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We prove an existence and uniqueness theorem for stochastic reaction—diffusion equations driven by
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the force term is only measurable and can be locally unbounded.

Keywords: space-time white noise; stochastic reaction—diffusion equations

1. Introduction

Differential equations may be ill behaved in the sense that they have no solutions, or non-
unique solutions, or solutions which do not depend continuously on the given data.
Surprisingly, by introducing some random perturbation we can often transform these
equations into well-behaved stochastic differential equations. This phenomenon is well known
for ordinary differential equations. In the present paper we are interested in this regularization
effect of the noise on ill-posed partial differential equations (PDEs). In order to illustrate the
result of the paper, let us consider the following examples of simple reaction—diffusion
equations:

ou 0*u - Iy
—(t, x) = = (¢, x) + 2+/sin(mx)u(z, x) + 7T u(t, x), t=0, xe€(0,1),
ot Ox?

u(t, 0) = u(t, 1) =0, t=0, (1.1)
u(0, x) =0, x €[0,1];

u
ot
u(t, 0)=u(t, 1)=0, =0 (1.2)

O*u
(t, x) = @(I, x) — f(u(t, x)), t=0, xe(0,1)

u0, x) =1, x € [0, 1],

where f :=z"'/3 for z# 0 and £(0) = 1.
Clearly, both u:=0 and v := ¢*sin(rtx) solve the first example. Hence one can easily
construct infinitely many solutions. On the other hand, by adding a ‘multiplicative noise’
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o(u(t, x))0* W /0tdx to the right-hand side of (1.1), we transform it into a stochastic PDE
which has a unique solution for any small non-degenerate Lipschitz function ¢ and for any
given space-time white noise 9> /9tdx on [0, co) X [0, 1]. This result is known from
Bally et al. (1994), where an existence and uniqueness theorem is proved for stochastic
reaction—diffusion equations which locally bounded measurable force terms. The proof of
this result in Bally et al. (1994) is based on a priori L”-estimates, obtained by Malliavin
calculus for the density of the solution. In Gyongy (1998) it is shown that existence and
uniqueness results hold also for a larger class of non-degenerate stochastic semilinear PDEs
with locally bounded force terms, even if no density estimates, like those from Bally et al.
(1994), are available.

The second example does not have any solution, because the local solution is ‘trapped’
by the singularity of f. Note that f is locally unbounded, so the previous results do not tell
us if random perturbations with non-degenerate multiplicative noises can compensate its
irregularity. As an application of the main result (Theorem 2.1) of the present paper, we
obtain that these perturbations also regularize (1.2). A similar result is proved in Gyongy
and Pardoux (1993) for the special case of random perturbations with additive space-time
white noise. In the proof of Theorem 2.1 we use ideas and results from Bally et al. (1994)
and Gyongy and Pardoux (1993). The main difficulty is to obtain the necessary a priori L?-
estimates for the Green measure of the solution. To prove the uniqueness of the solution is
more delicate here than it is in Gyongy and Pardoux (1993) and Bally ef al. (1994), and we
can obtain the uniqueness only in the class of solutions satisfying an integrability condition
((2.5) below).

For standard definitions and tools of the theory of stochastic PDEs we refer to Da Prato
and Zabczyk (1992), Rozovskii (1990) and Walsh (1986).

2. Formulation of the problem and the main results

Let (Q,.7, {7} o<i=1, P) be a filtered probability space carrying an .7 ,-Brownian sheet
W =W(t,x) on [0, T]X][0,1]. This means W is a Gaussian field, EW(¢, x) =0,
E(W(t, X)W (s, y)) = (tAs)xAY), W(t, x) is .#,-measurable and W(t, x) — W(s, x) +
W(s, y) — W(t, y) is independent of .7 for all 0 < s < ¢ and x, y € [0, 1].

Let f=f(t,x,z) and o0 =0(¢, x,z) be .7;-adapted random fields on [0, c0) X
[0, 1] X R. This means that they are functions of (7, w, x, z) € [0, c0) X QX [0, 1] X R,
such that they are Borel-measurable in (¢, x, z) and .7,-adapted for fixed x, z. Let
uy = ug(x) be a continuous .7y-measurable random field such that uy(0) = uy(1) = 0. We
consider the Dirichlet problem

2 2
%(r, x) = %(r, x)+ f(t, x, u(t, x)) + o(t, x, u(t, x))%, t=0, xe€(0,1),
u(t, 0) =u(t, 1) =0, t=0, (2.1)

u(0, x) = u, x € [0, 1],
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denoted by Eq(ug, f, o). We say that a random field # = u(¢, x) is a solution to Eq(uy, f, 0)
on [0, T], if u(z,x) is .7, measurable for every ¢ x, it is continuous in (¢, x) €
[0, T] X [0, 1], and almost surely (a.s.)

1

t el ¢l
up(x)p(x) dx + JOJO u(s, x)o"(x)dxds + Jojof(s, x, u(s, x))p(x)dxds

Jlu(t, X)p(x)dx = J

0 0

tl
+ J J a(s, x, u(s, x))p(x)dW(s, x)

0J0
(2.2)

for all £ € [0, T] and ¢ € C%([0, 1]), @(0) = ¢(1) = 0, where the last integral on the right-
side of this equality is understood as It0’s integral.

It is well known that Eq(ug, f, ) has a unique solution when f and o are Lipschitz
functions satisfying a linear growth condition and u is continuous (see, for example, Walsh
1986). In the present paper we study the case when f is only measurable and may be
locally unbounded. In order to formulate our main results we use the notation L”%" for the
space of functions 4:[0, 7] X [0, 1] X R — R with the norm

1/r

T /¢l alp r/q
12| pgr = Jo (Jo (JRM(L x, z)|? dz) dx> d¢ < 00. (2.3)

We assume the following conditions on the data f, o and uy:
(A) f=f(t, x, z) is a Borel function such that
lf(t, x, 2)]> < C+ F(t, x, 2), dt ® dx ® dz almost everywhere (a.c.) (2.4)

with some constant C = 0 and a non-negative function F € LP?" for some p>1,
q>2, r>4q/(3q —2).

(B) 0:[0, T} X[0,1] XR — R and 1/0, d0/9z, 8?0 /dz* are bounded Borel functions
for every T >0.

(C) up is an .Zy-measurable continuous random field on [0, 1], uy(0) = uo(1) = 0.

Theorem 2.1. Assume conditions (4), (B) and (C). Then Eq(uy, f, 0) has a unique solution
u satisfying

T
J F(t, x, u(t, x))dxdt < oo (a.s.) (2.5)
0

for every T. This solution is a C([0, 1])-valued Markov process.

Remark 2.2. Assume (A), (B) and (C). Assume that f satisfies condition (A) not only with
constant C = 0 and non-negative function F € LP?") but also with some other constant
D =0 and non-negative function G € L% in place of C and F. Let u and v denote the
solutions of Eq(uy, f, o) in the class of solutions satisfying (2.5) with F and with G (in place
of F), respectively. Note that |f|>? <3(CVD)+FAG, and H:= FAG € LP7" N L.



148 A. Alabert and 1. Gyongy

Hence u = v by Theorem 2.1, that is to say, our statement on the uniqueness of the solution
does not depend on the particular function ' which satisfies (A) with the given function f.

Theorem 2.3. Assume that the data (uy, [, o) satisfy conditions (A), (B) and (C). Let f be a
Borel function satisfying condition (A). Let y be an .7y-measurable continuous random field
on [0, 1], 4p(0) = up(1) = 0, such that uy(x) < up(x) (a.s.) for every x € (0, 1). Assume that

f(t, x,2) < f(t, x, 2) dt®dx®dz (a.e.) (2.6)

Then almost surely u(t, x) < u(t, x) for all t, x for the solutions u and u of Eq(uo, f, 0) and
Eq(uo, f, 0).

3. Preliminaries

Let g=g(t,x) be an .7,-adapted random field on [0, 7] X [0, 1], such that
g € L*([0, T] X [0, 1]) (a.s.). Define

T ¢l T ¢l
Z :=exp (L Jog(t, x)W(dt, dx) — %L Jog(t, x)? dxdt), dP:= ZdP, (3.7)

and assume E(Z) = 1. Then, by Girsanov’s theorem,

X

W(t, x):= W(t, x) — JOL g(s, y)dyds (3.8)

is an .7,-Brownian sheet under the probability P (see, for example, Gyongy and Pardoux
1992).

We will use Girsanov’s theorem to derive the existence of continuous modifications of
random fields u satisfying (2.2). In particular, we will make use of the following
proposition.

Proposition 3.1. Assume (4), (B) and (C). Let u = {u(t, x), t € [0, T] X [0, 1]} be an .7}
adapted bounded random field satisfying (2.2) almost surely for each te€ [0, T],
@ € CX([0, 1]), with ¢(0) = @(1) = 0. Assume that 0 = o(t, x, z) is bounded, that it is
Lipschitz in z and that 7 = 3(t, x) := (f/o)(t, x, u(t, x)) € L*([0, T] X [0, 1]) (a.s.). Define

Z = exp (LTJ; g(r, x, u(t, x))dW(t, x) — ;JOTJ;

Then u has a continuous modification which is a solution of Eq(uy, f, o) on [0, T1.

f

E(t’ x, u(t, x))

2
dxdt). (3.9)
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Proof. Assume first that, for some constant R,

T ¢l f 2
J J =(t, x, u(t, x))| dxdz =< R. (3.10)
0JolO
By Girsanov’s theorem,
trx
(0 = w0+ | [ Loyt ymayas @1
0Jo

is an .7 ,-Brownian sheet under P, and u satisfies
1

Jlu(t, x)p(x)dx = J

trl trl
Uo(X)p(x) dx + J j u(s, X)p"(x) dx + J j o (s, x, u(s, )p(x) A (s, x),
0 0

0J0 0J0
(3.12)

dt® P a.e. on [0, T]. It is known (see Walsh 1986), that there exists a modification i of u
which is continuous and satisfies (3.12) for all 7. Hence, (2.2) holds for all ¢ € [0, T'] with
in place of u, P and P almost surely. Consequently, i is a solution to Eq(uo, f, ) under P.
The general case can be obtained by a standard stopping-time argument. O

We will use the following results on existence, uniqueness and comparison of the
solutions. For their proofs we refer to Bally et al. (1994) and Gydngy (1998).

Proposition 3.2. Let f = f(t, x,z) and 0 = 0(t, x, z) be bounded measurable functions.
Assume that o satisfies condition (B). Let & = &(t, x) be an .7 ,~adapted random field such
that J"OT Jg EX(t, x)dxdt < oo (a.s.). Then Eq(uo, f + &, 0) has a unique solution for every
Fo-adapted continuous random field uy on [0, 1].

Proposition 3.3. Let equations Eq(uo, f + &, 0) and Eq(ity, f + €, 0) satisfy the conditions
of Proposition 3.2. Assume that

f(t, x,z) < f(t, x, z) dt® dxr®dz a.e.,
Et,x) <&t x) Podr@drae. (3.13)

Uy < Uy P®dxa.e.

Then almost surely u(t, x) < u(t, x) for all (t, x), where u and u denote the solutions of
Eq(ug, f + &, 0) and Eq(iy, [ + &, 0), respectively.

4. Estimates and passage to the limit

In this section we prove the estimates which we need in order to be able to pass to the limit
in the equations which approximate Eq(uo, f, o). These estimates are stated in Proposition
4.3, which extends the corresponding estimates from Gyongy and Pardoux (1993) to the case
of equations with multiplicative noise. First, we establish two preliminary estimates (Lemmas
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4.1 and 4.2) for the solution of Eq(uy, 0, o). The proof in Gyongy and Pardoux (1993) of the
corresponding estimates when o = 1 is based on a decomposition of the solution u into a
random field &, which is Gaussian, and into another field #, which is independent of £. Such
a decomposition is obviously not available in our more general case. We use the notation

1 q/p 1
1A pg == (L (JRM(t, x, z)|? dz) dx) 4.1)

for functions 7 = A(t, x, z).

Lemma 4.1. Assume (B) and (C). Let u be the solution to Eq(ug, 0, o). Then, for any p>1,
q>2, r>4q/(3q —2), there exists a constant K, depending only on T, p, q, r and the
supremum norms of o, 1/0, 00 |0z and 60 |0z, such that, for every Borel function h € LI
and every s € [0, T,

Tl T 1r
E(J J h(t, x, u(t, x))dxdt|.7s> < K(J 12O, dt) . 4.2)

s JO s

Proof. For every deterministic initial value uy € C([0, 1]), it is known from Bally et al.
(1994) that, for every t>0, x € (0, 1), the random variable u(z, x) has a density p(¢, x; z)
with respect to the Lebesgue measure R. Moreover, by Lemmas 3.2, 3.4 and 3.5 in Bally et
al. (1994),

J (1, x; 2)| dz = C{1+ ¢ 1HOA (e A (1 — x))[CmO2Hy, (4.3)
R

for every p =1, a € (0, 1) and ¢ >0, with a constant C. Hence, with some constant L,

o/x 1/6

o ([ emore) o)

1/6 1/k
T 1
<L+1L (J ¢lra)/a+eld dt) (J (x A (1 — x)) M@-o/2+e] dx> , (4.4)

0 0

which is finite if k <2, 0 <4k /(3x — 2) for sufficiently small ¢ >0 and «a sufficiently close
to 1. Thus by Hoélder’s inequality,

Tl r 1/r
E(J Joh(t’ * ult, xmxdf) = K(J 6] dt> (4.5)

for every Borel function 4 € L??", where p, q and r are the conjugate numbers to p, k and 9,
respectively. Consequently, we have (4.5) for every p>1, ¢>2 and r>4q/(3q — 2). For
every deterministic initial condition uy, the constant K above depends only on 7, p, ¢, r and
the supremum norms of o, 1/0, 0o /dz, 9?0 /dz*. Next, we show that in estimates of the
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form (4.5), the constant K is independent of the deterministic initial value u,. To this end, let
uy(t, x) be the solution of Eq(ug, 0, 0) and note that (¢, x) := u(t, x) — up(t, x) is the
solution of Eq(0, 0, &) with &(¢, x, z) := o(¢t, x, z + @o(t, x)). Hence, setting A(t, x, z) :=
h(t, x, z+ uy(t, x)), from (4.5) we have

Tl Tl
E(J J h(t, x, u(t, x))dxdt) = E(J J h(t, x, u(t, x) + up(t, x))dxdt)
s J0 s JO
T 1/r r 1/r
< 1<<J |1§(¢)||;th> - K(J 1ho, dt> 4.6)

by the shift invariance of the Lebesgue measure. We now show (4.2). To this end we take a
sequence of .7 -measurable continuous random fields v, = {v,(x):x € [0, 1]} such that
v, — u(s, -) a.s. in C([0, 1]) and v, € T, for all w € Q for a finite subset ', of some dense
set {w:i=1,2,3...} in C([0,1]). Let wu, = {u,(t,x):s <1t x€[0,1]} denote the
solution of (2.1) with initial condition v, at ¢:=s. Then, for almost all w € Q, we have
uy(t, x) — u(t, x) for all t =s, x € [0, 1]. Let u! = {u'(t, x):s < 1, x € [0, 1]} denote the
solution of (2.1) with initial condition w' at f:= s. Then, by well-known properties of the
conditional expectation and by estimate (4.5),

E (JTJIh(t, x, u(t, x))dth|-7s> =E (JTJI Z Lo, —wit h(t, x, (1, x))dxdt|.75>

s J0 s 90 i wier,}

Tl _
= Z I{UHW{}E<J J h(t, x, u'(t, x))dxdt)

{i:wiel,} s JO
=K Z (l{vn:w"}”thqr) = K”h”qu' (4-7)
{i:wier,}

Letting n — oo, we obtain (4.2) for every continuous /4 € L??". For fixed R>0, let .7y
denote the set of Borel functions A = A(t, x, ) such that (4.2) holds with hg:=
kr(r)h(t, x, r) in place of h, where kg(?, x, r) := max(—|r/R| + 1, 0). Then, as we have
proved above, .77y contains every bounded continuous function. Moreover, if /4 is a pointwise
limit of an increasing uniformly bounded sequence from .77, then 4 also belongs to .77;.
Hence, by the monotone class theorem, .77 contains every bounded Borel function % (see,
for example, Dellacherie and Meyer 1978, p. 15). Let & € LP? be a non-negative Borel
function. Then gy := min(hg, L) belongs to .7 for all constants R, L > 0. Hence, letting
first L — oo and then R — oo in (4.2) with hpy in place of A, we obtain (4.2) for i by
Fatou’s lemma. Consequently, (4.2) holds for every Borel function & € LP9", O

The following lemma generalizes Proposition 3.2.5 from Gyongy and Pardoux (1993).

Lemma 4.2. Assume (B) and (C). Let u be a solution of Eq(ug, 0, 0). Then, for any a>1,
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B>2, y>4B/(3B — 2), there exists a real analytic function A:R, — (0, co) depending only
on T, a, B, vy and the supremum norms of 0, 1/, 00 /0z and 0*0 |0z, such that for every
Borel function h:[0, T] X [0, 1] X R — R, h e L,

Tl
E{exp (L Joh(t, x, u(t, x))dxdt) } < A(|| h|apy)- 4.8)

Proof. We can derive this lemma from estimate (4.2) in the same manner as Proposition 3.2.5
in Gyodngy and Pardoux (1993) is proved. For convenience’ sake we reproduce the argument
below. Clearly

Tl o1 Tl
E{exp <L L h(t, x, u(t, x))dxdt) } = ;EE (Jo Jo h(t, x, u(t, x))dxdt>

=1+ I, (4.9)

n

where

E<1|HJ Jh(t,,x u(t;, x))dxdt)

T ¢T T 1 1
E J J e J J h(tlaxa u(tl,.x))d.X"' J h(tny .X, ”(tn: x))d‘thn .”dtl
0J1 ty-1J0 0

ﬁr JTZE{J;h(r], X, u(t, X)) dx - - J;h(tn_], o ) dx

0Jny thy

T 1
XE(J J h(t,, x, u(ty,, n'?ln1> dt,—1 "'dtl}. 4.10)
t,—1J0

By Lemma 4.1,

T (T T 1 1
1, SKJ J E J h(ty, x, u(tl,x))dx~~~J h(ty—1, x, u(t,_y, x))dx
5 0 0

0Jy th

T 1/y
X ( Hh(tn)HZﬁ dtn> dtn71 . dtl
th—1

T (T T Tl 1
:KJ J E{J J h(ty, x, u(tl,x))dx~~~J h(ty—1, x, u(ty—1, x))dx
—_3 0

0Jy ty 1240

T 1y
x( |h(tn)||zﬁdt,,> dt,_1 »dt,_s---dty. 4.11)

th
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Proceeding as before, we take conditional expectations successively with respect to .7, ,,
Ft,5s -+, and we obtain

Tl
I, < K”_IE{J J h(ty, x, u(ty, x))dx

0J0

T T 1/y
><<J “'J |MUﬁH¢-~HhUQH¢d%-~d@) an s @)
th—1

4l

Conditioning, finally, by .7, we get

T (T T 1y
=B ([ [ [ el Il dn - dn
0 -1

151 ty

1 1/y
- K”(ﬁ> [ (4.13)

Consequently, we can take

00 1 1/y
A() ==Y K" <n') Y, (4.14)
n=0 :

which is well defined for every y € R. O

Proposition 4.3. Let [ := f(t, x, z) be a bounded Borel function such that
1f(t, x, 2)|* < C+ F(t, x, 2), (4.15)

with some constant C and Borel function F € LP?" for some P >1, g>2, r>4q/(3q —2).
Let & = &(t, x) be an .7 -adapted random field, such that IoT o &, 0)[* dxdr < M (a.s.) for
some constant M. Assume conditions (B) and (C). Then the solution u of Eq(uo, f + &, 0)
satisfies the following estimates.

(i) Let g = g(t, w, x, z) be an .7 -adapted random field such that
|8(t, 0, x, D) < n(t, ®, x) + G(t, x, 2), (4.16)

where n = n(t, x) is some .7 ;-adapted random field, fOTfOlndxdt < L for some
constant L, and G € LP'9", with p'>1, q'>2, ' >4q"/(3q' —2). Then

Tl oy
Z(g) := exp <_Jo L g(t, x, u(t, x))W(dt, dx) — 3 J J lg(t, x, u(t, x))[* dxdt)

0Jo
(4.17)
is a well-defined real random variable, and the measure P given by dP = Z(g)dP

is a probability measure equivalent to P. Moreover, for every p € R, there exists a
constant K = K(T, C, L, M, p, q, r, p', q', ¥', ||F|| pgrs |G| p'q'r» O, p) such that
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E(Z°(g)) < K and E(Z'(2) <K, (4.18)

where E denotes expectation with respect to P.

(ii) For any a>1, f>2, y>4B/(3B —2), there exists a constant K = K(T, C, M,
D, 4 ¥ |Fll pgrr 0, @, B, y) such that for every Borel function h:[0, T] X
[0,1]XR— R,

T ¢l
E(J J h(t, x, u(t, x))dxdt) < K|kl apy- (4.19)
0J0

(iii) For any a>1, f>2 and y>4(/(3p —2), there exists an analytic function
A:Ry — (0, 00), depending on T,C,M,p,q,r,||F| pgr>0,0,B,y, such that, for
every Borel function h = h(t, x, z), h € LBy,

Tl
E{exp (Jo Jo h(t, x, u(t, x))dxdt) } < A(|| 2| apy)- (4.20)

(iv) For every p>1 and &>0, there exists a constant K = K(T, C, M, p, q, r,
| E|l pgrs 05 ps O) such that

E sup  exp(—0l[ug|[co)|u(t, X)|” p < K, (4.21)
(£0)€[0,T1X[0,1]

where ||ug|lo 1= Supxeqo,17|to(x)|-

Proof. (i) Assume first that g is bounded. Then Z(g) is well defined, P is a probability
measure, and under P, defined by dP = Z(f)dP, f := o ~!(f + &), the random field u solves
Eq(uo, 0, o) with the Brownian sheet

W(t, x) == W(t, x) + UO f(s, v, u(s, y))dyds (4.22)

in place of W. Moreover,

T ¢l T ¢l
E[Z"(g)] :E{exp (—pj J g(t, x, u(t, x))dW(t, x)—pzj J lg(t, x, u(t, x))|2dxdt> 1}

0Jo 0Jo
< {EZQpg)}{EI}'? = {EP}'?, (4.23)

where Z(2pg) is defined by (4.17) with W and 2pg in place of W and g, respectively, E
denotes the expectation with respect to P, and

Tl Tl
1= exp{ (pz — g)J J lg(t, x, u(t, x))[> dxdr + pJ J gf(t, x, u(t, x))dxdt}

0J0 0J0

Tl
= Nexp{(p2 + |p|)J0 L(G(l‘, x, u(t, x)) + A2F(t, x, u(t, x)))dxdt}, (4.24)
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with N :=exp{(p*> + |p[)(L +A*(CT + M))}, A:=sup{lo~!(¢, x, 2)|:(t, x, z) € [0, T] X
[0, 1] X R}. Hence, by Lemma 4.2,

E(2°(g)) < NA'*(4(p* + [pDII G| g ) A" *(A(0* + |pDAZ | F | pr), (4.25)
and by
E(Z*(g)) < {E(Z2(f)}/H{E(Z*(g))}'/ (4.26)

we obtain (i) in the case of bounded g. We can treat the general case of unbounded g after
proving statement (ii).
(ii) Assume # is non-negative. If p, 6>1, 1/p+1/6 =1,

Tl Tl
E(J J h(t, x, u(t, x))dxdt) = E(Z_l(f)J J h(t, x, u(t, x))dxdt>
0Jo 0Jo

T ¢l
< T“{E<zp(f))}”f’{E<J j h(t, x, u(t, x))"dxdt)}
0Jo

1/6

< K||hllsa.080y> (4.27)

where K = K(T, C, M, p, q, r, ||F|| pgr» 0, O, a, B, y), by estimate (i) and Lemma 4.2, for
any a>1, >2 and y >48/(38 — 2). Since 0 can be taken arbitrarily close to 1, inequality
(4.19) follows. We can now prove (i) without the additional condition that g is bounded. We
have (i) for g, := glyj4<nx) in place of g with constant K independent of n. Hence Z°(g,) is
uniformly integrable for every p. Using (ii), we can see that Z(g) is well defined and that
Z(g,) — Z(g) as n — oo. Hence we obtain (i) by Fatou’s lemma. Moreover, we obtain
E(Z(g) = 1.
(iii)) We assume /% is non-negative. By (i),

Tl Tl
Eq exp J J h(t, x, u(t, x))dxdt |p =E{ Z7'(f)exp J J h(t, x, u(t, x))dxdt
0Jo 0Jo

. - 1/2
< {EZ‘z(f)}l/z{Eexp<2J J h(t, x, u(t, x))dxdt)}

0J0

Tl 1/2
< K{Eexp <2J J h(t, x, u(t, x))dxdt)} . (4.28)
0Jo

where K = K(T, C, M, p, q, 1, || F|| pgr» 0). From Lemma 4.2,

Tl
E{exp <2J0 L h(t, x, u(t, x))dxdt) } < A(||hl|apy)s (4.29)

for some analytic function 4 = A(T, o, a, B, y): R, — (0, c0).
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(iv) Note that u(t, x) = n(t, x) + {(¢, x), where

1

t el
n(t, x) = L G, Mo dy, &1, x) = Uo Gos(x, )0 (s, o (s, ) AT (s, y), (4.30)

G is the heat kernel, and W(t, x) is defined by (4.22). We have

1
(s, )| < ||uo||ooj0 G, y)dy < o] @31)
and
E( sup  [&(t, x)’”) < K,, Ym >0, (4.32)
(t,x)€[0,77X[0,1]

by the Burkholder—Davis—Gundy inequality and Kolmogorov’s theorem, where K, is a
constant depending only on m, T and o. Applying estimate (i),

E{exp(—dlluollc)  sup  fu(z, x)|"}
(L,0)E[0,TTX[0,1]

=E{Z '(Hexp(—0|uo|lsc)  sup lu(t, x)|”}
(13)€[0,TTX[0,1]

< {EZX(N}*{Eexp(—20|luoll)  sup  |u(r, 0)*}V2 <K,  (4.33)
(t,x)€[0,71X[0,1]

for some constant K = K(T, C, M, p, q, r, ||F|| pgr» 0, P, 0). O

Remark 4.4. Let u, = u,(t, x) be a sequence of .7 ,-adapted random fields on [0, 1], such that
u,(t, x) — v(t, x) (a.s.) for every t € [0, T], x € [0, 1] for some random field v. Assume that
estimates (i), (ii), (iii) of Proposition 4.3 hold with u, in place of u, with the same constant K
and function A4, independently of »n. Then estimates (i), (ii), (iii) hold with v in place of u.
Assume that u,(0, x) is continuous in x and converges uniformly in x. Assume, moreover, that
for every n there exists a random variable #, and that, for some 0 >0, p >0, there exists a
constant K such that

P(lun(t, )] < 57, ¥(t, x) € [0, T] X [0, 1]) = 1 and E(exp(—0||u,(0)[|o0)|74]") < K,
(4.34)

for all n. Then

P<|U(t, x)| < liminfn, :=n<oco Vi, x) =1, E(exp(—0]|v(0)||)|n]”) < K. (4.35)

Proof. Estimates (i), (ii), (iii) for v follow by Fatou’s lemma from those for u, when g and A
are bounded and continuous in z € R. Hence the general case can be obtained by the
monotone class theorem. Estimate (4.35) follows from (4.34) by Fatou’s lemma. (]

The following proposition generalizes a method used by Krylov for the construction of
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solutions to non-degenerate stochastic differential equations with measurable coefficients
(see Krylov 1969; 1980). Though it is essentially the same as Proposition 3.3.2 and

Corollary 3.3.3 in Gyongy and Pardoux (1993), we present the proof, since the proof of
Proposition 3.3.2 in Gyongy and Pardoux (1993) contains a gap.

Proposition 4.5. Let h, = h,(t, x, z) be a sequence of Borel functions such that
ha(t, x, z) — h(t, x, z) dt®dx®dz a.e., (4.36)
|hn(t, x, 2)| < C+ M(t, x, 2) dt@dx®@dz ae., VYn=1, (4.37)
for some Borel function h = h(t, x, z), constant C =0 and non-negative function M
belonging to L“P7V' ([0, T] X [0, 1] X R) for some o' >1, f'>2, y'>48" /(3B —2). Let
u, = uy(t, x) be a sequence of random fields on [0, T| X [0, 1], such that

uy(t, x) — u(t, x) (a.s.) Yee[0, T], Vxe][o0,1], (4.38)

and, for every a>1, f>2, y>4B/(3p —2),

T rl
E(j J (. x, x))|dxdt> < Klgllugy (4.39)

0Jo

for all Borel functions g = g(t, x, z), with a constant K independent of n and g. Then

T ¢l
lim E(J J |\, x, un(t, X)) — h(t, x, u(t, x))dxdt) = 0. (4.40)

n—00 0Jo

Proof. First, note that by Remark 4.4 estimate (4.39) holds with u in place of u,. Let
k:RT — R" be a smooth decreasing function, with x(0) = 1, and x(z) = 0 for z = 1. For
every € >0 and R>0, we can find a bounded continuous function H.r such that

1k — Howlnm@lagpy <e. (441)
Clearly
ro 5
In):=E (L | 1t =y dxds) = (4.42)

where
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Tl
I = E( K(|ttn|/ R)| (1) — ()| dXdS> )
0Jo
Tl
I ::E< |H8R(un)_ HsR(u)ldXdS>a
JoJo
Tl
I; = E( k(|uy|/ R)|h(uy) — Her(uy)] dXdS>,
0Jo
Tl
1y = E( . 0K(|u\/R)|h(u) — Hp(v)] dxds),
Tl
Iy = E( ] =l v b RH ) + 0} dxds)- (443)

(We omit the integration variables for simplicity of notation.) By (4.39), we have
Iy < K|[(hy = DA r 0| ewprys I3 < K[[(h = Hep) - rry@Dlapy <&,
Iy < K||(h — Hp)—r gDl wpy <e. (4.44)
By Holder’s inequality we obtain
7ol 1/p
Is = L{E(JO La (] V [/ R)Y dxds> } , (4.45)
with

T ol 1/6 T ol 1/6
L := sup (EJ J(C+M(un))6dxds> + (EJ J(C+M(u))5dxds> < 00,

0Jo 0Jo
(4.46)

by applying (4.39) with a:=a'/d, f:="/6, y:=vy'/d, 0>1 small enough, 1/6 +
1/p = 1. Hence, letting n — oo in (4.42), we obtain

1/p
T ol
limsup I(n) < LE(J J a- ;c(|u|/R))”dde> + 2e.
n—o00 0J0

Now letting R — oo, we obtain lim sup,_., (n) < 2¢, which proves the proposition since &
is arbitrarily small. O

Corollary 4.6. Let 0 = 0(t, x, z) be a Borel function satisfying condition (B). Let f,(t, x, z)
be a sequence of Borel functions such that
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fAtx, )< C+F(tx,2) di®@de@d:ae Vn,
Jo— f dt®@dx®dz a.e.,

(4.47)

where C =0 is a constant, F is a Borel function from LP? for some p>1, q>2,
r>4q/(3q —2), and f is some Borel function. Let &, := &,(t, x) be a sequence of .7
adapted random fields, such that

Tl
J J |En(t, x) — &(¢, x)| dxdt — 0 (a.s.), (4.48)

0J0

where & is a random field such that & € L*([0, T] X [0, 1]) (a.s.). Let up, be a sequence of
Fo-measurable random variables in C([0, 1]) converging almost surely to a random variable
ug in C([0, 1]). Assume that Eq(ug,, fn + &,, 0) admits a solution u, on [0, T] such that, for
every a>1, f>2, y>46/(3B - 2),

Tl
E(J J |h(t, x, un(t, x))| dtdt> < K||h|apy (4.49)

0J0

for all Borel functions h = h(t, x, z), with a constant K independent of n and h. Assume,
moreover, that

E sup exp(—0||uonl| )| un(t, x)|P | =< C Vn, (4.50)
(1,0)€[0, TIX[0,1]

uy(t, x) — u(t, x) (a.s.) Ve [0, T], x<]0,1], (4.51)

with some constants p>1, >0, C>0 and random field u. Then u has a continuous
modification which is a solution of Eq(ug, f + &, 0).

Proof. Fix ¢ € C*([0, 1]) such that ¢(0) = ¢(1) = 0. We have

1 1 t el t el
Jwmmmnw:Lwﬂmmmwjjwmnwmwwjjﬂmnw@nwmmm

0 0J0 0J0

t ol t ol
+ J J E.(s, x)p(x)dxds + J J o(s, x, u,(s, x))e(x)dW(s, x). (4.52)
0Jo 0Jo

Since ug, converges uniformly to uy in C([0, 1]) (a.s.)

1 1

}}Lngojo Upn(x)p(x)dx = Jo up(x)p(x)dx, a.s. (4.53)

By assumptions (4.50) and (4.51),

1

1
jm@mmnM—Jumnmnm,
0 0

ij@Wanafﬂ@mwmw (4.54)

0Jo 0Jo
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in probability, for every ¢ € [0, T]. Clearly,
1

trl t
J J a(s, x, uy(s, x))e(x)dW(s, x) — J J a(s, x, u(s, x))p(x)dW(s, x) (4.55)

0J0 0J0

in probability, and

£l £l
J J E.(s, x)p(x)dxds — J J E.(s, x)p(x)dxds (a.s.). (4.56)
oJo 0Jo
By the previous proposition
£l
im | [ 1. x5, 0)00) = 1. x, s, )] s = 0 4.57)
=o0)oJo

in probability. Thus letting » — oo in (4.52), we get (4.52) with u in place of u, for each
t € [0, T]. Hence, by Proposition 3.1 u has a continuous modification, which is a solution of
Eq(uo, f +&, 0). O

5. Approximation, existence and uniqueness of the solutions
The following approximation theorem is the key result of this paper.

Theorem 5.1. Assume (A), (B) and (C). Let f, := fu(t, x, z) be a sequence of bounded Borel
functions, such that

[t x,2)<S C+F(t,x,z2) (dt®dx®dzae)Vn,
fn—=f (di®dx®dzae),

5.1

where C =0 is a constant, F is a Borel function from LPT for some p>1, q>2,
r>4q/(3q —2), and f is some Borel function. Let &, :=&,(t, x) be a sequence of .7
adapted random fields on [0, T] X [0, 1], such that

£, -2 E(dt® PRdx as.), |En(t, x)| < &(¢, x) (dt @ PQ dx a.s.) Vn, (5.2)

where E, § are .7 -adapted random fields, such that & € L*([0, T] X [0, 1]) (a.s.). Let uy, be
a sequence of .7 y-measurable random variables in C([0, 1]) converging almost surely to a
random variable uy in C([0, 1]). Then the solution u, of Eq(uon, fu+ &n, 0) on [0, T]
converges almost surely to a random field u = u(t, x), uniformly in (t, x) € [0, T] X [0, 1],
and u is a solution of Eq(uo, f + &, 0) which satisfies

Tl
J J F(t, x, u(t, x))dxdt < oo (a.s.). 5.3)
0Jo

Proof. We proceed in two steps.
Step 1. In addition to the conditions of the theorem assume that, for a constant R,
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JTJ1|§,,(t, x)[>dxdr <R (as) Vn (5.4)
0Jo
Define
_ k _ o9 _ k _ o) k
Sk = /\fz Sy = /\fz Sk 1= /\ &i, &y == /\ i Uonk = /\ Uo;,
(5.5)

k 00 k 00 k
fue =\ fi fon =\ fin Ene = \/ & Em =\ & uomk = \/ uor.
i=n i=n i=n i=n i=n

Notice that:

(@) fur and fy are bounded;

(0) {fuw}is {Enitss {tonk }x are decreasing and {/fu} e, {Em}a {uoni}r are increasing;

©) fuk = fok = fok = [k Enk = Emk = Emk = S and uopk = vomi = Uomk = o for
n<=m=<k.

Let #,; and u,; be the unique solutions to Eq(#gx, fnk, o) and Eq(uon, fux, O), respectively.
Using the comparison result of Proposition 3.3, {#} is decreasing, {uy} is increasing,
and

Uppe = Ui = Upge = Upg, ifn=s=m=<k. (5.6)

By Proposition 4.3 there exists a constant K, independent of n and k, such that

E (sup exp(— || Zonk | o) [Tk (2, x)|2> <K,
t,x

E(sup exp{ —||#onk || oo } i (2, x)|2> < K. (5.7)
tx

This implies that the limits

(1, %) 1= M w0, gt ) = im sz, ) (5.8)

are almost surely bounded random fields. Clearly, the limits

Uon(t, x) == ]}Lfgo Uonk(X), Uon)(x) := kILHOlC Uonk(X) (5.9)
are almost surely continuous random fields on [0, 1]. By Proposition 4.3 and Corollary 4.6,
u(n) and u(,) have continuous modifications, denoted also by #(,) and u(,), which are solutions

of Eq(#n, fin) + S(n), o) and Eq(uon), fin) + &y, 0), respectively. Letting &k — oo in (5.6),
we find that

Upy = Uimy = UGmy = U(n), if n<m, (5.10)

which implies that the random fields u := lim,_ 4, and % := lim,_. u(,) are well defined,
and almost surely bounded by virtue of Remark 4.4. Moreover, using Proposition 4.3, Remark
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4.4 and Corollary 4.6, we deduce that # and u have continuous modifications, denoted also by
u and u, which are solutions of Eq(ug, f + &, 0). Clearly, # < u (a.s.), and by Girsanov’s
theorem # and u must have the same law, which implies # = u. For n < i < k, we have

J?nk = fl = fnka énk = gi = gl’lka Uonk =< Ui =< Uonk- (511)

Hence #,; < u; < u,; by Proposition 3.3, which implies

k k
/\ \/ < Uy (5.12)

Taking & — oo and then n — oo, we obtain

u < liminf u, < limsupu, < u = u. (5.13)

n—00 n—00

Therefore, u, — ## =u (a.s.) for all ¢+ and x. The convergence is uniform in (¢, x) €
[0, T] X [0, 1], since the convergences i,z — U(n), U(n) — U, Unk — Uy and u) — u are
uniform by virtue of Dini’s theorem. Moreover, using Proposition 4.3 and Remark 4.4, we
obtain

Tl
E(J J F(t, x, u(t, x))dxdt) < 0. (5.14)
0Jo

Step 2. We now consider the case when we do not have condition (5.4). Define the
stopping time

¢l
TR = inf{t e[o, T]: JJ |&(s, x)]> dx ds = R} (5.15)
0J0

and the random field E(R) = E(R)(t x) := &,(t N g, x) for every R>0. Then, by step 1, the
solution u(R) of Eq(uon, fn +§ , 0) converges almost surely in C([0, T'] X [0, 1]) to a
random field u®, which is a solutlon of Eq(uo, f + EP, 0), where ER(¢, x) := E(t A T, X).
Note that if Q < R then 7o < 7, and almost surely uQ(t, x) = ul® (¢, x) = u,(t, x) for all
t€[0,79 AT], x€[0,1]. Consequently, almost surely u'9(z, x)=u'"(t,x) for all
t€[0,79gAT], x €0, 1]. Hence taking into account that 7z T co as R — oo, we can
define u(t, x) := limp_o, u'®(¢, x) for all # € [0, T], x € [0, 1]. Moreover, we obtain that u,
converges almost surely in C([0, 7] X [0, 1]) to u, which is a solution on [0, T] of
Eq(ug, f, o). Finally, note that, for each N >0 and R>0,
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P (LTJ; F(t, x, u(t, x))dxdt = N)

T ¢l
< P(J J F(t, x, u®(t, x))dxdt = N) + P(tp<T)
0J0

1 ! K
sNE<J J F(t, x, u®(s, x))dxdt) + P(tg<T) sWR+P(TR<T) (5.16)
0J0

with a constant K by virtue of (5.14) in step 1. Letting N — oo and then R — oo, we
obtain

Tl
P<J J F(t, x, u(t, x))dxdtzoo) =0, (5.17)

0J0

that is to say (5.3) holds. O

The existence of a solution to Eq(uy, f, o) follows immediately from the above theorem
under conditions (A), (B) and (C). In order to deal with the question of uniqueness the
following definition is useful.

Definition 5.2. Assume conditions (A), (B) and (C). We say that a solution u(t, x) of
Eq(uo, f, 0) on [0, T] is constructible, if there exist a sequence of bounded Borel functions
fn= fu(t, x, z) and a sequence of random fields &, = &£,(t, x), satisfying the conditions of
Theorem 5.1, and u,(t, x) — u(t, x) (a.s.) for every t € [0, T], x € [0, 1], where u, is the
solution of Eq(uy, f, + &, 0) on [0, T].

Proof of Theorem 2.1. Applying Theorem 5.1 with f, := f1ys<,y, §, = 0, we obtain the
existence of a constructible solution satisfying the required estimate. Let u and v be
constructible solutions, that is, u, — u, v, — v, where u, and v, are the solutions of
Eq(ug, fu + &,, 0) and Eq(ug, g, + 1., 0), respectively, for appropriate sequences f,, £,, 2.,
7,. Define the sequences 4, := f,, , := &, for n even, and h, := g,, , :=n, for n odd.
Then, by Theorem 5.1, the solution w, to Eq(uo, 4, + §,, 0) converges to some random field
w, which implies ¥ = v. Let u be now a solution of Eq(u, f, o) such that (5.3) holds. For
n =1, define

fn = f1{|f|én}’ gn(ta x) = f(t’ X, u(t9 x)) - fn(ta X, u(tp )C)) (518)

Then clearly f,, &, satisfy the condition of Theorem 5.1 and u is a solution of
Eq(uo, fu + &4, 0) for every n. Consequently, u# is a constructible solution, which proves
uniqueness. In order to show that u is a C([0, 1])-valued Markov process, let us consider a
C([0, 1])-valued .7y-adapted sequence of random variables ug, converging almost surely to
uy in C([0, 1]). Let u, denote the solution of Eq(uy,, f, o). Clearly u, is the unique solution

of Eq(uon, fn + ‘Sna 0), where f,:= fl{\f\Sn} and ‘Sn(t’ x) := f(t, x, uy(8, x)) — fau(t, x,
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uy(t, x)). Therefore, by Theorem 5.1, we obtain that u, converges almost surely in
C([0, T] X [0, 1]) to u. Hence the Markov property of {u(#): ¢t € [0, T]} follows by standard
arguments. O

Proof of Theorem 2.3. Define f, := (f An)V (=n), f, :=(f An)V (—n). Clearly, f, < f,
for every integer n = 1. Hence, by Proposition 3.3, we have u,(t, x) < u,(¢, x) for the
solutions #, and u, of Eq(uy, f,,, o) and Eq(uo, f,, 0), respectively. By Theorem 5.1 u,, — u
and u, — u. Consequently, almost surely #(¢, x) < u(t, x) for all ¢, x. O
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