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1 Introduction

We consider stochastic Burgers’ equation

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + f(u(t, x)) + u(t, x)

∂u

∂x
(t, x) +

∂W

∂t∂x
(t, x), (1.1)

for t ∈ [0, T ], x ∈ [0, 1], with Dirichlet boundary condition

u(t, 0) = u(t, 1) = 0, t > 0, (1.2)

and initial condition

u(0, x) = u0(x) , x ∈ [0, 1]. (1.3)

Here f is a Lipschitz continuous function on the real line, u0 is a square-
integrable function over [0, 1], and ∂W

∂t∂x (t, x) is a space-time white noise. This
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equation is very often viewed as a model equation of the motion of turbulent
fluid. The solvability and the properties of its solution have been intensively
studied in the literature, see, e.g., [1], [2], [7] and the references therein. Our
aim is to investigate a numerical scheme for this equation. We study the
following space-discretization of problem (1.1)–(1.2):

dun(t, xnk ) =
(
∆nu

n(t, xnk ) + f(u(t, xnk )) +
1
2
∂−n [[u

n(t)]](xnk )
)
dt

+d∂nW (t, xnk ) , k = 1, . . . , n− 1, (1.4)

un(t, xn0 ) = un(t, xnn) = 0, t ≥ 0, (1.5)

over the grid Gn := {xnk = k/n : k = 0, 1, 2, ..., n}, where d stands for the
differential in t, and

∆nh(xnk ) := n2
(
h(xnk+1)− 2h(xnk ) + h(xnk−1)

)
,

∂nh(xnk ) := n
(
h(xnk+1)− h(xnk )

)
,

∂−n h(x
n
k ) :=

(
h(xnk )− h(xnk−1)

)
,

[[h]](xnk ) :=
1
3

(
h2(xnk+1) + h2(xnk ) + h(xnk+1)h(x

n
k )
)
,

h(xn0 ) = h(xnn) := 0,

for functions h defined on the grid. For fixed n ≥ 2 system (1.4) is a stochastic
differential equation for the (n− 1)-dimensional process

un(t) = (unk )(t) := (un(t, xnk )).

We show that for every initial condition un(0) = (ank ) ∈ Rn−1 equation (1.4)
has a unique solution {un(t) : t ∈ [0, T ]}. We extend un(t) from the grid onto
[0, 1] by un(t, x) := un(t, [nx]/n), and show that this extension converges to u,
the solution of stochastic Burgers’ equation, provided that the initial condition
un(0) converges to u0. Moreover, we estimate the rate of convergence.

Numerical schemes for parabolic stochastic PDEs driven by space-time
white noise have been investigated thoroughly in the literature, see, e.g.,
[3], [6], [10], [11] and the references therein. The class of equations consid-
ered in these papers does not contain stochastic Burgers’ equation. A semi-
discretization in time of stochastic Burgers’ equation is studied in [9].

2 Formulation of the main result

Let (Ω,F , {Ft}0≤t≤T , P ) be a filtered probability space carrying an Ft-
Brownian sheet W = (W (t, x)) on [0, T ]× [0, 1]. This means W is a Gaussian
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field, EW (t, x) = 0, E(W (t, x)W (s, y)) = (t ∧ s)(x ∧ y), W (t, x) is Ft-
measurable, and W (t, x)−W (s, x) +W (s, y)−W (t, y) is independent of Fs

for all 0 ≤ s ≤ t and x, y ∈ [0, 1].
Let f := f(z) be a locally bounded Borel function on R, and let u0 = u0(x)

be an F0-measurable random field such that almost surely u0 ∈ L2([0, 1]).
We say that an L2([0, 1])-valued continuous Ft-adapted random process is a
solution of problem (1.1), (1.2), (1.3), if almost surely∫ 1

0

u(t, x)ϕ(x) dx =
∫ 1

0

u0(x)ϕ(x) dx+
∫ t

0

∫ 1

0

u(s, x)ϕ′′(x) dxds

+
∫ t

0

∫ 1

0

f(u(s, x))ϕ(x) dxds− 1
2

∫ t

0

∫ 1

0

u2(s, x)ϕ′(x) dxds

+
∫ t

0

∫ 1

0

ϕ(x) dW (s, x)

for all t ∈ [0, T ] and ϕ ∈ C2([0, 1]), ϕ(0) = ϕ(1) = 0, where the last integral
in the right-hand side of this equality is understood as Itô’s integral, and
ϕ′, ϕ′′ denote the first and second derivatives of ϕ. We assume the following
condition.

Assumption 2.1 The force term f is Lipschitz continuous, i.e., there is a
constant L such that

|f(y)− f(z)| ≤ L|y − z|
for all y, z ∈ R.
It is well-known that under this condition problem (1.1), (1.2), (1.3) has a
unique solution u, which satisfies also the integral equation

u(t, x) =
∫ 1

0

G(t, x, y)u0(y) dy +
∫ t

0

∫ 1

0

G(t− s, x, y)f(u(s, y)) dy ds

−
∫ t

0

∫ 1

0

Gy(t− s, x, y)u2(s, y) dy ds+
∫ t

0

∫ 1

0

G(t− s, x, y) dW (s, y), (2.6)

where

G(t, x, y) :=
∞∑
j=1

exp{−j2π2t}ϕj(x)ϕj(y), ϕj(x) :=
√
2 sin(jπx), (2.7)

is the heat kernel, and

Gy(t, x, y) =
∞∑
j=1

jπ exp{−j2π2t}ϕj(x)ψj(y), ψj(x) :=
√
2 cos(jπx).

(2.8)
Moreover, if u0 is a continuous random field, then the solution u has a modi-
fication which is continuous in (t, x), see [1], [2] and [7].

First we formulate our result for problem (1.4)–(1.5).
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Theorem 2.1. Let Assumption 2.1 hold. Let n ≥ 2 be an integer, and let
(ank )

n−1
k=1 be an F0-measurable random vector in Rd−1. Then system (1.4)–

(1.5) with the initial condition

un(0, xnk ) = ank , k = 1, 2, ..., n− 1, (2.9)

admits a unique solution un = {un(t, xnk ) : k = 0, 1, 2, ..., n; t ≥ 0}, which
is continuous in t ≥ 0. Moreover, for every T > 0, there is a finite random
variable ξ such that

sup
t≤T

1
n

n−1∑
j=1

|un(t, xnj )|2 ≤ ξ

 1
n

n−1∑
j=1

|ank |2 + 1

 (a.s.) (2.10)

for all n ≥ 2.

In order to formulate the main result of the paper we extend (un(t, xnk )),
the solution of system (1.4)–(1.5) with initial condition un(0, xnk ) = u0(xnk ),
k = 0, 1, 2..., n, as follows:

un(t, x) := un(t, κn(x)), x ∈ [0, 1], t ≥ 0,

where κn(x) := [nx]/n, and [z] denotes the integer part of z. The main result
of the present paper is the following.

Theorem 2.2. Let Assumption 2.1 hold. Assume that u0 ∈ C([0, 1]) almost
surely. Then un(t) almost surely converges in L2([0, 1]) to u(t), the solution of
problem (1.1)–(1.3), uniformly in t in bounded intervals. Moreover, if almost
surely u0 ∈ C3([0, 1]), then for each α < 1/2, T > 0 there exists a finite
random variable ζα such that

sup
t≤T

∫ 1

0

|un(t, x)− u(t, x)|2 dx ≤ ζαn
−α (a.s.) (2.11)

for all integers n ≥ 2.

We prove Theorem 2.1 in the next section, and after presenting some
preliminary estimates in Section 4, we prove Theorem 2.2 in Section 5.

3 Proof of Theorem 2.1

Using the notation

unk (t) := un(t, xnk ) = un
(
t,
k

n

)
Wn

k (t) :=
√
n
(
W (t, xnk+1)−W (t, xnk )

)
for k = 1, 2, . . . , n− 1, we can write equations (1.4)–(1.5) as
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dunk (t) = n2
n−1∑
i=1

Dkiu
n
i (t) dt+ f(unk (t)) dt

+
n

6

(
|unk+1|2(t)− |unk−1|2(t) + unk+1(t)u

n
k (t)− unk (t)u

n
k−1(t)

)
dt

+
√
n dWn

k (t), k = 1, 2, . . . , n− 1, (3.12)
unk (0) = ank , k = 1, 2, . . . , n− 1, (3.13)

where un0 = unn := 0, and Dkk = −2, Dki = 1 for |k − i| = 1, Dki = 0 for
|k − i| > 1. Notice that Wn(t) := (Wn

k (t)) is an (n − 1)-dimensional Wiener
process. Fix n ≥ 2 and define the vector field

A(x) := n2Dx+ F (x) + nH(x), x ∈ Rn−1,

where D = (Dij) is the (n− 1)× (n− 1) matrix given above, and

Fk(x1, x2, . . . , xn−1) : = f(xk),

Hk(x1, x2, . . . , xn−1) : =
1
6
(x2k+1 − x2k−1 + xk+1xk − xkxk−1),

for k = 1, 2, . . . , n − 1, with x0 = xn := 0. Then equations (3.12)–(3.13) can
be written as

dun(t) = A(un(t)) dt+
√
ndWn(t), (3.14)

un(0) = an, (3.15)

where un(t) := (unk (t)) and an := (ank ) are column vectors in Rn−1. Notice
that

(x,Dx) = −x21 − x2n−1 −
n−2∑
k=1

(xk+1 − xk)2, (3.16)

(x,H(x)) = 0, (3.17)

(x, F (x)) =
n−1∑
k=1

xkf(xk) ≤ C

(
n+

n−1∑
k=1

x2k

)
(3.18)

for all x ∈ Rn−1, where (x, y) :=
∑n−1

k=1 xkzk is the inner product of vectors
x, y ∈ Rn−1, C := L+f2(0), and L is the Lipschitz constant from Assumption
2.1. Hence A satisfies the following growth condition:

(x,A(x)) = n2(x,Dx) + (x, F (x)) ≤ C

(
n+

n−1∑
k=1

x2k

)

for all x ∈ Rn−1 and for every integer n ≥ 2. Clearly, A is locally Lipschitz in
x ∈ Rn−1. This and the above growth condition imply that equation (3.14)
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with initial condition (3.15) admits a unique solution un, which is an Ft-
adapted Rn−1-valued continuous process. (See the general result, Theorem 1
in [4], or Theorem 3.1 in [8], for example.)

It remains to show estimate (2.10). To this end we rewrite equation (3.14)
for the solution un in the form

un(t) = en
2tDan +

∫ t

0

en
2(t−s)D

(
F (un(s)) + nH(un(s))

)
ds

+
√
n

∫ t

0

en
2(t−s)D dWn(s), (3.19)

and consider the Rn−1-valued random processes

ηn(t) :=
√
n

∫ t

0

en
2(t−s)D dWn(s), v(t) := vn(t) := un(t)− ηn(t).

Then from equation (3.19) we get that v satisfies

dv(t) =
(
n2Dv(t) + F (v(t) + η(t)) + nH(v(t) + ηn(t))

)
dt,

v(0) = an.

Hence for |v(t)|2 :=
∑n−1

k=1 |vk(t)|2 we get

d|v(t)|2 = 2n2
(
v(t),Dv(t)

)
dt+ 2

(
v(t), F (v(t) + ηn(t))

)
dt

+2n
(
v(t),H(v(t) + ηn(t))

)
dt

≤ −2n2
n∑

k=1

(vk+1(t)− vk(t))2 dt+ 4C(n+ |v(t)|2)

+2n
(
v(t),H(v(t) + ηn(t))−H(v(t))

)
dt (3.20)

with v0(t) := vn(t) := 0, by virtue of (3.16), (3.17), (3.18), where C is the
constant from inequality (3.18). Taking into account that for x ∈ Rn−1

Hk(x) = [[x]]k − [[x]]k−1, k = 1, . . . , n− 1

with

[[x]]j :=
1
6
(x2j+1 + x2j + xj+1xj), j = 0, 1, . . . , n− 1, x0 := xn := 0,

we have
2|
(
v(t),H(v(t) + η(t))−H(v(t))

)
| =

2|
n−1∑
k=0

(vk+1(t)− vk(t)){[[v(t) + ηn(t)]]k − [[v(t)]]k}|
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≤ n
n−1∑
k=0

(vk+1(t)− vk(t))2 + n−1
n−1∑
k=0

{[[v(t) + ηn(t)]]k − [[v(t)]]k}2

≤ n
n−1∑
k=0

(vk+1(t)− vk(t))2 + 100n−1
n−1∑
k=1

(
|η̄n|2|vk|2(t) + |η̄n|4

)
, (3.21)

where
η̄n := max

0<k<n
sup
t≤T

|ηnk (t)|.

Thus from (3.20) and (3.21) we get

1
n
|v(t)|2 ≤ 1

n
|v(0)|2 + 100|η̄n|4 + 4Ct+ (100|η̄n|2 + 4C)

∫ t

0

1
n
|v(s)|2 ds.

Hence by Gronwall’s inequality

sup
t≤T

1
n
|v(t)|2 ≤ e(100|η̄

n|2+4C)T
(
1
n
|v(0)|2 + 100|η̄n|4 + 4CT

)
,

which implies

sup
t≤T

1
n

n−1∑
k=1

|unk (t)|2 ≤ ξn

(
1
n

n−1∑
k=1

|ank |2 + 1

)
(3.22)

with
ξn := e(100|η̄

n|2+4C)T + 100|η̄n|4 + 4CT + 2|η̄n|2.
We are going to show that ξ := supn≥2 ξn is a finite random variable. To this
end note that the vectors e1, . . . , en−1 defined by

ej = (ej(k)) =
(√

2
n
sin
(
j
k

n
π
))

, k = 1, 2, . . . , n− 1,

form an orthonormal basis in Rn−1, and that they are eigenvectors of the
matrix n2D, with eigenvalues

λnj := −4 sin2
( j
2n
π
)
n2 = −j2π2cnj ,

where
4
π2

≤ cnj := sin2
( jπ
2n

) / ( jπ
2n

)2
≤ 1 (3.23)

for j = 1, 2, . . . , n − 1 and every n ≥ 1. Therefore, for the random field
{ηn(t, x) : t ≥ 0, x ∈ [0, 1]} defined by

ηn(t, xk) := ηnk :=
√
n

∫ t

0

en
2(t−s)D dWn(s)
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for xk := k/n, n = 1, 2, ..., n− 1, and

ηn(t, 0) = ηn(t, 1) = 0,

ηn(t, x) := ηn(t, κn(x)), x ∈ (0, 1),

we have

ηn(t, x) =
∫ t

0

∫ 1

0

Gn(t, x, y) dW (t, y),

for all t ≥ 0, x ∈ [0, 1], where

Gn(t, x, y) :=
n−1∑
j=1

exp(λnj t)ϕ
n
j (κn(x))ϕj(κn(y)), (3.24)

ϕj(x) :=
√
2 sin(jxπ).

(Recall that κn(y) := [ny]/n.) Thus considering the special case f = 0, σ = 1,
u0 in Theorem 3.1 of [5], we get that almost surely

sup
n≥2

η̄n ≤ sup
x∈[0,1]

sup
t≤T

|ηn(t, x)| <∞,

which obviously implies that ξ := supn≥2 ξn is a finite random variable. The
proof of Theorem 2.2 is now complete. ��

4 Preliminary estimates

Define

Gn
y (t, x, y) := ∂nG

n(t, x, y) := n(Gn(t, x, y +
1
n
)−Gn(t, x, y))

=
n−1∑
j=1

exp{−j2π2cnj t}ϕj(κn(x))n
(
ϕj(κ+n (y))− ϕj(κn(y))

)
, (4.25)

for t ≥ 0, x, y ∈ [0, 1], where κ+n (y) =: κn(y) +
1
n .

Lemma 4.1. For each T > 0 there exists a constant K > 0 such that∫ 1

0

(Gn
y −Gy)2(s, x, y) dx = Kn−2s−5/2

for all y ∈ [0, 1], s ∈ (0, T ] and all integers n ≥ 2.



Approximation of Burgers’ Equation 9

Proof. Clearly,
Gn

y −Gy = A1 +A2 +A3 +A4 , (4.26)

where

A1 :=
∞∑
j=1

exp{−j2π2s}
[
ϕj(x)− ϕj(κn(x))

]
jπψj(y) ,

A2 :=
∞∑
j=n

exp{−j2π2s}ϕj(κn(x))jπψj(y) ,

A3 :=
n−1∑
j=1

exp{−j2π2s}ϕj(κn(x))
[
jπψj(y)− n

(
ϕj(κ+n (y))− ϕj(κn(y))

)]
,

A4 :=
n−1∑
j=1

{
[
exp(−j2π2s)− exp(−j2π2cnj s)

]
×ϕj(κn(x))n

(
ϕj(κ+n (y))− ϕj(κn(y))

)
}.

Let ‖Ai‖ denote the L2([0, 1])-norm of Ai in the x-variable. Fix T > 0, and
let K denote constants, which are independent of t ∈ [0, T ], x, y ∈ [0, 1],
s ∈ (0, T ], n ≥ 2, but can be different even if they appear in the same line.
Then notice that

‖A1‖2 =
∫ 1

0

∣∣Gy(s, x, y)−Gy(s, x, y)
∣∣2 dx

≤ Kn−2
∫ 1

0

∣∣Gyx(s, x, y)
∣∣2 dx = Kn−2s−5/2, (4.27)

by the well-known estimate

|Gyx(s, x, y)| ≤ Ks−3/2e−(x−y)
2/s, s ∈ [0, T ], x, y ∈ [0, 1],

on the heat kernel. By the orthogonality of {ϕj} in L2([0, 1]),

‖A2‖2 =
∞∑
j=n

exp{−2j2π2s}j2π2ψj(y)2

≤
∞∑
j=n

j2 exp{−j2s} ≤ 32
∞∑
j=n

j2
1

(js1/2)5
≤ Kn−2s−5/2. (4.28)

By the mean-value theorem

‖A3‖2 =
n−1∑
j=1

exp{−2j2π2s}
[
jπψj(y)− n

(
ϕj(κ+n (y))− ϕj(κn(y))

)]2
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=
n−1∑
j=1

exp{−2j2π2s}
[
jπψj(y)− jπψj(θn(y))

]2
,

where θn(y) ∈ [κn(y), κ+n (y)]. Hence

‖A3‖2 ≤ Kn−2
n−1∑
j=1

j4 exp{−j2s} ≤ Kn−2s−2
n−1∑
j=1

j4s2 exp{−j2s}

≤ Kn−2s−2
∫ n
√
s

0

x4 exp{−x2}s−1/2 dx ≤ Kn−2s−5/2. (4.29)

Finally,

‖A4‖2 =
n−1∑
j=1

[
exp{−j2π2s} − exp{−j2π2cnj s}

]2
n2
[
ϕj(κ+n (y))− ϕj(κn(y))

]2
≤ K

n−1∑
j=1

j2
[
exp{−j2π2s} − exp{−j2π2cnj s}

]2
≤ K

n−1∑
j=1

j2
[
j2π2 exp{−j2π2cnj s}(1− cnj )s

]2
≤ K

n−1∑
j=1

j6(1− cnj )
2s2 exp{−j2s}

by the mean-value theorem and the fact that cnj ≤ 1. Hence by the definition
of cnj in (3.23), using sinx = x+O(x3), we have

‖A4‖2 ≤ K

n−1∑
j=1

j6(jπ/2n)4s2 exp{−j2s} ≤ K

n−1∑
j=1

j6(j/n)4s2 exp{−j2s}

≤ Kn−4
n−1∑
j=1

j10s2 exp{−j2s} ≤ Kn−2s−2
n−1∑
j=1

j8s4 exp{−j2s}

≤ Kn−2s−2
∫ s
√
n

0

x8 exp{−x2}s−1/2 dx ≤ Kn−2s−5/2 . (4.30)

Thus by virtue of equality (4.26) and inequalities (4.27), (4.28), (4.29) and
(4.30) the proof is complete. ��

Lemma 4.2. For each T > 0 there exists a constant K such that

I :=
∫ T

0

(∫ 1

0

|Gn
y −Gy|2(s, x, y) dx

)1/2
ds ≤ Kn−1/2 (4.31)

for all y ∈ [0, 1].
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Proof. Clearly, I ≤ I1 + I2 + I3, where

I1 :=
∫ ε

0

(∫ 1

0

Gy(s, x, y)2 dx
)1/2

ds,

I2 :=
∫ ε

0

(∫ 1

0

Gn
y (s, x, y)

2 dx
)1/2

dsdy,

I3 :=
∫ T

ε

∫ 1

0

(Gn
y −Gy)2(s, x, y) dx

)1/2
dsdy.

From

Gy(s, x, y) =
∞∑
j=1

exp(−j2π2s)ϕj(x)jπψj(y),

using the orthogonality of {ϕj}, we get∫ 1

0

Gy(s, x, y)2 dx ≤
∞∑
j=1

exp(−2j2π2s)j2π2ψ2j (y)

≤ 20
∞∑
j=1

exp(−j2s)j2 ≤ Cs−3/2

for some constant C. Therefore,

I1 ≤
∫ ε

0

Cs−3/4 ds ≤ 4Cε1/4.

In exactly the same way, we obtain a constant C such that I2 ≤ Cε1/4. By
the estimate in Lemma 4.1, there is a constant C such that

I3 ≤ Cn−1
∫ T

ε

s−5/4 dsdy ≤ Cn−1ε−1/4.

Taking ε = n−2, we obtain the statement of the lemma. ��

5 Proof of Theorem 2.2

We prove the theorem when f = 0. The proof in the general case of a Lip-
schitz function f goes in the same way, with some additional terms in the
calculations, but without new difficulties. Notice that un(t, x) satisfies

un(t, x) =
∫ 1

0

Gn(t, x, y)u(0, κn(y)) dy

−
∫ t

0

∫ 1

0

Gn
y (t− s, x, y)[[un(s)]](κn(y))dy ds

+
∫ t

0

∫ 1

0

Gn(t− s, x, y) dW (s, y), (5.32)
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where Gn and Gn
y are defined by (4.25) and (4.25), respectively. From equa-

tions (2.6) and (5.32)

‖un(t, ·)− u(t, ·)‖ ≤ A(t) +B(t) + C(t), (5.33)

with

A(t) := ‖
∫ 1

0

Gn(t, ·, y)un0 (y) dy −
∫ 1

0

G(t, ·, y)u0(y) dy‖, (5.34)

B(t) := ‖
∫ t

0

∫ 1

0

Gy(t− s, ·, y)u(s, y)2 dy ds

−
∫ t

0

∫ 1

0

Gn
y (t− s, ·, y)[[un(s)]](κn(y)) dy ds‖,

C(t) := ‖
∫ t

0

∫ 1

0

Gn(t− s, x, y) dW (s, y)−
∫ t

0

∫ 1

0

G(t− s, x, y) dW (s, y)‖.
(5.35)

Clearly, B ≤ B1 +B2, where

B21(t) :=
∫ 1

0

(∫ t

0

∫ 1

0

(Gn
y −Gy)(t− s, x, y)[[un(s)]](y) dy ds

)2
dx,

B22(t) :=
∫ 1

0

(∫ t

0

∫ 1

0

Gy(t− s, x, y)([[un(s)]](y)− |u(s, y)|2) dy ds
)2

dx.

By Minkowski’s inequality, Lemma 4.2 and Theorem 2.1 we get

B21(t) ≤
(∫ 1

0

∫ t

0

(∫ 1

0

(Gn
y −Gy)2(s, x, y) dx

)1/2
[[un(t− s)]](y) dsdy

)2
≤ Kn−1

(∫ t

0

∫ 1

0

[[un(s)]](y) dy ds
)2
≤ ξn−1 (5.36)

for all t ∈ [0, T ], where K is a constant and ξ is a finite random variable,
independent of t and n. By Lemma 3.1 (i) from [7], (take q = 1, ρ = 2,
κ = 1/2 there), we have

B22(t) ≤ K
(∫ t

0

(t− s)−3/4‖[[un(s, ·)]]− |u(s, ·)|2‖1 ds
)2

(5.37)

for all t ∈ [0, T ], where ‖ · ‖1 denotes the L1([0, 1])-norm. By simple calcula-
tions, using the Cauchy–Bunyakovskii inequality we get

‖[[un(s, ·)]]− |u(s, ·)|2‖1 ≤ K‖un(s, ·)− u(s, ·)‖(‖un(s, ·)‖+ ‖u(s, ·‖)
+K‖u(s, ·)− u(s, ·+ n−1)‖‖un(s, ·‖ (5.38)
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for all s ∈ [0, T ] with a constant K. By Theorem 2.1 and Theorem 1 in [7],
there is a finite random variable ξ such that almost surely

‖un(s, ·)‖2 ≤ ξ, ‖u(s, ·)|2 ≤ ξ

for all s ∈ [0, T ] and integers n ≥ 2. Thus from (5.38) and (5.37) by Jensen’s
inequality we obtain

|B2(t)|2 ≤ ξ

∫ t

0

(t− s)−3/4‖un(s, ·)− u(s, ·)‖2 ds+ ξζn (5.39)

for all t ∈ [0, T ] and n ≥ 2, where

ζn := sup
s≤T

‖u(s, ·)− u(s, ·+ n−1)‖2, (5.40)

and ξ is a finite random variable independent of t and n. By Burkholder’s
inequality for every p ≥ 1 there exists a constant Kp such that

E

[
sup
t≤T

|C(t)|2p
]
≤ Kp

∥∥∥∫ t

0

∫ 1

0

(Gn −G)2(t− s, ·, y) dy ds
∥∥∥
p
,

where ‖ · ‖p stands for the Lp([0, 1]) norm. Consequently, for each p ≥ 1 there
exists a constant Cp such that

E

[
sup
t≤T

|C(t)|2p
]
≤ Cpn

−p,

since

sup
x∈[0,1]

∫ ∞
0

∫ 1

0

|Gn −G|2(t, x, y) dy dt ≤ c

n

with a universal constant c by Lemma 3.2 part (i) in [5]. Hence, by standard
arguments, for any α ∈ (0, 1), one gets a finite random variable ξα such that
almost surely

sup
t≤T

|C(t)|2 ≤ ξαn
−α (5.41)

for all n ≥ 2. From (5.33) (5.36), (5.39) and (5.41) we get that almost surely

‖un(t, ·)− u(t, ·)‖2 ≤ ξ

∫ t

0

(t− s)−3/4‖un(s, ·)− u(s, ·)‖2 ds

+ξ(ζn + |A(t)|2 + n−1) + ξαn
−α

for all t ∈ [0, T ], and integers n ≥ 2, with a finite random variable ξ, where
A(t), ζn and ξα are defined in (5.34), (5.40) and (5.41), respectively. Hence,
applying a Gronwall-type lemma (e.g. Lemma 3.4 from [5]), we obtain that
almost surely



14 A. Albert and I. Gyöngy

sup
t≤T

‖un(t, ·)− u(t, ·)‖2 ≤ ξ

(
ζn + sup

t≤T
|A(t)|2 + n−1 + ξαn

−α
)

(5.42)

Now we are going to investigate the behaviour of A(t) and ζn as n→∞. Set

vn(t, x) :=
∫ 1

0

Gn(t, x, y)u0(κn(y)) dy

v(t, x) :=
∫ 1

0

G(t, x, y)u0(y) dy.

Assume that u0 ∈ C3([0, 1]). Then by Proposition 3.8 in [5] we have a finite
random variable ξ such that almost surely

sup
t,∈[0,T ]

sup
x∈[0,1]

|vn(t, x)− v(t, x)| ≤ ξn−1

for all n ≥ 2. Hence almost surely

sup
t∈[0,T

|A(t)|2 =
∫ 1

0

|vn(t, x)− v(t, x)|2 dx ≤ ξ2n−2 (5.43)

for all t ∈ [0, T ] and integers n ≥ 2. Moreover, using Lemma 3.1 (iii) from [7]
(with ρ = 2, q = 1 and κ = 1/2 there), we get a finite random variable ξ, such
that almost surely

ζn := sup
s≤T

‖u(s, ·)− u(s, ·+ n−1)‖2 ≤ ξn−1 (5.44)

for all n ≥ 2. Consequently, inequalities (5.42), (5.43) and (5.44) imply esti-
mate (2.11) of Theorem 2.2. Assume now that u0 ∈ C([0, 1]). Then by Lemma
3.1 (iii) from [7] and Proposition 3.8 in [5] we have that almost surely

sup
t∈[0,T ]

A(t) + ζn → 0,

as n→∞. Hence as n→∞,

sup
t≤T

‖un(t, ·)− u(t, ·)‖2 → 0 (a.s.).

The proof of Theorem 2.2 is complete. ��
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