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1. Introduction

Differential equations may be ill behaved in the sense that they have no solutions, or non-

unique solutions, or solutions which do not depend continuously on the given data.

Surprisingly, by introducing some random perturbation we can often transform these

equations into well-behaved stochastic differential equations. This phenomenon is well known

for ordinary differential equations. In the present paper we are interested in this regularization

effect of the noise on ill-posed partial differential equations (PDEs). In order to illustrate the

result of the paper, let us consider the following examples of simple reaction±diffusion

equations:

@u

@ t
(t, x) � @

2u

@x2
(t, x)� 2

���������������������������
sin(ðx)u(t, x)

p
� ð2u(t, x), t > 0, x 2 (0, 1),

u(t, 0) � u(t, 1) � 0, t > 0, (1:1)

u(0, x) � 0, x 2 [0, 1];

@u

@ t
(t, x) � @

2u

@x2
(t, x)ÿ f (u(t, x)), t > 0, x 2 (0, 1)

u(t, 0) � u(t, 1) � 0, t > 0 (1:2)

u(0, x) � 1, x 2 [0, 1],

where f :� zÿ1=3 for z 6� 0 and f (0) � 1.

Clearly, both u :� 0 and v :� t2 sin(ðx) solve the ®rst example. Hence one can easily

construct in®nitely many solutions. On the other hand, by adding a `multiplicative noise'
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ó (u(t, x))@2W=@ t@x to the right-hand side of (1.1), we transform it into a stochastic PDE

which has a unique solution for any small non-degenerate Lipschitz function ó and for any

given space-time white noise @2W=@ t@x on [0, 1) 3 [0, 1]. This result is known from

Bally et al. (1994), where an existence and uniqueness theorem is proved for stochastic

reaction±diffusion equations which locally bounded measurable force terms. The proof of

this result in Bally et al. (1994) is based on a priori L p-estimates, obtained by Malliavin

calculus for the density of the solution. In GyoÈngy (1998) it is shown that existence and

uniqueness results hold also for a larger class of non-degenerate stochastic semilinear PDEs

with locally bounded force terms, even if no density estimates, like those from Bally et al.

(1994), are available.

The second example does not have any solution, because the local solution is `trapped'

by the singularity of f . Note that f is locally unbounded, so the previous results do not tell

us if random perturbations with non-degenerate multiplicative noises can compensate its

irregularity. As an application of the main result (Theorem 2.1) of the present paper, we

obtain that these perturbations also regularize (1.2). A similar result is proved in GyoÈngy

and Pardoux (1993) for the special case of random perturbations with additive space-time

white noise. In the proof of Theorem 2.1 we use ideas and results from Bally et al. (1994)

and GyoÈngy and Pardoux (1993). The main dif®culty is to obtain the necessary a priori L p-

estimates for the Green measure of the solution. To prove the uniqueness of the solution is

more delicate here than it is in GyoÈngy and Pardoux (1993) and Bally et al. (1994), and we

can obtain the uniqueness only in the class of solutions satisfying an integrability condition

((2.5) below).

For standard de®nitions and tools of the theory of stochastic PDEs we refer to Da Prato

and Zabczyk (1992), Rozovskii (1990) and Walsh (1986).

2. Formulation of the problem and the main results

Let (Ù, F , fF tg0< t<T , P) be a ®ltered probability space carrying an F t-Brownian sheet

W � W (t, x) on [0, T ] 3 [0, 1]. This means W is a Gaussian ®eld, EW (t, x) � 0,

E(W (t, x)W (s, y)) � (t ^ s)(x ^ y), W (t, x) is F t-measurable and W (t, x)ÿ W (s, x) �
W (s, y)ÿ W (t, y) is independent of F s for all 0 < s < t and x, y 2 [0, 1].

Let f � f (t, x, z) and ó � ó (t, x, z) be F t-adapted random ®elds on [0, 1) 3
[0, 1] 3 R. This means that they are functions of (t, ù, x, z) 2 [0, 1) 3 Ù3 [0, 1] 3 R,

such that they are Borel-measurable in (t, x, z) and F t-adapted for ®xed x, z. Let

u0 � u0(x) be a continuous F 0-measurable random ®eld such that u0(0) � u0(1) � 0. We

consider the Dirichlet problem

@u

@ t
(t, x) � @

2u

@x2
(t, x)� f (t, x, u(t, x))� ó (t, x, u(t, x))

@2W

@ t@x
, t > 0, x 2 (0, 1),

u(t, 0) � u(t, 1) � 0, t > 0, (2:1)

u(0, x) � u0, x 2 [0, 1],
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denoted by Eq(u0, f , ó ). We say that a random ®eld u � u(t, x) is a solution to Eq(u0, f , ó )

on [0, T ], if u(t, x) is F t-measurable for every t, x, it is continuous in (t, x) 2
[0, T ] 3 [0, 1], and almost surely (a.s.)�1

0

u(t, x)j(x) dx �
�1

0

u0(x)j(x) dx�
� t

0

�1

0

u(s, x)j0(x) dx ds�
� t

0

�1

0

f (s, x, u(s, x))j(x) dx ds

�
� t

0

�1

0

ó (s, x, u(s, x))j(x) dW (s, x)

(2:2)

for all t 2 [0, T ] and j 2 C2([0, 1]), j(0) � j(1) � 0, where the last integral on the right-

side of this equality is understood as ItoÃ's integral.

It is well known that Eq(u0, f , ó ) has a unique solution when f and ó are Lipschitz

functions satisfying a linear growth condition and u0 is continuous (see, for example, Walsh

1986). In the present paper we study the case when f is only measurable and may be

locally unbounded. In order to formulate our main results we use the notation L pqr for the

space of functions h : [0, T ] 3 [0, 1] 3 R! R with the norm

khk pqr :�
�T

0

�1

0

�
R

jh(t, x, z)j p dz

� �q=p

dx

 !r=q

dt

0@ 1A1=r

,1: (2:3)

We assume the following conditions on the data f , ó and u0:

(A) f � f (t, x, z) is a Borel function such that

j f (t, x, z)j2 < C � F(t, x, z), dt 
 dx
 dz almost everywhere (a:e:) (2:4)

with some constant C > 0 and a non-negative function F 2 L pqr for some p . 1,

q . 2, r . 4q=(3qÿ 2).

(B) ó : [0, T ] 3 [0, 1] 3 R! R and 1=ó , @ó=@z, @2ó=@z2 are bounded Borel functions

for every T . 0.

(C) u0 is an F 0-measurable continuous random ®eld on [0, 1], u0(0) � u0(1) � 0.

Theorem 2.1. Assume conditions (A), (B) and (C). Then Eq(u0, f , ó ) has a unique solution

u satisfying �T

0

F(t, x, u(t, x)) dx dt ,1 (a:s:) (2:5)

for every T. This solution is a C([0, 1])-valued Markov process.

Remark 2.2. Assume (A), (B) and (C). Assume that f satis®es condition (A) not only with

constant C > 0 and non-negative function F 2 L pqr, but also with some other constant

D > 0 and non-negative function G 2 Láâã in place of C and F. Let u and v denote the

solutions of Eq(u0, f , ó ) in the class of solutions satisfying (2.5) with F and with G (in place

of F), respectively. Note that j f j2 < 3(C _ D)� F ^ G, and H :� F ^ G 2 L pqr \ Láâã.
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Hence u � v by Theorem 2.1, that is to say, our statement on the uniqueness of the solution

does not depend on the particular function F which satis®es (A) with the given function f.

Theorem 2.3. Assume that the data (u0, f , ó ) satisfy conditions (A), (B) and (C). Let f be a

Borel function satisfying condition (A). Let u0 be an F 0-measurable continuous random ®eld

on [0, 1], u0(0) � u0(1) � 0, such that u0(x) < u0(x) (a.s.) for every x 2 (0, 1). Assume that

f (t, x, z) < f (t, x, z) dt 
 dx
 dz (a:e:) (2:6)

Then almost surely u(t, x) < u(t, x) for all t, x for the solutions u and u of Eq(u0, f , ó ) and

Eq(u0, f , ó ).

3. Preliminaries

Let g � g(t, x) be an F t-adapted random ®eld on [0, T ] 3 [0, 1], such that

g 2 L2([0, T ] 3 [0, 1]) (a.s.). De®ne

Z :� exp

�T

0

�1

0

g(t, x)W (dt, dx)ÿ 1

2

�T

0

�1

0

g(t, x)2 dx dt

 !
, d ~P :� Z dP, (3:7)

and assume E(Z) � 1. Then, by Girsanov's theorem,

~W (t, x) :� W (t, x)ÿ
� t

0

�x

0

g(s, y) dy ds (3:8)

is an F t-Brownian sheet under the probability ~P (see, for example, GyoÈngy and Pardoux

1992).

We will use Girsanov's theorem to derive the existence of continuous modi®cations of

random ®elds u satisfying (2.2). In particular, we will make use of the following

proposition.

Proposition 3.1. Assume (A), (B) and (C). Let u � fu(t, x), t 2 [0, T ] 3 [0, 1]g be an F t-

adapted bounded random ®eld satisfying (2.2) almost surely for each t 2 [0, T ],

j 2 C2([0, 1]), with j(0) � j(1) � 0. Assume that ó � ó (t, x, z) is bounded, that it is

Lipschitz in z and that ç � ç(t, x) :� ( f =ó )(t, x, u(t, x)) 2 L2([0, T ] 3 [0, 1]) (a.s.). De®ne

Z :� exp

�T

0

�1

0

f

ó
(t, x, u(t, x)) dW (t, x)ÿ 1

2

�T

0

�1

0

���� f

ó
(t, x, u(t, x))

����2 dx dt

 !
: (3:9)

Then u has a continuous modi®cation which is a solution of Eq(u0, f , ó ) on [0, T ].
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Proof. Assume ®rst that, for some constant R,�T

0

�1

0

���� f

ó
(t, x, u(t, x))

����2 dx dt < R: (3:10)

By Girsanov's theorem,

~W (t, x) � W (t, x)�
� t

0

�x

0

f

ó
(s, y, u(s, y)) dy ds (3:11)

is an F t-Brownian sheet under ~P, and u satis®es�1

0

u(t, x)j(x) dx �
�1

0

u0(x)j(x) dx�
� t

0

�1

0

u(s, x)j 0(x) dx�
� t

0

�1

0

ó (s, x, u(s, x))j(x) d ~W (s, x),

(3:12)

dt 
 ~P a.e. on [0, T ]. It is known (see Walsh 1986), that there exists a modi®cation ~u of u

which is continuous and satis®es (3.12) for all t. Hence, (2.2) holds for all t 2 [0, T ] with ~u
in place of u, ~P and P almost surely. Consequently, ~u is a solution to Eq(u0, f , ó ) under P.

The general case can be obtained by a standard stopping-time argument. h

We will use the following results on existence, uniqueness and comparison of the

solutions. For their proofs we refer to Bally et al. (1994) and GyoÈngy (1998).

Proposition 3.2. Let f � f (t, x, z) and ó � ó (t, x, z) be bounded measurable functions.

Assume that ó satis®es condition (B). Let î � î(t, x) be an F t-adapted random ®eld such

that
� T

0

� 1

0
î2(t, x) dx dt ,1 (a.s.). Then Eq(u0, f � î, ó ) has a unique solution for every

F 0-adapted continuous random ®eld u0 on [0, 1].

Proposition 3.3. Let equations Eq(u0, f � î, ó ) and Eq(u0, f � î, ó ) satisfy the conditions

of Proposition 3.2. Assume that

f (t, x, z) < f (t, x, z) dt 
 dx
 dz a:e:,

î(t, x) < î(t, x) P
 dt 
 dx a:e: (3:13)

u0 < u0 P
 dx a:e:

Then almost surely u(t, x) < u(t, x) for all (t, x), where u and u denote the solutions of

Eq(u0, f � î, ó ) and Eq(u0, f � î, ó ), respectively.

4. Estimates and passage to the limit

In this section we prove the estimates which we need in order to be able to pass to the limit

in the equations which approximate Eq(u0, f , ó ). These estimates are stated in Proposition

4.3, which extends the corresponding estimates from GyoÈngy and Pardoux (1993) to the case

of equations with multiplicative noise. First, we establish two preliminary estimates (Lemmas
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4.1 and 4.2) for the solution of Eq(u0, 0, ó ). The proof in GyoÈngy and Pardoux (1993) of the

corresponding estimates when ó � 1 is based on a decomposition of the solution u into a

random ®eld î, which is Gaussian, and into another ®eld ç, which is independent of î. Such

a decomposition is obviously not available in our more general case. We use the notation

kh(t)k pq :�
�1

0

�
R

jh(t, x, z)j p dz

� �q=p

dx

 !1=q

(4:1)

for functions h � h(t, x, z).

Lemma 4.1. Assume (B) and (C). Let u be the solution to Eq(u0, 0, ó ). Then, for any p . 1,

q . 2, r . 4q=(3qÿ 2), there exists a constant K, depending only on T, p, q, r and the

supremum norms of ó, 1=ó , @ó=@z and @2ó=@z, such that, for every Borel function h 2 L pqr

and every s 2 [0, T ],

E

�T

s

�1

0

h(t, x, u(t, x)) dx dtjF s

 !
< K

�T

s

kh(t)kr
pq dt

 !1=r

: (4:2)

Proof. For every deterministic initial value u0 2 C([0, 1]), it is known from Bally et al.

(1994) that, for every t . 0, x 2 (0, 1), the random variable u(t, x) has a density p(t, x; z)

with respect to the Lebesgue measure R. Moreover, by Lemmas 3.2, 3.4 and 3.5 in Bally et

al. (1994), �
R

j p(t, x; z)jr dz < Cf1� tÿ[(1�á)=4�å]r(x ^ (1ÿ x))ÿ[(2ÿá)=2�å]rg, (4:3)

for every r > 1, á 2 (0, 1) and å. 0, with a constant C. Hence, with some constant L,

K :�
�T

0

�1

0

�
R

j p(t, x; z)jr dz

� �k=r

dx

 !ä=k

dt

0@ 1A1=ä

< L� L

�T

0

tÿ[(1�á)=4�å]ä dt

 !1=ä �1

0

(x ^ (1ÿ x))ÿk[(2ÿá)=2�å] dx

 !1=k

, (4:4)

which is ®nite if k, 2, ä, 4k=(3kÿ 2) for suf®ciently small å. 0 and á suf®ciently close

to 1. Thus by HoÈlder's inequality,

E

�T

s

�1

0

h(t, x, u(t, x)) dx dt

 !
< K

�T

s

kh(t)kr
pq dt

 !1=r

(4:5)

for every Borel function h 2 L pqr, where p, q and r are the conjugate numbers to r, k and ä,

respectively. Consequently, we have (4.5) for every p . 1, q . 2 and r . 4q=(3qÿ 2). For

every deterministic initial condition u0, the constant K above depends only on T , p, q, r and

the supremum norms of ó, 1=ó , @ó=@z, @2ó=@z2. Next, we show that in estimates of the
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form (4.5), the constant K is independent of the deterministic initial value u0. To this end, let

u0(t, x) be the solution of Eq(u0, 0, 0) and note that u(t, x) :� u(t, x)ÿ u0(t, x) is the

solution of Eq(0, 0, ó ) with ó (t, x, z) :� ó (t, x, z� u0(t, x)). Hence, setting h(t, x, z) :�
h(t, x, z� u0(t, x)), from (4.5) we have

E

�T

s

�1

0

h(t, x, u(t, x)) dx dt

 !
� E

�T

s

�1

0

h(t, x, u(t, x)� u0(t, x)) dx dt

 !

< K

�T

s

kh(t)kr
pq dt

 !1=r

� K

�T

s

kh(t)kr
pq dt

 !1=r

(4:6)

by the shift invariance of the Lebesgue measure. We now show (4.2). To this end we take a

sequence of F s-measurable continuous random ®elds vn � fvn(x) : x 2 [0, 1]g such that

vn ! u(s, :) a.s. in C([0, 1]) and vn 2 Ãn for all ù 2 Ù for a ®nite subset Ãn of some dense

set fwi : i � 1, 2, 3 . . .g in C([0, 1]). Let un � fun(t, x) : s < t, x 2 [0, 1]g denote the

solution of (2.1) with initial condition vn at t :� s. Then, for almost all ù 2 Ù, we have

un(t, x)! u(t, x) for all t > s, x 2 [0, 1]. Let ui
n � fui

n(t, x) : s < t, x 2 [0, 1]g denote the

solution of (2.1) with initial condition wi at t :� s. Then, by well-known properties of the

conditional expectation and by estimate (4.5),

E

�T

s

�1

0

h(t, x, un(t, x)) dx dtjF s

 !
� E

�T

s

�1

0

X
fi : wi2Ãng

1fv n�wigh(t, x, ui
n(t, x)) dx dtjF s

 !

�
X

fi : wi2Ãng
1fv n�wigE

�T

s

�1

0

h(t, x, ui
n(t, x)) dx dt

 !

< K
X

fi : wi2Ãng
(1fvn�wigkhk pqr) � Kkhk pqr: (4:7)

Letting n!1, we obtain (4.2) for every continuous h 2 L pqr. For ®xed R . 0, let H R

denote the set of Borel functions h � h(t, x, r) such that (4.2) holds with hR :�
k R(r)h(t, x, r) in place of h, where k R(t, x, r) :� max(ÿjr=Rj � 1, 0). Then, as we have

proved above, H R contains every bounded continuous function. Moreover, if h is a pointwise

limit of an increasing uniformly bounded sequence from H R, then h also belongs to H R.

Hence, by the monotone class theorem, H R contains every bounded Borel function h (see,

for example, Dellacherie and Meyer 1978, p. 15). Let h 2 L pqr be a non-negative Borel

function. Then hRL :� min(hR, L) belongs to H R for all constants R, L . 0. Hence, letting

®rst L!1 and then R!1 in (4.2) with hRL in place of h, we obtain (4.2) for h by

Fatou's lemma. Consequently, (4.2) holds for every Borel function h 2 L pqr. h

The following lemma generalizes Proposition 3.2.5 from GyoÈngy and Pardoux (1993).

Lemma 4.2. Assume (B) and (C). Let u be a solution of Eq(u0, 0, ó ). Then, for any á. 1,
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â. 2, ã. 4â=(3âÿ 2), there exists a real analytic function A : R� ! (0, 1) depending only

on T, á, â, ã and the supremum norms of ó, 1=ó , @ó=@z and @2ó=@z, such that for every

Borel function h : [0, T ] 3 [0, 1] 3 R! R, h 2 Láâã,

E exp

�T

0

�1

0

h(t, x, u(t, x)) dx dt

 !( )
< A(khkáâã): (4:8)

Proof. We can derive this lemma from estimate (4.2) in the same manner as Proposition 3.2.5

in GyoÈngy and Pardoux (1993) is proved. For convenience' sake we reproduce the argument

below. Clearly

E exp

�T

0

�1

0

h(t, x, u(t, x)) dx dt

 !( )
�
X1
n�0

1

n!
E

�T

0

�1

0

h(t, x, u(t, x)) dx dt

 !n
8<:

9=;
� 1�

X1
n�1

I n, (4:9)

where

I n :� E
1

n!

Yn

i�1

�T

0

�1

0

h(ti, x, u(ti, x)) dx dti

 !

� E

�T

0

�T

t1

� � �
�T

t nÿ1

�1

0

h(t1, x, u(t1, x)) dx � � �
�1

0

h(tn, x, u(tn, x)) dx dtn � � � dt1

 !

�
�T

0

�T

t1

� � �
�T

t nÿ2

E

�1

0

h(t1, x, u(t1, x)) dx � � �
�1

0

h(tnÿ1, x, u(tnÿ1, x)) dx

(

3 E

�T

t nÿ1

�1

0

h(tn, x, u(tn, x)) dx dtnjF t nÿ1

 !
dtnÿ1 � � � dt1

)
: (4:10)

By Lemma 4.1,

I n < K

�T

0

�T

t1

� � �
�T

t nÿ2

E

�1

0

h(t1, x, u(t1, x)) dx � � �
�1

0

h(tnÿ1, x, u(tnÿ1, x)) dx

(

3

�T

t nÿ1

kh(tn)kãáâ dtn

 !1=ã
9=; dtnÿ1 � � � dt1

� K

�T

0

�T

t1

� � �
�T

t nÿ3

E

�T

t nÿ2

�1

0

h(t1, x, u(t1, x)) dx � � �
�1

0

h(tnÿ1, x, u(tnÿ1, x)) dx

(

3

�T

t nÿ1

kh(tn)kãáâ dtn

 !1=ã

dtnÿ1

9=; dtnÿ2 � � � dt1: (4:11)
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Proceeding as before, we take conditional expectations successively with respect to F t nÿ2
,

F t nÿ3
, . . . , F t1

and we obtain

I n < K nÿ1E

�T

0

�1

0

h(t1, x, u(t1, x)) dx

(

3

�T

t1

� � �
�T

t nÿ1

kh(t2)kãáâ � � � kh(tn)kãáâ dtn � � � dt2

 !1=ã

dt1

9=;: (4:12)

Conditioning, ®nally, by F 0, we get

In < K nE

�T

0

�T

t1

� � �
�T

t nÿ1

kh(t1)kãáâ � � � kh(tn)kãáâ dtn � � � dt1

 !1=ã
8<:

9=;
� K n 1

n!

� �1=ã

khkn
áâã: (4:13)

Consequently, we can take

A(y) :�
X1
n�0

K n 1

n!

� �1=ã

y n, (4:14)

which is well de®ned for every y 2 R. h

Proposition 4.3. Let f :� f (t, x, z) be a bounded Borel function such that

j f (t, x, z)j2 < C � F(t, x, z), (4:15)

with some constant C and Borel function F 2 L pqr for some p . 1, q . 2, r . 4q=(3qÿ 2).

Let î � î(t, x) be an F t-adapted random ®eld, such that
� T

0

� 1

0
jî(t, x)j2 dx dt < M (a.s.) for

some constant M. Assume conditions (B) and (C). Then the solution u of Eq(u0, f � î, ó )

satis®es the following estimates.

(i) Let g � g(t, ù, x, z) be an F t-adapted random ®eld such that

jg(t, ù, x, z)j2 < ç(t, ù, x)� G(t, x, z), (4:16)

where ç � ç(t, x) is some F t-adapted random ®eld,
� T

0

� 1

0
ç dx dt < L for some

constant L, and G 2 L p9q9r9, with p9 . 1, q9 . 2, r9 . 4q9=(3q9ÿ 2). Then

Z(g) :� exp ÿ
�T

0

�1

0

g(t, x, u(t, x))W (dt, dx)ÿ 1

2

�T

0

�1

0

jg(t, x, u(t, x))j2 dx dt

 !
(4:17)

is a well-de®ned real random variable, and the measure ~P given by d ~P � Z(g) dP

is a probability measure equivalent to P. Moreover, for every r 2 R, there exists a

constant K � K(T , C, L, M , p, q, r, p9, q9, r9, kFk pqr, kGk p9q9r9, ó , r) such that
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~E(Zr(g)) < K and E(Zr(g)) < K, (4:18)

where ~E denotes expectation with respect to ~P.

(ii) For any á. 1, â. 2, ã. 4â=(3âÿ 2), there exists a constant K � K(T , C, M ,

p, q, r, kFk pqr, ó , á, â, ã) such that for every Borel function h : [0, T ] 3
[0, 1] 3 R! R,

E

�T

0

�1

0

h(t, x, u(t, x)) dx dt

 !
< Kkhkáâã: (4:19)

(iii) For any á. 1, â. 2 and ã. 4â=(3âÿ 2), there exists an analytic function

A : R� ! (0, 1), depending on T , C, M , p, q, r,kFk pqr,ó ,á,â,ã, such that, for

every Borel function h � h(t, x, z), h 2 Láâã,

E exp

�T

0

�1

0

h(t, x, u(t, x)) dx dt

 !( )
< A(khkáâã): (4:20)

(iv) For every r. 1 and ä. 0, there exists a constant K � K(T , C, M , p, q, r,

kFk pqr, ó , r, ä) such that

E sup
( t,x)2[0,T ]3[0,1]

exp(ÿäku0k1)ju(t, x)jr
( )

< K, (4:21)

where ku0k1 :� supx2[0,1]ju0(x)j.

Proof. (i) Assume ®rst that g is bounded. Then Z(g) is well de®ned, ~P is a probability

measure, and under P, de®ned by dP � Z( f ) dP, f :� ó ÿ1( f � î), the random ®eld u solves

Eq(u0, 0, ó ) with the Brownian sheet

W (t, x) :� W (t, x)�
� t

0

�x

0

f (s, y, u(s, y)) dy ds (4:22)

in place of W . Moreover,

E[Zr(g)] � E exp ÿr
�T

0

�1

0

g(t, x, u(t, x)) dW (t, x)ÿ r2

�T

0

�1

0

jg(t, x, u(t, x))j2 dx dt

 !
I

( )

< fEZ(2rg)g1=2fEI2g1=2 � fEI2g1=2, (4:23)

where Z(2rg) is de®ned by (4.17) with W and 2rg in place of W and g, respectively, E

denotes the expectation with respect to P, and

I :� exp r2 ÿ r
2

� ��T

0

�1

0

jg(t, x, u(t, x))j2 dx dt � r
�T

0

�1

0

g f (t, x, u(t, x)) dx dt

( )

< N exp (r2 � jrj)
�T

0

�1

0

(G(t, x, u(t, x))� ë2 F(t, x, u(t, x))) dx dt

( )
, (4:24)
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with N :� expf(r2 � jrj)(L� ë2(CT � M))g, ë :� supfjó ÿ1(t, x, z)j : (t, x, z) 2 [0, T ] 3
[0, 1] 3 Rg. Hence, by Lemma 4.2,

E(Zr(g)) < NA1=4(4(r2 � jrj)kGk p9q9r9)A1=4(4(r2 � jrj)ë2kFk pqr), (4:25)

and by

E(Zr(g)) < fE(Zÿ2( f ))g1=2fE(Z2r(g))g1=2 (4:26)

we obtain (i) in the case of bounded g. We can treat the general case of unbounded g after

proving statement (ii).

(ii) Assume h is non-negative. If r, ä. 1, 1=r� 1=ä � 1,

E

�T

0

�1

0

h(t, x, u(t, x)) dx dt

 !
� E Zÿ1( f )

�T

0

�1

0

h(t, x, u(t, x)) dx dt

 !

< T äÿ1fE(Zÿr( f ))g1=r E

�T

0

�1

0

h(t, x, u(t, x))ä dx dt

 !( )1=ä

< Kkhkäá,äâ,äã, (4:27)

where K � K(T , C, M , p, q, r, kFk pqr, ó , ä, á, â, ã), by estimate (i) and Lemma 4.2, for

any á. 1, â. 2 and ã. 4â=(3âÿ 2). Since ä can be taken arbitrarily close to 1, inequality

(4.19) follows. We can now prove (i) without the additional condition that g is bounded. We

have (i) for gn :� g1fj gj<ng in place of g with constant K independent of n. Hence Zr(gn) is

uniformly integrable for every r. Using (ii), we can see that Z(g) is well de®ned and that

Z(gn)! Z(g) as n!1. Hence we obtain (i) by Fatou's lemma. Moreover, we obtain

E(Z(g)) � 1.

(iii) We assume h is non-negative. By (i),

E exp

�T

0

�1

0

h(t, x, u(t, x)) dx dt

 !( )
� E Zÿ1( f ) exp

�T

0

�1

0

h(t, x, u(t, x)) dx dt

 !( )

< fEZÿ2( f )g1=2 E exp 2

�T

0

�1

0

h(t, x, u(t, x)) dx dt

 !( )1=2

< K E exp 2

�T

0

�1

0

h(t, x, u(t, x)) dx dt

 !( )1=2

, (4:28)

where K � K(T , C, M , p, q, r, kFk pqr, ó ). From Lemma 4.2,

E exp 2

�T

0

�1

0

h(t, x, u(t, x)) dx dt

 !( )
< A(khkáâã), (4:29)

for some analytic function A � A(T , ó , á, â, ã) : R� ! (0, 1).
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(iv) Note that u(t, x) � ç(t, x)� æ(t, x), where

ç(t, x) :�
�1

0

Gt(x, y)u0(y) dy, æ(t, x) :�
� t

0

�1

0

Gtÿs(x, y)ó (s, y, u(s, y)) dW (s, y), (4:30)

G is the heat kernel, and W (t, x) is de®ned by (4.22). We have

jç(t, x)j < ku0k1
�1

0

Gt(x, y) dy < ku0k1 (4:31)

and

E sup
( t,x)2[0,T]3[0,1]

jæ(t, x)jm
 !

< K m, 8m . 0, (4:32)

by the Burkholder±Davis±Gundy inequality and Kolmogorov's theorem, where K m is a

constant depending only on m, T and ó . Applying estimate (i),

Efexp(ÿäku0k1) sup
( t,x)2[0,T ]3[0,1]

ju(t, x)jrg

� EfZÿ1( f ) exp(ÿäku0k1) sup
( t,x)2[0,T ]3[0,1]

ju(t, x)jrg

< fEZÿ2( f )g1=2fE exp(ÿ2äku0k1) sup
( t,x)2[0,T ]3[0,1]

ju(t, x)j2rg1=2 < K, (4:33)

for some constant K � K(T , C, M , p, q, r, kFk pqr, ó , r, ä). h

Remark 4.4. Let un � un(t, x) be a sequence of F t-adapted random ®elds on [0, 1], such that

un(t, x)! v(t, x) (a.s.) for every t 2 [0, T ], x 2 [0, 1] for some random ®eld v. Assume that

estimates (i), (ii), (iii) of Proposition 4.3 hold with un in place of u, with the same constant K

and function A, independently of n. Then estimates (i), (ii), (iii) hold with v in place of u.

Assume that un(0, x) is continuous in x and converges uniformly in x. Assume, moreover, that

for every n there exists a random variable çn and that, for some ä. 0, r. 0, there exists a

constant K such that

P(jun(t, x)j < çn 8(t, x) 2 [0, T ] 3 [0, 1]) � 1 and E(exp(ÿäkun(0)k1)jçnjr) < K,

(4:34)

for all n. Then

P jv(t, x)j < lim inf
n

çn :� ç,18t, x

� �
� 1, E(exp(ÿäkv(0)k1)jçjr) < K: (4:35)

Proof. Estimates (i), (ii), (iii) for v follow by Fatou's lemma from those for un when g and h

are bounded and continuous in z 2 R. Hence the general case can be obtained by the

monotone class theorem. Estimate (4.35) follows from (4.34) by Fatou's lemma. h

The following proposition generalizes a method used by Krylov for the construction of
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solutions to non-degenerate stochastic differential equations with measurable coef®cients

(see Krylov 1969; 1980). Though it is essentially the same as Proposition 3.3.2 and

Corollary 3.3.3 in GyoÈngy and Pardoux (1993), we present the proof, since the proof of

Proposition 3.3.2 in GyoÈngy and Pardoux (1993) contains a gap.

Proposition 4.5. Let hn � hn(t, x, z) be a sequence of Borel functions such that

hn(t, x, z)! h(t, x, z) dt 
 dx
 dz a:e:, (4:36)

jhn(t, x, z)j < C � M(t, x, z) dt 
 dx
 dz a:e:, 8n > 1, (4:37)

for some Borel function h � h(t, x, z), constant C > 0 and non-negative function M

belonging to Lá9â9ã9([0, T ] 3 [0, 1] 3 R) for some á9 . 1, â9 . 2, ã9 . 4â9=(3â9ÿ 2). Let

un � un(t, x) be a sequence of random ®elds on [0, T ] 3 [0, 1], such that

un(t, x)! u(t, x) (a:s:) 8t 2 [0, T ], 8x 2 [0, 1], (4:38)

and, for every á. 1, â. 2, ã. 4â=(3âÿ 2),

E

�T

0

�1

0

jg(t, x, un(t, x))j dx dt

 !
< Kkgkáâã (4:39)

for all Borel functions g � g(t, x, z), with a constant K independent of n and g. Then

lim
n!1E

�T

0

�1

0

jhn(t, x, un(t, x))ÿ h(t, x, u(t, x))j dx dt

 !
� 0: (4:40)

Proof. First, note that by Remark 4.4 estimate (4.39) holds with u in place of un. Let

k : R� ! R� be a smooth decreasing function, with k(0) � 1, and k(z) � 0 for z > 1. For

every å. 0 and R . 0, we can ®nd a bounded continuous function HåR such that

k(hÿ HåR)1[ÿR,R](z)ká9â9ã9 , å: (4:41)

Clearly

I(n) :� E

�T

0

�1

0

jhn(un)ÿ h(u)j dx ds

 !
<
X5

j�1

Ij, (4:42)

where
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I1 :� E

�T

0

�1

0

k(junj=R)jhn(un)ÿ h(un)j dx ds

 !
,

I2 :� E

�T

0

�1

0

jHåR(un)ÿ HåR(u)j dx ds

 !
,

I3 :� E

�T

0

�1

0

k(junj=R)jh(un)ÿ HåR(un)j dx ds

 !
,

I4 :� E

�T

0

�1

0

k(juj=R)jh(u)ÿ HåR(u)j dx ds

 !
,

I5 :� E

�T

0

�1

0

f1ÿ k((junj _ juj)=R)gfjhn(un)j � jh(u)jg dx ds

 !
: (4:43)

(We omit the integration variables for simplicity of notation.) By (4.39), we have

I1 < Kk(hn ÿ h)1[ÿR,R](z)ká9â9ã9, I3 < Kk(hÿ HåR)1[ÿR,R](z)ká9â9ã9 , å,

I4 < Kk(hÿ HåR)1[ÿR,R](z)ká9â9ã9 , å: (4:44)

By HoÈlder's inequality we obtain

I5 < L E

�T

0

�1

0

(1ÿ k((junj _ juj)=R))r dx ds

 !( )1=r

, (4:45)

with

L :� sup
n

E

�T

0

�1

0

(C � M(un))ä dx ds

 !1=ä

� E

�T

0

�1

0

(C � M(u))ä dx ds

 !1=ä
8<:

9=;,1,

(4:46)

by applying (4.39) with á :� á9=ä, â :� â9=ä, ã :� ã9=ä, ä. 1 small enough, 1=ä �
1=r � 1. Hence, letting n!1 in (4.42), we obtain

lim sup
n!1

I(n) < LE

�T

0

�1

0

(1ÿ k(juj=R))r dx ds

 !1=r

� 2å:

Now letting R!1, we obtain lim supn!1 I(n) < 2å, which proves the proposition since å
is arbitrarily small. h

Corollary 4.6. Let ó � ó (t, x, z) be a Borel function satisfying condition (B). Let f n(t, x, z)

be a sequence of Borel functions such that
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f 2
n(t, x, z) < C � F(t, x, z) dt 
 dx
 dz a:e: 8n,

f n ! f dt 
 dx
 dz a:e:,
(4:47)

where C > 0 is a constant, F is a Borel function from L pqr for some p . 1, q . 2,

r . 4q=(3qÿ 2), and f is some Borel function. Let în :� în(t, x) be a sequence of F t-

adapted random ®elds, such that�T

0

�1

0

jîn(t, x)ÿ î(t, x)j dx dt! 0 (a:s:), (4:48)

where î is a random ®eld such that î 2 L2([0, T ] 3 [0, 1]) (a.s.). Let u0n be a sequence of

F 0-measurable random variables in C([0, 1]) converging almost surely to a random variable

u0 in C([0, 1]). Assume that Eq(u0n, f n � în, ó ) admits a solution un on [0, T ] such that, for

every á. 1, â. 2, ã. 4â=(3âÿ 2),

E

�T

0

�1

0

jh(t, x, un(t, x))j dt dt

 !
< Kkhkáâã (4:49)

for all Borel functions h � h(t, x, z), with a constant K independent of n and h. Assume,

moreover, that

E sup
( t,x)2[0,T]3[0,1]

exp(ÿäku0nk1)jun(t, x)jr
 !

< C 8n, (4:50)

un(t, x)! u(t, x) (a:s:) 8t 2 [0, T ], x 2 [0, 1], (4:51)

with some constants r. 1, ä. 0, C . 0 and random ®eld u. Then u has a continuous

modi®cation which is a solution of Eq(u0, f � î, ó ).

Proof. Fix j 2 C2([0, 1]) such that j(0) � j(1) � 0. We have�1

0

un(t, x)j(x) dx �
�1

0

u0n(x)j(x) dx�
� t

0

�1

0

un(s, x)j 0(x) dx�
� t

0

�1

0

f n(s, x, un(s, x))j(x) dx ds

�
� t

0

�1

0

în(s, x)j(x) dx ds�
� t

0

�1

0

ó (s, x, un(s, x))j(x) dW (s, x): (4:52)

Since u0n converges uniformly to u0 in C([0, 1]) (a.s.)

lim
n!1

�1

0

u0n(x)j(x) dx �
�1

0

u0(x)j(x) dx, a:s: (4:53)

By assumptions (4.50) and (4.51),�1

0

un(t, x)j(x) dx!
�1

0

u(t, x)j(x) dx,

� t

0

�1

0

un(s, x)j 0(x) dx!
� t

0

�1

0

u(s, x)j 0(x) dx (4:54)
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in probability, for every t 2 [0, T ]. Clearly,� t

0

�1

0

ó (s, x, un(s, x))j(x) dW (s, x)!
� t

0

�1

0

ó (s, x, u(s, x))j(x) dW (s, x) (4:55)

in probability, and � t

0

�1

0

în(s, x)j(x) dx ds!
� t

0

�1

0

în(s, x)j(x) dx ds (a:s:): (4:56)

By the previous proposition

lim
n!1

� t

0

�1

0

j f n(s, x, un(s, x))j(x)ÿ f (s, x, u(s, x))j(x)j dx ds! 0 (4:57)

in probability. Thus letting n!1 in (4.52), we get (4.52) with u in place of un for each

t 2 [0, T ]. Hence, by Proposition 3.1 u has a continuous modi®cation, which is a solution of

Eq(u0, f � î, ó ). h

5. Approximation, existence and uniqueness of the solutions

The following approximation theorem is the key result of this paper.

Theorem 5.1. Assume (A), (B) and (C). Let f n :� f n(t, x, z) be a sequence of bounded Borel

functions, such that

f 2
n(t, x, z) < C � F(t, x, z) (dt 
 dx
 dz a:e:) 8n,

f n ! f (dt 
 dx
 dz a:e:),
(5:1)

where C > 0 is a constant, F is a Borel function from L pqr for some p . 1, q . 2,

r . 4q=(3qÿ 2), and f is some Borel function. Let în :� în(t, x) be a sequence of F t-

adapted random ®elds on [0, T ] 3 [0, 1], such that

în ! î (dt 
 P
 dx a:s:), jîn(t, x)j < æ(t, x) (dt 
 P
 dx a:s:) 8n, (5:2)

where î, æ are F t-adapted random ®elds, such that æ 2 L2([0, T ] 3 [0, 1]) (a.s.). Let u0n be

a sequence of F 0-measurable random variables in C([0, 1]) converging almost surely to a

random variable u0 in C([0, 1]). Then the solution un of Eq(u0n, f n � în, ó ) on [0, T ]

converges almost surely to a random ®eld u � u(t, x), uniformly in (t, x) 2 [0, T ] 3 [0, 1],

and u is a solution of Eq(u0, f � î, ó ) which satis®es�T

0

�1

0

F(t, x, u(t, x)) dx dt ,1 (a:s:): (5:3)

Proof. We proceed in two steps.

Step 1. In addition to the conditions of the theorem assume that, for a constant R,

160 A. Alabert and I. GyoÈngy



�T

0

�1

0

jîn(t, x)j2 dx dt < R (a:s:) 8n: (5:4)

De®ne

f nk :�
k̂

i�n

f i, f (n) :�
1̂

i�n

f i, înk :�
k̂

i�n

îi, î(n) :�
1̂

i�n

îi, u0nk :�
k̂

i�n

u0i,

(5:5)

f nk :�
_k
i�n

f i, f (n) :�
_1
i�n

f i, înk :�
_k

i�n

îi, î(n) :�
_1
i�n

îi, u0nk :�
_k

i�n

u0i:

Notice that:

(a) f nk and f nk are bounded;

(b) f f nkgk , fînkgk , fu0nkgk are decreasing and f f nkgk, fînkgk , fu0nkgk are increasing;

(c) f nk > f mk > f mk > f nk , înk > îmk > îmk > înk and u0nk > u0mk > u0mk > u0nk for

n < m < k.

Let unk and unk be the unique solutions to Eq(u0nk , f nk , ó ) and Eq(u0nk , f nk , ó ), respectively.

Using the comparison result of Proposition 3.3, funkgk is decreasing, funkgk is increasing,

and

unk > umk > umk > unk , if n < m < k: (5:6)

By Proposition 4.3 there exists a constant K, independent of n and k, such that

E sup
t,x

exp(ÿku0nkk1)junk(t, x)j2
 !

< K,

E sup
t,x

expfÿku0nkk1gjunk(t, x)j2
 !

< K: (5:7)

This implies that the limits

u(n)(t, x) :� lim
k!1

unk(t, x), u(n)(t, x) :� lim
k!1

unk(t, x) (5:8)

are almost surely bounded random ®elds. Clearly, the limits

u(0n)(t, x) :� lim
k!1

u0nk(x), u(0n)(x) :� lim
k!1

u0nk(x) (5:9)

are almost surely continuous random ®elds on [0, 1]. By Proposition 4.3 and Corollary 4.6,

u(n) and u(n) have continuous modi®cations, denoted also by u(n) and u(n), which are solutions

of Eq(u(0n), f (n) � î(n), ó ) and Eq(u(0n), f (n) � î(n), ó ), respectively. Letting k !1 in (5.6),

we ®nd that

u(n) > u(m) > u(m) > u(n), if n < m, (5:10)

which implies that the random ®elds u :� limn!1 u(n) and u :� limn!1 u(n) are well de®ned,

and almost surely bounded by virtue of Remark 4.4. Moreover, using Proposition 4.3, Remark
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4.4 and Corollary 4.6, we deduce that u and u have continuous modi®cations, denoted also by

u and u, which are solutions of Eq(u0, f � î, ó ). Clearly, u < u (a.s.), and by Girsanov's

theorem u and u must have the same law, which implies u � u. For n < i < k, we have

f nk < f i < f nk , înk < îi < înk , u0nk < u0i < u0nk : (5:11)

Hence unk < ui < unk by Proposition 3.3, which implies

unk <
k̂

i�n

ui <
_k

i�n

ui < unk : (5:12)

Taking k !1 and then n!1, we obtain

u < lim inf
n!1 un < lim sup

n!1
un < u � u: (5:13)

Therefore, un ! u � u (a.s.) for all t and x. The convergence is uniform in (t, x) 2
[0, T ] 3 [0, 1], since the convergences unk ! u(n), u(n) ! u, unk ! u(n) and u(n) ! u are

uniform by virtue of Dini's theorem. Moreover, using Proposition 4.3 and Remark 4.4, we

obtain

E

�T

0

�1

0

F(t, x, u(t, x)) dx dt

 !
,1: (5:14)

Step 2. We now consider the case when we do not have condition (5.4). De®ne the

stopping time

ôR :� inf t 2 [0, T ] :

� t

0

�1

0

jæ(s, x)j2 dx ds > R

( )
(5:15)

and the random ®eld î(R)
n � î(R)

n (t, x) :� în(t ^ ôR, x) for every R . 0. Then, by step 1, the

solution u(R)
n of Eq(u0n, f n � î(R)

n , ó ) converges almost surely in C([0, T ] 3 [0, 1]) to a

random ®eld u(R), which is a solution of Eq(u0, f � î(R), ó ), where î(R)(t, x) :� î(t ^ ôR, x).

Note that if Q < R then ôQ < ôR, and almost surely u(Q)
n (t, x) � u(R)

n (t, x) � un(t, x) for all

t 2 [0, ôQ ^ T ], x 2 [0, 1]. Consequently, almost surely u(Q)(t, x) � u(r)(t, x) for all

t 2 [0, ôQ ^ T ], x 2 [0, 1]. Hence taking into account that ôR " 1 as R!1, we can

de®ne u(t, x) :� limR!1 u(R)(t, x) for all t 2 [0, T ], x 2 [0, 1]. Moreover, we obtain that un

converges almost surely in C([0, T ] 3 [0, 1]) to u, which is a solution on [0, T ] of

Eq(u0, f , ó ). Finally, note that, for each N . 0 and R . 0,
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P

�T

0

�1

0

F(t, x, u(t, x)) dx dt > N

 !

< P

�T

0

�1

0

F(t, x, u(R)(t, x)) dx dt > N

 !
� P(ôR , T )

<
1

N
E

�T

0

�1

0

F(t, x, u(R)(t, x)) dx dt

 !
� P(ôR , T ) <

K R

N
� P(ôR , T ) (5:16)

with a constant K R by virtue of (5.14) in step 1. Letting N !1 and then R!1, we

obtain

P

�T

0

�1

0

F(t, x, u(t, x)) dx dt � 1
 !

� 0, (5:17)

that is to say (5.3) holds. h

The existence of a solution to Eq(u0, f , ó ) follows immediately from the above theorem

under conditions (A), (B) and (C). In order to deal with the question of uniqueness the

following de®nition is useful.

De®nition 5.2. Assume conditions (A), (B) and (C). We say that a solution u(t, x) of

Eq(u0, f , ó ) on [0, T ] is constructible, if there exist a sequence of bounded Borel functions

f n � f n(t, x, z) and a sequence of random ®elds în � în(t, x), satisfying the conditions of

Theorem 5.1, and un(t, x)! u(t, x) (a.s.) for every t 2 [0, T ], x 2 [0, 1], where un is the

solution of Eq(u0, f n � în, ó ) on [0, T ].

Proof of Theorem 2.1. Applying Theorem 5.1 with f n :� f 1fj f j<ng, în � 0, we obtain the

existence of a constructible solution satisfying the required estimate. Let u and v be

constructible solutions, that is, un ! u, vn ! v, where un and vn are the solutions of

Eq(u0, f n � în, ó ) and Eq(u0, gn � çn, ó ), respectively, for appropriate sequences f n, în, gn,

çn. De®ne the sequences hn :� f n, æn :� în for n even, and hn :� gn, æn :� çn for n odd.

Then, by Theorem 5.1, the solution wn to Eq(u0, hn � æn, ó ) converges to some random ®eld

w, which implies u � v. Let u be now a solution of Eq(u0, f , ó ) such that (5.3) holds. For

n > 1, de®ne

f n :� f 1fj f j<ng, în(t, x) :� f (t, x, u(t, x))ÿ f n(t, x, u(t, x)): (5:18)

Then clearly f n, în satisfy the condition of Theorem 5.1 and u is a solution of

Eq(u0, f n � în, ó ) for every n. Consequently, u is a constructible solution, which proves

uniqueness. In order to show that u is a C([0, 1])-valued Markov process, let us consider a

C([0, 1])-valued F 0-adapted sequence of random variables u0n converging almost surely to

u0 in C([0, 1]). Let un denote the solution of Eq(u0n, f , ó ). Clearly un is the unique solution

of Eq(u0n, f n � în, ó ), where f n :� f 1fj f j<ng and în(t, x) :� f (t, x, un(t, x))ÿ f n(t, x,
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un(t, x)). Therefore, by Theorem 5.1, we obtain that un converges almost surely in

C([0, T ] 3 [0, 1]) to u. Hence the Markov property of fu(t) : t 2 [0, T ]g follows by standard

arguments. h

Proof of Theorem 2.3. De®ne f n :� ( f ^ n) _ (ÿn), f n :� ( f ^ n) _ (ÿn). Clearly, f n < f n

for every integer n > 1. Hence, by Proposition 3.3, we have un(t, x) < un(t, x) for the

solutions un and un of Eq(u0, f n, ó ) and Eq(u0, f n, ó ), respectively. By Theorem 5.1 un ! u

and un ! u. Consequently, almost surely u(t, x) < u(t, x) for all t, x. h
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