another measure Q on (O,^7), and
a linear equation conveniently related with the original one. These measure
and linear equation should be chosen in such a way that the law of the
solution Yt under Q coincide with the law of Xt under P.

Then, anything we can prove concerning the law of Yt under Q produces
automatically the same result for the law of Xt under P, which is the process
we are interested in. In other words, we switch to a simpler process (possibly
in explicit form), at the price of dealing with a more complicated measure,
given by its Radon-Nikodym derivative with respect to P.

4. SOME ELEMENTS OF ANALYSIS IN WIENER SPACE

Let (B,H,P) be a Wiener space. That is, H is an infinite-dimensional
real separable Hilbert space, equipped with the Gauss cylinder measure JJL,
B is the completion of H with respect to a measurable norm, and P is the
extension of fi to a measure on the Borel a-field of B. P is called the Wiener
measure on B. On the other hand, given a Banach space B and a Gaussian
centered measure P o n 5 , with suppP = i?, there exists a unique Hilbert
space H C B such that (B,H,P) is a Wiener space. We will call H the
Cameron-Martin space relative to B and P. See for example Kuo [11] for
details.

This is the definition of an abstract Wiener space. The classical Wiener
space is the particular instance in which we take as B the space Co([0,1]) of
continuous functions vanishing at zero with the supremum norm, H is the
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subspace of functions with derivatives in L2([0,l]), and P is the measure
induced by a one-dimensional standard Wiener process.

Many interesting mappings and functionals on Wiener space, such as
solutions to s.d.e., are not Frechet differentiable in general; therefore the
classical infinite-dimensional calculus is of little help. For this reason, sev-
eral infinite-dimensional calculi well adapted to these functionals have been
introduced. We recall here the definition of derivation and other basic fea-
tures of the Malliavin infinite-dimensional calculus.

Let E be a real separable Hilbert space, F: B —> E a mapping and u>o E
B. We say that F is H-differentiable at CJ0 iff there exists VF(w0) E C(H; E)
(a linear continuous mapping from H into E) such that

r \\F(U,Q + h)- F(Uo) - [VF(Uo)](h)\\B __
XJ.J.XX lit it ^

\\h\\

Clearly, if F is Frechet differentiable at u>o, then JF is if-differentiable at UJQ
and VF(w0) coincides with the Frechet differential restricted to H.

A smooth E-valued cylinder functional on B is a mapping F: B —> E of
the form

where £u... ,£n E B* (the topological dual of £) , ej E J5, and fj are C°°
functions on Mn with polynomial growth, together with all their derivatives.
Denote by S(E) the set of these functionals.

Since an element F E S(E) is clearly Frechet differentiable on B, its
^-differential exists for every to and

VF{UJ) =

considered as an element of C(H; E). Of course, (£j ® e ,̂ ft) means (^, h) • ej,
and is an element of the algebraic tensor product H 0 E (after identification
of H and if*). Its completion by the inner product (£® e, (! ® e1) := (£,£')H •
(e,e)E is the space of Hilbert-Schmidt operators from H to £7, which we
will denote by the same symbol H <g> E.

Up to this point, we have only taken into account the topological struc-
ture of B. Now, using the measure P, one can prove that WF E S(E), Vp > 1,
F E LP(B; E) and VF E LV{B\ H ® E), and that 5(E) is dense in LP(B; E)
(see Ikeda and Watanabe [13], Remark 8.2). Moreover, the mapping

V: LP(B] E) —> LP(B; H ® E) ,
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with domain S(E), is closable. Denoting by E>1)P(E) the closure of S(E)
under the graph norm

we obtain a continuous mapping V: E)liP(E) —> LP(B\H®E), called the gra-
dient operator. Recursively, one can define higher order gradient operators
Vk ( VkF will be an element of Lp(B;H®k (g> E)) and obtain the Sobolev
spaces E)k'p(E).

The operator V is local in the following sense: If, for some measurable set
A, F:B -> E verifies F(UJ) = 0, for a.a. u G A, then VF: B -> # ® £ verifies
the same property. This fact justifies the following definition: The random
variable F: B —> E belongs to E)l(^

p(E) iff there exist a sequence {J5n}ne.2V
of measurable sets converging to B and a sequence {Fn}n^j?v of elements of
Bk>p(E) such that Fn = F on Bn. For F G E)kfc(E), the gradient VF is
defined as VF(w) = VFn(w), if a; G Bn.

The following different concept of differentiability will be used in the
Theorem below.

Definition. Let F: B —> H be a random variable with values in the Cameron-
Martin space H. The mapping F is H-C1 if for all to G B, there exists a
Hilbert-Schmidt operator IC(LJ) such that

1) \\F(u> + h)~ F(LO) - [K(u>)](h)\\H = o(||fc||H), as \\h\\H -> 0, a.s.
2) The mapping h \-> K,(UJ + h) from H to H 0 if is continuous, a.s. •

If F is if-C1 , then F G 1D\£{H) (see Kusuoka [12] or Nualart [15]).
On the other hand, F G E>{£.(H) implies that VF(w) is Hilbert-Schmidt,
a.s. Therefore, VF(CJ) is the only candidate for the operator JC(u>) in the
definition.

For any Hilbert-Schmidt operator /Cona Hilbert space if, its Carleman-
Fredholm determinant, denoted by det2(/# + /C), is defined by

oo

where {A^}^1 is the family of (complex) eigenvalues of /C, counted with their
multiplicity. For the properties of this quantity and its role in the theory of
integral equations see, for instance, Cochran [4].

The Ramer-Kusuoka Theorem can be stated as follows:

Theorem (Ramer [20], Kusuoka [12]).
Let F: B —> H be an H-C1 map. Assume:

a) The transformation T\B —> B given by T(LO) = LO + F(u>) is bijective.
b) The operator IH + VF(tu): H —> if is invertible, a.s.

Then:
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The measure Q := P oT (the image probability of the Wiener measure
by T"1) is equivalent to P and

g(u>) = I det2(/H + Vf (W))| exp { - (VF)(U) - \\\F(UJ)\\2
H} ,

where V* is the adjoint of the gradient operator, considered here as an un-
bounded operator L2(B) -> L2(B; H). D

Remark. V* enjoys a local property which is similar to that of V, and
ensures that, for F G 1D\£.(H\ V*F is well-defined. n

Remark. There exist stronger versions of this theorem, but we will not
make use of them. Particularly, Ustiinel and Zakai ([23] [24]) have obtained
representations for the density of Q without hypothesis a) and with less
regularity on F. •

Sometimes it is useful, for the purpose of representation, to realize the
Cameron-Martin space H as an L2 space. Let (T, B,JA) be a separable mea-
sure space. Denote H = L2(T,B,fi), and let i: H —> H be an isomorphism.
Given a random variable F: B —• H®n (for some n = 0,1,2,...), define
G:B -> H®n by the equality F = i®n o G, where z0n is the natural isomor-
phism between H®n and H®n induced by i. Define, also,

DG{u>) := (z'0n)-a o VF(w) o % G # 0 n + 1 .

If F e E>h2(H®n), then clearly G G iD1'2(F(8>n) and we have DG G
L 2 (B ;^ 0 n + 1 ) - L2(5 x T ; F 0 n ) .

The operator

L>: nh2(H^n) —> L2(B x T; ff0n) ,

which transforms random variables into processes (indexed by the elements
of T), is called the Malliavin derivative operator.

The statement of the Ramer-Kusuoka Theorem can be translated, using
the Malliavin derivative, into a form which is usually more amenable to
computations. Let F: B —> H, as in the Theorem. Then DG(LO) = z"1 o
V f (co)oi is a Hilbert-Schmidt operator on if, which has the same eigenvalues
of VF(a;), and the invertibility of In + VF(u>) is equivalent to that of / ^ +
DG(w).

Assume now v: B —> JR, v E L {B). In this case, Dvfu) = Vu(w)'o z. If
we denote by j the isomorphism between L2(B]H) and L2(B',H) given by
j(F)(uo) = i(F(u)), we can write Z) = j ~ 1 o V (as unbounded operators on
L2(B)) and the relation D* = V* o j holds for the adjoints. The adjoint of
the Malliavin derivative operator D is usually denoted by 6 and is called the
Skorohod integral. We have then, for F: B —> H and F = i o G,
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The formula for the density of Q with respect to P becomes

(4.1) ~JE{U) = | det2(J£ + DG(u>))\ exp { -

It is convenient to keep in mind both interpretations of DG{ui). In fact,
the process {DtG(w), t G T} is the kernel of the integral operator DG(oo):

[DG(to)}(h) = f D t G ( u ; ) h ( t ) d t , h e H .
J T

In the case of the classical Wiener space, taking T = [0,1] with the
Lebesgue measure, we have i{h) = Jo h(t)dt.

5. TRANSFORMATIONS. EXISTENCE AND UNIQUENESS OF SOLUTIONS

As stated before, transformations in Wiener space provide a natural
method to achieve existence and uniqueness results for nonlinear s.d.e. We
are going to describe here this procedure, and to apply it to some concrete
examples. Another natural approach involves the use of stochastic flows (see,
for instance, [5], Theorems 3.1 and 4.1).

Suppose we have a nonlinear equation of the following form:

p(D)Xt=f(Xt) + a(Xt)oWt , teTcR

where p(D) is a linear differential operator with constant coefficients, and we
assume that a is linear or constant. For simplicity of notation we make / ,
a and h depend only on X and not on any of its derivatives (cf. equation
(2.7)) or the time parameter t, but this is also possible. We assume also that
the dimension is equal to one.

Wt represents a White Noise. That means: W is a centered Gaussian
family {W(A\ A G B(Mk)} with covariance E[W(A)W(B)] equal to the
Lebesgue measure of A n B. Its (random) distribution function Wt (nor-
malized with Wo = 0) is a standard Wiener process with k-dimensional
parameter. We can (and shall) assume that the probability space (fi, J7, P)
in which we are working is the canonical space of the Wiener process. Then
Wt(u>) = u>(t), t G T.

Step 1: We can associate to (N) the linear equation

Wt , teT\

for some convenient a G M (which very often can be taken to be zero).
Usually, it is not difficult to find some explicit expression for the solution Yf.



10 Alabert: SDEs with with boundary conditions

Step 2: Denote by S the set of trajectories of the process Y*. We must identify
this set and check that the mapping from ft into E, defined by UJ H-> Y(LO), is
bijective.

Step 3: Define a transformation T: ft -> ft by T(u>) = u; + F(w), with F: ft ->
if. We must choose F in order to have the following:

a) If Z: ft -> ft satisfies T(Z(w)) = w, then X(o>) := Y(Z(u>)) solves (N).
6J If X solves (N), then there exists such a Z.

F is usually found by inspection or by a formal manipulation of (N) and (L).
The following fact is immediate:

Proposition. If T is exhaustive, there exists a solution to (N) whose paths
belong to S. If, moreover, T is injective, the solution is unique, within the
class of processes with paths in S. •

Example 1. Let us consider first an equation of the type (2.5):

, 0 < * < l
h(X0,X1) = 0

We assume here d = 1 and a > 0. The linearized equation (L) is

, 0<t< l \

The solution with initial condition Yo can be easily computed and (5.2)
becomes equivalent to the system

(5.3)
Yt = eat(Y0 + / Ge~as dWs) , 0 < t <

Jo

h(Y(he
a(Y0+ I ae~as dWs)) = 0

./o

Taking into account that the random variable Jo e as dW3 is absolutely
continuous and has the whole real line as support, (5.3) will have a solution
iff \/z G M (a.e.), h(y,eay + z) = 0 has a solution y = g(z). And this
happens when /i(Xo,Xi) = 0 can be written as XQ = g(X\ — eaXo). Thus,
this should be the case to take advantage of considering equation (L). For
example, choosing a properly, the case of affine boundary conditions (GLX"0 +
bX\ +c = 0) is fully covered. But observe also that with periodicity conditions
(XQ = Xi) we cannot take the simplest equation (a = 0).

The solution to (L) is then

Yt = eat [g(ea f ae~as dW3) + /* ae^3 dW3] .
Jo Jo
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It is immediate to prove that E = {£ E C([0,l]) : fo = g(£i ~ ea£o)} and
that Y: ft —> E is a bijection. This follows from the fact that any continuous
function vanishing at zero is a trajectory of JQ e~ots dWs (this integral has a
sense pathwise).

To find the random variable F notice first that T(LO) = LO + F(LO) implies
T " 1 ^ ) =u- i ^ T " 1 ^ ) ) . Then, using that Y(T~1(a;)) solves (N) and, at
the same time, solves (L) when W(oo) is substituted by W(T~1(UJ)), we find

F(u>)t = - f {aYs(u) - / ( Y » ) ) ds .a Jo

The bijectivity of T is true under some monotonicity or Lipschitz con-
ditions on / (see Nualart and Pardoux [16], Propositions 2.2 and 2.5 and
subsequent remarks).

Example 2. Consider the second order equation

(5.4) Xt = /(XO + Wt .

The solution of the corresponding equation (L)

(5.5) Yt = aYt + Wt ,

with initial conditions Yo and Yo, is, for a > 0, and putting A = yja,

1 f*
Yt = Yo cosh At + Yo - sinh At + / cosh (A(t - s)) Ws ds .

A Jo

For a < 0, we get the same expression with the hyperbolic functions replaced
by the corresponding trigonometric functions, and A = \J—OL. For a = 0, we
get simply

F, = Yo + Yot+ / W8ds .

A general boundary condition will have the form h(Xo,Xo,Xi,Xi) = (0,0).
As in Example 1, it is easy to find which form it must take (depending on
a) to have a solution to (5.5). We would find that, for Dirichlet boundary
conditions (Xo = 0, X1 = 0), one can take a = 0, which is convenient
to simplify later computations. But for Neumann (Xo = 0, X\ = 0) or
periodicity (Xo = XL, XO = X I ) conditions, one must take a ^ 0.

We must define

)t = f
Jo

F(u)t = f (aYs(Lo) - f(Y.(u>))) ds ,
Jo

and it can be shown that if y \—> ay — f(y) is locally Lipschitz, nonincreasing,
and with linear growth, then T is bijective.
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Whatever boundary condition we prescribe, Y will be a bijection be-
tween 0 and the set S of C1 functions verifying the boundary conditions.
This can be checked as in Example 1. The following example behaves differ-
ently concerning this point.

Example 3. Let us add a linear diffusion coefficient, depending only on Xf>
to the previous equation,

(5.6) Xi = f(Xi) + crXioWi ,

and impose the boundary conditions XQ = 0, X\ = 1. Then, taking a = 0
we can solve the associated equation (L) and get the solution

In this case, the set E consists of all C1([0,1]) functions £ with £' > 0
in [0,1] and £o = 0, £i = 1. Therefore, one is bound to prove existence
and uniqueness of solutions to (5.6) within the class of processes with such
trajectories. We must take

This equation will be studied by Alabert and Nualart in a forthcoming
paper. We remark that if we impose XQ = 0, X\ = 0, the solution to (L) is
Yt = 0, and the bijectivity of Y: fi —> S fails.

Example 4. Consider the partial differential equation (2.10), and assume
dT is a smooth hypersurface. We must precise first what is meant by a
solution to this equation. If the righthand side were a continuous function #,
the solution would have the representation

Xt= [ -K(t,s)g(s)ds
JT

for a symmetric kernel K. It is natural then to define a solution to (2.10) as
a continuous process Xt verifying the integral equation

(5.7) Xt= [ -K(t, s)f(X3 )ds+ [ -K(t,s) W(ds) .
JT JT

This concept of solution coincides, on the other hand, with the one ob-
tained thinking of (2.10) as an equation between distributions (see Buckdahn
and Pardoux [3]).



Alabert: SDEs with with boundary conditions 13

Notice that Vt = JT —K{t, s) W{ds) defines a Gaussian measure V on
the Banach space B of continuous functions on T vanishing at dT. We can
substitute this term in (5.7). The auxiliary linear equation

i\6T —v

has precisely the solution Yt = Vt. Therefore, in this case, we can take
St = £ = JB, and Y is the identity mapping.

The restriction k < 3 is due to the fact that otherwise K(t,s) is not
square-integrable and the linear equation fails to have a solution (see Rozanov
[21])-

F must be defined as

(5.9) F ( v ) t = [ K(t,s)f(v(s))ds , v e B ,
JT

and the bijectivity of T is obtained under the condition that / is continuous
and non-decreasing (Donati-Martin [6], Lemma 3.1).

6. CHANGE OF MEASURE AND MARKOV PROPERTIES

In this Section we will describe the use of the transformations T{ui) =
to + F(LJ), with F: Q, —> H, to obtain conditions for a Markov type property
to hold. Recall that we choose T in order to have Xt = T~1(Y)t, for Xt and
Yt solving equations (N) and (L), respectively. Therefore, defining Q = PoT,
the law of Y under Q coincides with the law of X under P.

We decompose the procedure in several steps, as in the previous Section,
to clarify the exposition. The objective is to obtain an equivalence between
the Markov Field property and a measurability condition which depends only
on the structure of the Carleman-Fredholm determinant det2(I^ + DG{UJ)).

It is hoped that this measurability condition could be then translated into
an analytical condition on the coefficients of the equation.

We assume we have performed steps 1 to 3 of Section 5, and that T is
bijective.

Step 4: Check that, in the case of the linearized equation (L), the process
we are interested in (the solution Yi, the couple (Yi,Yi), or whatever) is
a M.F. under the original probability P. Since possibly the process is in
explicit form, there should be no difficulties in proving this fact by some direct
method. Ocone-Pardoux [19], Rozanov [21], and Russek [22], for instance,
give general results in this direction.

Step 5: Verify the hypothesis of the Ramer-Kusuoka Theorem and obtain

J{UJ) := ——(a;). This involves, in principle, the computation of
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DG{u>)), which is always rather cumbersome, but sometimes can be avoided,
as in Example 4 below.

Step 6: Let us introduce the following notation: Given a subset D of the
parameter space, such that D c T , set

rD:=a{YuteD}, FD := a{Yu t 6 5*}, Fb
D := a{Yu t E dD}.

We will write Ep and EQ to denote the expectation taken with re-
spect to probabilities P and Q, respectively. The following Lemma is an
immediate consequence of the definition of conditional expectation and the
Radon-Nikodym Theorem.

Lemma 1. For every random variable £, ^-measurable and Q-integrable,

The quotient is indeed well defined because the invertibility of 1^ +
DG(uS), which is assumed a.s., is equivalent to det2 (Ift -{- DG (to)) ̂  0. There-
fore, J > 0, a.s.

Now we have the equivalencies: X is a M.F. under P iff Y is a M.F.
under Q iff VD and V£, ̂ -measurable, Eg [f/jrjj is ̂ -measurable, iff the
same property is true for the quotient in (6.1).

Thus, we get a measurability condition formulated again in terms of the
original probability P, the cr-fields generated by the process Y and (at the
cost of) the density J.

Step 7: Suppose at first that J{ui) can be written, for every Borel set D,
as J = Le

DLl
D, with Le

D and Ll
D random variables Fp and J7^-measurable,

respectively. Then, the Markov Field property holds: Indeed, using that Y
is a M.F. under P (step 4), and this factorization for J, the quotient in (6.1)
is clearly TD-measurable.

In all examples known, the exponential part of (4.1) can be factorized
in this way, and it only remains to consider the Carleman-Fredholm deter-
minant. In the adapted case, det2(i# + DG(u))) is always equal to 1 and the
factorization holds. Therefore, in the classical Wiener space, J reduces to
Girsanov formula (recall that for adapted G, the Skorohod integral coincides
with the Ito integral). This fact is literally "trivial": Zakai and Zeitouni
show in [25] three different arguments.

Assume then that there is a partial factorization J = ZLe
DLl

D, for some
Z'. This simplifies the measurability condition:

[J/rD]
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and taking £ = rj • (Le
D)~ , with rj an ^"^-measurable random variable, we

get that the Markov Field property is equivalent to the fact that

E F \\jj ^ b

(6.2) AJJ := YT~,— n 1S ^D-measurable.

From this point onwards, the objective is to translate this characteriza-
tion into an analytical one. The way to do this depends very much on the
concrete problem under study, but in most cases the arguments employed
make a fundamental use of the following Lemma:

Lemma 2. Let F G ID^2., and M a closed subspace of L2(T). Denote by TM
the a-field generated by the Gaussian random variables {JT hdW, h G M}.
Let A G TM a n d assume that IAF is Twmeasurable. Then DF(u>) G M,
for uj G A, a.s. •

For the proof, see for instance [15]. We illustrate steps 4 to 7 above
with the examples that follow. In the second one, moreover, we sketch the
derivation of the final analytical characterization, without going into details.

Finally, we notice that for the Germ Markov Field property, everything
in this Section remains valid after changing the definition of TD.

Example 2 (Continued). Consider again the second order equation (5.4),
with Neumann boundary conditions (Xo = 0,Xi = 0). Take for instance
a = 1 in equation (L).

We have the solution

= _Wl+s;*Mis)w.d, cosht i _ ds
sinhl Jo

The process (Yi?Yi) is a M.F. (in fact, a Markov Process). This can be

seen computing, for t > 5, E [^(^i, ̂ / / ( y ^ Y"r),0 < r < s] f°r a bounded
measurable ip by means of a regular version of the conditional probability.
The result is a function of Ys and Ys.

If /(y) := ay — /(y), besides the conditions stated in Section 5, is of
class C2, the hypothesis of the Ramer-Kusuoka Theorem are satisfied:

F is H-C because in fact it is a Frechet continuously differentiable
mapping 0 -> H. We have G(LO)3 := ( r 1 o F)(u>)3 = YS(LO) - f(Y.(u>)) (cf.
Section 4). The derivative operator satisfies a chain rule analogous to that
of the ordinary derivative. This allows to compute the kernel of DG(LO):

DtG{u>). = J\YS) • [ ~ ^ f • cosh(l - t) - sinh(l - *)

From the Fredholm alternative, we have to check that the unique solution in
JL2([0, 1]) of the integral equation

(6.3) h(s)+ [ DtG(u>)sh(t)dt = 0
J
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is h = 0.
Set g(t) = JQ sinh(£ — s)h(s) ds. From (6.3), g(i) must satisfy

where <£(£, s) = <£< • $ s
 1, and $* is the solution to

0 1'

The integrand is nonpositive, and we deduce gl(l) = 0, hence h = 0.
Therefore, we can apply the Theorem, and follow steps 6 and 7, to get the
condition (6.2), with Z = det2(/# + DG(w)). The same computations can
be done taking any a > 0, and the following analytical condition is derived
(we refer to Nualart [14] for the final computations):
Theorem: If / is C2, with lineal growth, and / ' > a, for some a > 0, then
(5.4) has a unique solution Xt, and the process {(Xt,Xt),0 < t < 1} is a
M.F. iff / " = 0.

Example 4 (Continued). In the previous Section we have set the Banach
space B = {to £ C(T) : w\ = 0}, with the supremum norm. Let JJ, be
the law of V: O —> 5 , which is a Gaussian measure on B. Instead of the
Cameron-Martin space H relative to B and ^, we will choose an L2 space
to work in. Take H — L2{T). The isomorphism i: H —> H is given by

K{t,-)h(t)dt .
T

Indeed, i: H —> 5 is continuous with a dense image, and moreover ev-
ery £ £ B* is Si random variable normally distributed, with mean zero and
variance ||^||#. This characterizes (B,H,fj,) as an abstract Wiener space and
can be checked by computing the characteristic function of £.

Recall the definition of the random variable F in (5.9). Since F(u>) —
i(f o a;), we have G(uS) = f ouo. Assuming f £ C1 and / ' > 0, the hypothesis
of the Ramer-Kusuoka Theorem are satisfied: It is immediate to compute
VF(w) using Frechet differentials:

[VF(u)](h) = / K(t,-)?{u)t)h{t)dt .
JT

Then, from the relation between DG{uo) and Vi^(cj), we find the kernel
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Moreover the mapping from H into L2(TxT) given by h H-> ff(uj3 + h3)K(t, s)
is obviously continuous.

We know that T is bijective. Finally, we need the invertibility of 1^ +
DG(LO). Equivalently, the integral equation

hs+ I f'(Los)K(t,s)h(t)dt=0
JT

must have h = 0 as the unique solution in L2(T) (Fredholm alternative).
Indeed, multiplying by JTT^T and integrating over T, we get

where K{h) = JTK(t,-)h(t)dt. But it is known that (h,K,{h))6 > 0 (see,
for instance, [3]). Both terms must be zero, from which h = 0. Therefore,
formula (4.1) holds true for the density jp.

The exponential part of (4.1) factorizes as explained in Step 7 (see [6]).
Therefore, following steps 4 to 7, we arrive to the condition (6.2), with TD =
f| <T{YU t e (dD)£} and Z = det2(/^ + DG{w)).

£>0

In the sequel, we are going to avoid the references to the set D and the
space H, to simplify notation. Set also Th'e = <j{Yt, t E (dD)£}. Let us
assume that f £ C2 and / ' > 0. We want to prove that X is a G.M.F. iff
/" = o.

One of the implications is obvious: If / " = 0, then Z is deterministic
and the factorization holds. Conversely, suppose X is a G.M.F. We notice
that Z > 0, because the eigenvalues of the operator with kernel fl{u)s)K{t1 s)
are nonnegative. This is also a consequence of (/i,/C(/i)) > 0.

For every e > 0, A^ is ^'^-measurable. We can assume rj > 0 and
smooth (in the sense of Section 4). Then A^ G Djo'c

2, and by Lemma 2
above,

DAV E span{if (t, •), t G (dD)e} C H .

)£). Then

(6.3) (^., ADAV) = 0 and (f, AD.yy) = 0 .

The operators A and D commute with the conditional expectations. Then,
from (6.3), and using the chain rule for the operator D, we get

E [Z/jri] E [V(<f>-, AD.Z)/jri] _ E [vZ/jri] E [{</>., AD.Z)/^i] = 0

This implies that for every T%-measurable random variable £,
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which in turn gives

and we deduce that

(6.4) —(<f>.,AD.Z) is ^'-measurable.
ZJ

The Malliavin derivative of Z can be written

DtZ = Z • Tr [(/ + DGito))-1 o (-DG(w)) o Dt(DG(u>)j\ ,

where Tr is the trace of the nuclear operator in brackets. Denoting by L
the kernel of the Hilbert-Schmidt operator (I + JDG(CJ))"1 O ( - D G ( W ) ) =
(/ + DGiuj))'1 - J, from (6.4) we deduce that

f"(<jo3) I L(t,s)K(s,t)dt
JT

is ^-measurable, for s £ D — (dD)e.
We can apply again Lemma 2, and repeat the arguments above, now

with a function i/> G Cc^mp(D
c - (dD)e), to obtain

U + ^G(^))"1 ](.,*)[If • (I + DGiu;))-1]^s) = 0 ,

for every 5 G D - (9D)€ and s G Dc - (dD)€, from which it can be drawn
that fn(io3) = 0. This implies obviously / " = 0. Thus we get:
Theorem: If / G C2, with / ' > 0, then (2.10) has a unique solution, which is
a G.M.F. iff / " = 0. n

7. OTHER METHODS AND EQUATIONS

The most serious objection that can be raised against the change of
measure method is to have to deal with the Carleman-Fredholm determinant
of a certain integral operator. In example 4 of the last Section its explicit
computation has been avoided, but this is not always possible.

With this in mind, some different procedures have been developed re-
cently. In Alabert and Nualart [2], a new approach was proposed and applied
to the following second order difference equation:

( v X n + 2 - 2 X n + 1 + X n = / ( X n + 1 ) + £n , 0<n<N-2
{ } Xo= 0,

where the variables {(,n}n=o a r e given and assumed to be independent. In
case £n are absolutely continuous with a strictly positive density on JR, then
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the pair (Xn, Xn+i) is a Markov Process iff / is affine. But if £n have discrete
laws, then (Xn,Xn+i) is always a Markov Process.

The method used in [2] is based in an application of the co-area formula
from Geometric Measure Theory, and leads in a natural way to raise the
following general question: Given two independent random variables Z\ and
Z2, are they conditionally independent given some function g{Z\, Z2)?

Ferrante and Nualart [10] applied more direct arguments to

+ a(Xn)Zn , 0 < n < i V - l
1 ]

where / and a are nonlinear and the noise is assumed positive and absolutely
continuous. In this case, Xn is a M.F. iff

x + f{x) = fix1

a(x) = ax1

for some a > 0, /? > 0 and 0 < 7 < 1.

In Alabert, Ferrante and Nualart [1], the arguments used in these dif-
ference equations were refined and applied to

dXt = /(*, Xt-) fi(dt) + dWt , 0 < t

where \i is any finite positive measure. The change of measure scheme does
not work in this case. Xt is a M.F. iff one of following conditions holds:

a) i\)1 = 0.
b) \/t £ supp^x, /(£, •) is affine.
c) i\) is constant, and b) holds except possibly in one only point to.

It turns out that the investigation of the Markov Field property can be
reduced to the following particular form of the general question cited above:
Given two independent cr-fields T\ and Ti of a probability space, and given
two random variables determined as the solution of a system of the form

Y = g2(X,u>)

where gi(y,-) is ^-measurable (z = 1,2), under what conditions on g\ and
#2 are T\ and T2 conditionally independent given X and Y1 The answer is
given in [1], Theorem 2.1.

Finally, we remark that sometimes it is possible to make a change of
variables to get rid of a nonlinear diffusion coefficient, thus making easier the
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investigation of conditional independence properties. For instance, assume
6, a and ij) are C1 functions, with a > 0. Then the problem

(7.4) dXt '-

can be transformed in

dXt=f(Xt)dt + dWt , 0<t

and one finds that the solution to (7.4) is a M.F. iff either
1) </>' = 0, or

fx 1
2) b(x) = Acr(x) + Ba(x) / —— dt , for some constants A, B, c.

Jc <r{t)
(see also [1] for a more detailed discussion).
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