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We study the law of the minimum of a Brownian bridge, con- Received 15 February 2016
ditioned to take specific values at specific points, and the law Accepted 12 April 2018

of the location of the minimum. They are used to compare
some nonadaptive optimization algorithms for black-box func-
tions for which the Brownian bridge is an appropriate prob-
abilistic model and only a few points can be sampled.
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1. Introduction

We study the law of the minimum of a Brownian bridge conditioned to
pass through given points in the interval [0, 1], and the location of this
minimum. Our motivation is the investigation of the performance of algo-
rithms based on probabilistic models in expensive black-box optimization.

The probabilistic model point of view assumes the existence of a prob-
ability space from where the function at hand has been drawn. The choice
of points to sample is guided by the probabilistic properties of this random
function. Eventually, the values of the function at the points already
sampled can be used to decide the next sampling point (adaptive algo-
rithms) or can be neglected (nonadaptive or passive algorithms).

We assume here that the probabilistic model is completely specified, and
given by the standard Brownian bridge on the interval [0, 1]; that means,
the function to be optimized is a path of a standard Brownian motion pro-
cess, conditioned to take certain values x, at t=0 and x; at t=1. More
generally, one could set up a statistical model (a family of probabilistic
models depending on some parameters) and improve sequentially the
knowledge of the parameters using the values observed while sampling.

Probabilistic models try to account for heavy multimodality in the
objective function. The irregularity and the independence of values over
disjoint intervals of the Brownian bridge and other Markovian stochastic
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processes represent well this multimodality, although at a very local scale
the functions found in practice are usually smooth.

Our main interest is in expensive black-box functions from which only a
few points can be sampled, where it is more important to have an estima-
tion of the absolute error incurred in approximating the true minimum
than the convergence, the speed of convergence, or the complexity proper-
ties of the algorithm.

In this paper we establish some facts about the law of the minimum of a
Brownian bridge on the interval [0, 1], conditioned to hit some points
(t;,x;) € (0,1) x R. The density function of the law can be computed
exactly, but we argue that it is better to use simulation to obtain its fea-
tures. We then use these simulations to evaluate empirically the perform-
ance of three nonadaptive algorithms when only small samples are allowed.
Two of them are very simple and known: pure random sampling and sam-
pling at equidistant points. We propose a third one, which performs better
in the present setting. New adaptive algorithms in the same setting will be
presented and compared elsewhere.

The Brownian bridge model in optimization has been studied by several
authors, from the point of view of the asymptotic properties of the algo-
rithms (see, e.g., Locatelli,!® Ritter,'”! Calvin.*"*) We mention here just
two facts:

1. Long-run performance: Sampling at n equidistant points and taking the
value of the best sampled point as the approximation of the true min-
imum has an absolute error whose expectation is O(1/+/n). The best
adaptive algorithm is better than the best nonadaptive algorithm con-
cerning improvement rates, but asymptotically both are O(1/+/n). Thus,
sampling at equidistant points is optimal in the long run.

2. Complexity: For algorithms using n function evaluations, the conver-
gence to zero of the mean error cannot be O(e~") for any constant c.
(This convergence order is indeed attained in unimodal functions, for
example by Fibonacci search.)

A general survey of probabilistic methods for optimization can be found
in Zhigljavsky and Zilinskas.!'>"*!

We establish some notations and preliminaries in Section 2. Section 3 is
devoted to computing the probability that the minimum lies in a given
interval determined by two of the conditioning points. In Section 4 we
show how to simulate the law of the global minimum of the process. In
Section 5 we test and compare the three nonadaptive algorithms from the
point of view of the expected difference between the best sampled point
and the true minimum of the path, when the evaluation points are few; we
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also present an empirical sensitivity analysis when the underlying model is an
Ornstein-Uhlenbeck bridge instead of ##a Brownian bridge. Finally, in Section
6, we compute the conditional distribution of the location of the minimum of
a single Brownian bridge given the value of this minimum, and we show how
to use it to simulate the location of the minimum of the whole process.

2. Preliminaries

In the sequel, for a given stochastic process Z := {Z;,t € I}, defined on a
closed interval I C R, we denote by
m(Z) := miInZt and 0(2) := arg min Z;
te

tel

the random variables giving the minimum value of Z and its location,
respectively. In the cases we will treat here, the minimum exists and is
unique with probability 1 but, to avoid any ambiguity, one can assume that
0(Z) is the first point where the minimum is achieved.

A standard Brownian motion W on the interval [f,#], starting at
(to,a),a € R, is a Markov stochastic process with continuous paths, defined
by the transition probability

Ds r('x’y) = 1 exp _<y_x)2 ) fo <s<r < f1,
’ 2n(r—s) 2(r—s) - -

and such that W, = a with probability 1.

A Brownian bridge B starting at (fp,a) and ending at (f;,b) has the law
of a Brownian motion defined on the time interval [ty, f;] starting at (o, a)
and conditioned to take the value b at t,. The random variable B,, fo<t<t,
is Gaussian with mean a + ;- Lt i (b—a) and variance %

The following results are known or easily deduced (see, e.g., Karatzas

and Shreve [7, Sec. 2.8]):

Proposition 2.1. Let W be a Brownian motion starting at (ty,a), defined on
the interval [ty, t;]. The density function of its minimum m(W) is given by

2 —(a—y)?
Jnw) (V) = = to)eXP {2(51 _)2))}1{)/@}- (1)

Let B be a Brownian bridge from (ty,a) to (t1,b). The density function ot
its minimum m(B) is given by

2 —2(a—y)(b—y)
fm(B) ()’) = ¢ t (a + b—Zy) exXp {% 1{y<a.,y<b}' (2)
1=t 1 — o
Given 0 = ty<t;<--- <t,<t,:1 = 1, and real values xo,...,x,;, we are

interested in a stochastic process X := {X;, € [0, 1]} whose law is that of a
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Brownian bridge starting at (¢, xo), ending at (f,:1,x,+1), and conditioned
to pass through all the intermediate points (¢, x;), i =1,...,n.

This process can be thought as the concatenation of n+ 1 independent
Brownian bridges B' := {B,t € [t;, t;11]}, with respective end values x; and
Xi+1. In the optimization application that we have in mind, the interior
points t,...,t, are the points sampled by the algorithm, and x,...,x, are
the observed values at those points.

The law of the minimum of the process X can be expressed in terms of
the law of the minimum of its pieces, in the usual way. Despite the mutual
independence of the Brownian bridges, this cannot be simplified further:

Proposition 2.2. Let X be the conditioned Brownian bridge defined above,
and m(X) its minimum. Then, for all y € R,

P{m(X)>y} = 11 (1— exp {_Z(xi*l_y i )}> Lpemingo, s} )

tiy1 — &

Proof. The formula comes from the standard computation of the law of the
minimum of several independent random variables:

Fo(y) = 1- I_TO (1= Foiz) (7))

where F,x) is the distribution function of m(X), and F,, g is the distribu-
tion function of the minimum of the Brownian bridge B’, whose density is
given by (2), adjusting the appropriate constants. O

Note that in the case when we do not condition to the end point
(ty+1,%n+1), we obtain a similar expression where, according to (1), the n-
th factor in (3) is replaced by

’ 2 —(xn—2)*
I—J exp (n—2) dz.
o [ (1 —¢,) 2(1—t,)
It would not be difficult to deal with this situation separately (a condi-
tioned Brownian motion), but we will keep our assumptions for simplicity.
Moreover, sampling at =1 reverts to our case.

It is natural to try to compute explicitly the density f,,x) of the min-
imum of X by conditioning to each of the intervals [f;, f;41]:

fm(X)(y) = ZP{G(X) S [ti? ti‘H]} 'fm(X)\

0)-

B(0€t; tit1]

Even though, as we will see, the probability of 6(X) lying in a given
interval can be, in principle, computed exactly, the conditional densities in
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the second factors still depend on the process outside [t;, t;11]; thus they are
not simply densities of the minimum of a single Brownian bridge.

3. Probability that 6(X) belong to [t;, t;. 1]
3.1. Analytical formulae

The probability that the minimum of X is achieved in one of the intervals
[ti, tiv1] can be computed exactly:

Proposition 3.1. The probability that the minimum of the process X is
located in the interval [t;, t; ] is given by:

P{G(X) € [tl‘, ti+1]}

mint2nt) ) 2]
= —— (X + Xi1—2y) ex *
—o0 tiy1 — fi( nm2y)ep { tiy1 — & (4)
H 1 — exp (52) (511 7Y) dy.
i b
Proof. The random variables m(B°), ..., m(B") are independent, because of

the Markov property of Brownian motion. Therefore, their joint density is
given by the product [], fiu(s) (i), where f, g is the density of the min-
imum of the i-th bridge. Denoting, for simplicity, f; := f,.(g) and F; the cor-
responding distribution function,

n i(Yi) * ” (Vi) o dyn
(1o <yj}f ) j;[oﬁ(y]) yo -+ - dy
=J filyi) * HJ i) dyfzjmﬁm*ﬂ(l—ﬁ(y)) .

—0oQ j=0 Yi Jj=0
i#i i#i

P{G(X) c [ti,ti+1]} = J

Now, the result is obtained using the densities (2) and their distribu-
tion functions. O

The integral in (4) can be obtained analytically using a computer algebra
system. It is a long expression that we will not copy here. Let us compare,
instead, the minimum on two different intervals:

Let t;<t, < t3<t4 and consider the Brownian bridge B; from (t;, x;) to
(t, x;) and the Brownian bridge B, from (#;, x3) to (fy, x4). Denote
b = th—t,dy = |x—x1|, by := t4—t3,dy == |x4—x3], and & := x3Ax4—x1AX;.
See Figure 1.

We ask ourselves which of the two intervals [t;, %] and [f3,t4] is more
likely to contain the lowest value. We have
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Figure 1. A path of Brownian motion conditioned to the circled points. Which of the intervals
[tr1, 2] and [t3, t4] is more likely to attain the lowest value?

P{m(B,)<m(By)} = J{M}fm(sl)(y)fm(sz)()_/) dy d

| Sy (waw@) d)‘/) ”

y

Taking as new variables y—xoAx,; instead of y, and y—x,Ax3 instead of y,
we get

Jf:%(dl—b’) exp {%11—)/)} <Jo_ié(d2—2)7) exp {W} djz) dy,

y

which can be written

[ 2 (o ()
()

This integral is also computable analytically. Its value depends on five
parameters (¢1,d;,l,d,, &), which are independent from each other in a
general setting. Therefore, there is no easy way to tell if it is more likely to
find the minimum in one interval or the other. One observes, as the intu-
ition suggests, that the above probability is an increasing function of ¢;, d,
and &, and that is decreasing in ¢, and d;, when all the other parameters
are fixed.

In the case when the intervals are [0, #] and [t, 1], then ¢, = 1—/;, and
¢ can be expressed in terms of d; and d,, in different ways according to
the relative positions xy<xj;<xy, xo<x;<x1, Or x1<XoAX;, so that the num-
ber of free parameters reduces to three.

Example 3.1. Let B, be the bridge from (0, 0) to (0.5,0), and B, the bridge
from (0.5,0) to (1,d,), for d, > 0, and set p := P{m(B;)<m(B,)}. The fol-
lowing table illustrates how p and d, are related.
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p d,

0.5 0.0000
0.6 0.1837
0.7 0.4386
0.8 0.8384
0.9 1.6620
0.95 2.7302
0.99 6.8638

In fact, the explicit functional relationship is given by p=3i+
\/7/8d; exp {d2/2} (1—erf{d,/+/2}), where erf() is the standard error
function. If we keep the same first bridge, and make the second shorter
and ending at zero, say from (1—/,,0) to (1, 0), the dependence between p
and the length ¢, is even easier: p = 1/(2¢, + 1). Both are straightforward
computations from expression (5).

By equating both expressions one obtains the variations in d, and ¢, that
give an equivalent raise of the probability that the first interval contain the
lowest value.

3.2. Approximate computation

Despite the fact that the integrals (4) can be computed analytically, the time
needed to solve them grows exponentially in the number # of intervals. Indeed,
the exact computation involves decomposing the integrand in the sum of O(2")
terms. Each term has an elementary primitive, but in an optimization procedure
in which more and more points are sampled, and consequently the Brownian
bridge is conditioned to one more point each time, the computation becomes
cumbersome very quickly. For example, with just 8 intervals, the computer alge-
bra system maxima takes more than three hours to obtain the result, in an Intel
i7 CPU with plenty of memory at its disposal (although maxima only uses one of
its cores). It is therefore justified to resort to an approximate method.

We remark that adding one more point to the set of conditioning points
(that means, splitting one of the intervals in two), forces to recompute
from scratch the probabilities of all intervals. There seems to be no way to
reuse previous computations.

As we have seen, the probabilities P{m(B')<m(B/)}, for each pair of
indices i, j, can be computed exactly and more easily than (4); nevertheless,
they are not useful even to find the interval with the maximal probability.
An interval [t;, t;y,] may satisfy P{m(B")<m(B/)}>1/2,Vj # i, and still not
be the interval with the largest probability of containing m(X). For
instance, if we condition the Brownian motion to pass through the points

(0,0), (0.144, 0.225), (0.610, 0.344), (1, 0.145),

we find that P{m(B')<m(B?)} = 0.5436 and P{m(B')<m(B*)} = 0.5198.
However, the first interval is the least probable one to contain the minimum:
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Pyx)([to, t1]) = 0.3124,  Pyx)([t1, 12]) = 0.3374,  Pyx)([t2, ts]) = 0.3502.

Even more, such a “winning” interval may not exist. For instance, condi-
tioning to
(0,0), (0.392,0.031), (0.594, —0.157), (1,0.435),

one gets the circular relation
P{m(B')<m(B?*)} = 0.5018,
P{m(B*)<m(B*)} = 0.5032, P{m(B*)<m(B')} = 0.5013.

All these arguments support the need to compute (4) numerically. It is
easy to do it with a rigorous error bound: For some x<min(x,...,X,+1),
split the integral into the two intervals (—oo,X] and [x, min{xo, ..., X,1}]-
On the first one, the integral is bounded by

J_m % (%1 Xe1—2y) exp {—2<xi—y)(xi+1—y)} p

i tiyn — i tiy1 — L

exp {—2(x,-—5c)(x,-+1—5c)} < o {—Z(xi/\x,-ﬂ—fc)z)}

tiv1 — 1 N fin i

To make this quantity less than a fixed small ¢ we can
take 5c<x,'/\x,~+1—(% log %)1/2.

For the second interval, denoting the integrand by f and using for
instance the standard rectangle rule with step size h, the error is bounded
by 1/|f'l| - B - L, where L := min(xo, . . ., Xu41)—X.

Differentiating f and taking into account that all the exponentials take
values less than 1, one obtains ||f'||,, < C with

n

1+ (x5 + xj0.1—2%
ti+1 — ti ( i i+1 )]ZO: tj+1 _ tj

C:=

(Xj —+ Xj+1—256) y

and the integration step size to ensure an error less than ¢ must be

he 2
—C-L

A much more efficient method but with a not completely rigorous error
bound is given by the quadpack functions present in the C Gnu Scientific
Library and the Fortran SLATEC Library, which apply a Gauss-Kronrod rule
[9]. With n=50, the computation is completed in less than one-tenth of
second, in an Intel i7 CPU at 2.40 GHz with 20GB RAM, using the quadpack
routines implemented in the computer algebra system maxima, with an
estimated absolute error rarely bigger than 107°.

The integral of (4) can also be transformed into an integral on [0, 1] set-
ting y = min;x;—(1—x)/x (this is in fact what quadpack does), and the new
integrand does not present any singularity.



STOCHASTIC MODELS . 9

Table 1. See Example 3.2.

Set 1. Result: 0.05722062072176488 Set 2. Result: 0.3539550244743264

Error Time Memory Error Time Memory
1) Exact 1 1.26 57.2 199
2) Quadpack <1076 1.07 1 <1071 1 1
3) Romberg <107" 1.07 1.54 <107" 1.07 1.63
4) Riemann left <1071 122 141 4.146 x 107° 121 137
5) Riemann random 1.008 x 107¢ 103 81.8 4.283 x 107° 100 79.0
6) Simulation 4179 x 1073 249 191 6.045 x 1073 252 188

Set 3. Result: 0.003053658531871728 Set 4. Result: 0.3498434691309963

Error Time Memory Error Time Memory
2) Quadpack 1 1 1 1
3) Romberg <1071 3.41 2.89 <107 3.52 291
4) Riemann left <1078 197 294 <1077 199 158
5) Riemann random 1.366 x 1077 143 157 8.140 x 107 144 84.3
6) Simulation 1.446 x 1073 459 462 1.06 x 1072 456 254

Example 3.2. In Table 1, we show the effective computation of the probabil-
ity that the minimum fall in the first interval, in several situations and with
different methods. Sets 1 and 2 comprise four intervals, with end-points at
t=(0,.1,.2,.5,1), and values x=(0,0,0,0,0) and x=(0,.1,.2,.3,.4)
respectively. Sets 3 and 4 comprise sixteen intervals, with end-points

t = (0,.025,.050,.075,.100, .125, .150, .175, .200,
275,350, .425, .500, .625, .750, .875, 1),

and all images set to zero in set 3 and to x = i/40,i =0, ..., 16, in set 4.

The methods are: 1) the analytical computation of the integral (4), only
in the case of fewest intervals (“exact”); 2) the quadpack functions through
maxima; 3) the romberg routine built-in in maxima; 4) the Riemann
approximations with 10000 subintervals, taking always their left points; 5)
the Riemann approximations with the same number of subintervals, taking
a random point in each one; and 6) the simulation method explained in
the next section. In 3),4),5), the computations are also made after the men-
tioned explicit transformation to the interval [0,1]. In 6) a sample of size
10000 is taken. For the methods including randomness, 5) and 6), we show
the highest error observed after 20 realizations.

All computations were programmed in maxima. Time and memory are
relative to the fastest and the more economic method in each case; we used
the figures reported by maxima itself in a single run. They give therefore
just a rough idea of the computational cost. In the case of 16 intervals, the
“exact” computation is infeasible and we have taken the result of quadpack
as the base for the figures of the other methods.
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4, Simulating the law of the minimum

We are interested in approximating in an effective way the law of the min-
imum of the Brownian motion conditioned to the points
(to,%0), - - (tns1, Xns1), With g = 0 and t,,1 = 1, so that particular param-
eters such as its moments can also be easily estimated. To this end, taking
into account the difficulty and length of the analytical computations
implied by (3), we resort to simulation.

A minimum value for each bridge from (t; x;) to (¢;11,xi4+1) can be easily
simulated from its distribution function F,,,), which is explicitly invertible:

1 1/2
Fr;éB,-)<Z) = 5 <xi + Xit1— <(Xi+1 —x,-)z—Z(t,-H—ti) 10gZ> > s AS <0, 1)

Since m(X) = min{m(B°),...,m(B")}, we can simulate a minimum
value of X as the minimum of the simulated minima of each bridge. The
computational cost is linear in n. At the same time, the relative frequency
with which each interval contributes to the global minimum constitutes
another way to approximate the probabilities P{0(X) € [t;, t;11]} of Section
3.2. This is what is done in row 6 of Table 1 for the interval [0, #].

For example, with set 1 of Example 3.2, and a sample of size 10 000, we
have obtained the following confidence intervals for the probabilities of
each interval to host the minimum:

interval 95% C.l.
[0,0.1] [0.3501,0.3715]
[0.1,0.2] [0.0955,0.1169)
[0.2,0.5] [0.2362,0.2576)
[ ]

[0.5,1] 0.2758,0.2972

The computations have been done in R with the MultinomialCI package,
based on the algorithm of Sison and Glaz [11].

Figure 2 shows the result of simulating the minimum of the process in
the way described above, conditioned to equispaced points with images
equal to zero. The figure includes an histogram and an estimation of the
density using the polynomial splines algorithm described in [12], as imple-
mented in the logspline package in R.

5. Nonadaptive optimization

Suppose now that we have a black-box optimization problem in which we
can assume that the Brownian bridge is a good probabilistic model for the
function at hand. That means, suppose that we are trying to find a point in
the interval [0,1] with an image as close as possible to the true minimum
of a given but unknown path, drawn at random from the law of a
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Figure 2. Histogram and density estimation of the minimum of a Brownian motion conditioned
to pass through the points {(k/4,0),k =0,...,4}, with a sample size of 10000 observations.
An asymptotic 95% symmetric confidence interval for the mean yielded [—0.4939, —0.4884].
The sample median was —0.4814.

Brownian bridge. The value of the bridge at the end-points is assumed to
be given, or that they have already been sampled. It is also assumed that
we are allowed to sample the path at a fixed small quantity n of points
in [0, 1].

A nonadaptive algorithm for this optimization problem consists in decid-
ing beforehand the n points where we are going to sample the path. Any
such algorithm has the same convergence order as the best adaptive algo-
rithm as # — oo, namely O(n~'/?), are much simpler to implement, and
offer parallelization opportunities. Therefore it is worth comparing nona-
daptive algorithms in terms of the size of the error incurred for small #n. In
a forthcoming paper we will discuss and compare some adaptive heuristics.

5.1. Two simple strategies

We will first consider and compare two simple and known strategies,
whose asymptotic behavior have already been compared (see [2]), namely:
Sampling at equidistant points niﬂ,k =1,...,n, and sampling at random
uniformly distributed points. We apply both to a bridge with values 0 and
1 at the end-points and to a symmetric bridge (same value at the end-
points). We obtain approximate 95% confidence intervals for the difference
between the minimal sampled value and the true minimum of the path; the
results are summarized in Table 2. Formally, the confidence intervals esti-

mate the expectation
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Table 2. Approximate confidence intervals for the expectation of the error when estimating
the minimum of a Brownian bridge by the minimum of the sampled values, for equidistant
(“eqd”) and random (“rnd”) sampling. The first column is the sample size.

Bridge from (0, 0) to (1, 1)

Bridge from (0, 0) to (1, 0)

# points 95% C.l. eqd 95% C.l. rnd 95% C.l. eqd 95% C.. rnd

2 [0.2390,0.2517) [0.2547,0.2729) [0.3417,0.3549) [0.3791,0.4012)
4 (0.2025,0.2132] (0.2163,0.2320] [0.2552,0.2649] [0.3002, 0.3194]
8 [0.1659,0.1745] [0.1759,0.1891] [0.1944,0.2023] [0.2183,0.2317]
16 [0.1280,0.1341] [0.1376,0.1475) [0.1390, 0.1447 [0.1651,0.1760]
32 [0.0920,0.0963] [0.1040,0.1111] [0.0987,0.1028] [0.1198,0.1283]
64 [0.0663, 0.0694] (0.0778, 0.0838] [0.0712,0.0741] [0.0851,0.0910]

E[ min B;— min Bt},
0<i<n+1 t€[0,1]
where B is the initial bridge joining (0,x9) and (1,x,:;). In one case the
points t; are fixed; in the other, they are themselves random.

The procedure for the computations is as follows:

1. Fix the number of points to sample. We have used n = 2,4, 8,16, 32, 64
to see the evolution of the intervals when the number of
points increases.

2. Sample a path of the Brownian bridge at point f; = 1/(n + 1); this is
done by simulating a value of By, which is easy because its law is
Gaussian and known. Then, sample at point t, =2/(n+ 1) the bridge
from (t;, x;) to (1,x,41). Proceed similarly to get the values of the path
at all equidistant points.

3. For the simulation at the n random points in [0, 1], determine first at
which subinterval of all previously sampled points the new one belongs
to, and sample from the corresponding bridge. The equidistant points
of step 2 and their evaluations are included here so that both methods
are in fact applied to the same path.

4. From all the 2n sampled points of steps 2 and 3, estimate the expect-
ation of the minimum of the path to which they belong, with the
method described in Section 4. We have used a simulation of size 1000
in this case, taking the mean of the values obtained.

5. For each sampling strategy, compute the difference between the best
sampled point and the estimated minimum of the path.

6. Repeat steps 2-5 a number of times (we used 1000), and construct the
asymptotic confidence intervals from the sets of differences obtained,
for both strategies.

We observe in Table 2 that equidistant sampling (“eqd”) performs better
than random sampling (“rnd”) for both bridges. One also observes that the
errors are smaller for the nonsymmetric bridge; this can be explained by a
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Table 3. Quotient between the errors with equidistant (“eqd”)
and random (“rnd") sampling.

Bridge from (0, 0) to (1, 1) Bridge from (0, 0) to (1, 0)
# points error(eqd) / error(rnd) error(eqd) / error(rnd)
2 0.9301 0.8927
4 0.9273 0.8394
8 0.9326 0.8816
16 0.9193 0.8317
32 0.8754 0.8122
64 0.8397 0.8251

smaller variance of its minimum value (these variances can be computed
analytically from the density (2)), despite the fact that many evaluations are
possibly wasted in a nonpromising region.

Calvin'®! showed that when n — oo, the quotient between the errors
with equidistant and with random sampling approaches ~0.8239. Table 3
contains the quotients obtained in the simulations. The quotient tends to
be bigger when points are few, and it has a decreasing tendency towards
the limiting value as the number of points increases.

5.2. A new algorithm

We propose a new nonadaptive strategy that performs better than equidis-
tant sampling, according to the experiments, and that we will call equiprob-
able sampling. We sample at the points that divide [0, 1] into intervals that
have the same probability to contain the minimum. That means, with the
notation of Section 3, at points 0 = fH<t;<--- <t,<t,y; = 1 such that

P{G(B) € [t,-,t,-H]} =1/(n+1), foralli=0,...,n.

For a symmetric bridge, these points are those of equidistant sampling.
In general, they can be found numerically without much difficulty with the
general formula (7) for the density of the location of the minimum 6(B)
that we are going to prove in Section 6, and that in this case reduces to

2(1—s)

Jow)(s) =\ ———exp {2(%5)}1{05551}-

TS

Indeed, it is enough to apply a simple bisection method to the distribu-
tion function, which is increasing, to obtain the unique #; such that

t k
|| o 9ds = =

Although the integrand is singular at s=0, the quadpack library® can
handle it with more than enough precision for our purposes.

With 1000 runs as in the other two methods, we obtained the results of
Table 4. Comparing with Table 2, we see that the expectation of the error
for the equiprobable (“eqp”) strategy is the lowest of the three; however,
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Table 4. Equiprobable sampling (“eqp”) compared to random sampling (“rnd”) for a bridge
from (0, 0) to (1, 1). The first column is the sample size and the last one is the quotient of the
expected errors.

Bridge from (0, 0) to (1, 1)

# points 95% C.l. eqp 95% C.I. rnd error(eqp) / error(rd)
2 [0.1975,0.2144] [0.2547,0.2729] 0.7807
4 [0.1637,0.1780] [0.2163,0.2320] 0.7622
8 [0.1275,0.1387] [0.1759,0.1891] 0.7293
16 [0.0909, 0.0991] [0.1376,0.1475] 0.6664
32 [0.0677,0.0741] [0.1040,0.1111] 0.6592
64 [0.0491,0.0538] [0.0778,0.0838] 0.6368

the confidence intervals for the error are longer than with “eqd,” because
the variance turns out to be larger. The variances for “rnd” are the largest.

Concerning the ratio of expected errors, an asymptotic analysis similar to
that of Calvin'? is needed to possibly determine their limit value.

5.3. Sensitivity analysis

A natural question that arises here is to what extent the better performance
of the equiprobable sampling algorithm is tied to the particular law of the
Brownian bridge. In other words: what happens if we sample at points
t1,...,t, computed as in Section 5.2, according to the Brownian bridge
law, when the underlying process has a different probability law? To test
this sensitivity issue, we have considered Ornstein-Uhlenbeck bridges with
several different parameter values. We recall first the definition of the
Ornstein-Uhlenbeck process and the notion of stochastic bridge in general.

The Ornstein-Uhlenbeck velocity process (O-U, for short), starting with
value x; € R at time f; is a Gaussian stochastic process with mean and
covariance functions given by

wt) =xi - exp {—PB(t—t;)}, t>t,

2
R(t,s) = ;—B (exp {—Blt—s|}—exp {—B(t+s—2t)}), t,s>1;,
where >0 and 6°>0. One gets the standard Brownian motion when ¢* =

1 and B — 0.

A bridge is derived from a given stochastic process X := {X;,t > t;} by
conditioning to a final random variable X;,,,. Specifically, for our purposes,
an Ornstein-Uhlenbeck bridge B from (t;, x;) to (ti1,Xi41) is an
Ornstein-Uhlenbeck process, starting at X, =x; and conditioned to
X4, = Xit1. More formally, the law of B coincides with the law of X condi-
tioned to the event {X;,, = xj;1}.

If X is a Gaussian process, with mean and covariance functions u and R,
it can be shown that the corresponding bridge B is also Gaussian, with
mean and covariance given by
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. R(t, ti1
H(t) = H(t) + (Xi+1—M(fi+1)) 'M, t <t <t
R(tiy1, tiv1)
_ R(t, ti1)R(s, t;
R(t,s) = R(t, S)— < d H_l) (S +1), t <t,s <ty

R(tiy1,tiv1)

See Gasbarra et al.'%) for a survey on Gaussian bridges.

We have tested (Brownian bridge)-equiprobable sampling (we will abbre-
viate it as “Bb-eqp” in the sequel) against pure equidistant sampling
(“eqd”), on O-U bridges from (0, 0) to (1, 1). The main difficulty here is
that the distribution of the minimum of an O-U bridge is not known.
That means we cannot simulate exactly the minimum of each subinterval
as we did in the case of the Brownian bridge.

Instead, we approximate the global minimum of the path by sampling at
2% equidistant points. Hence, strictly speaking, what we are doing is a
comparison between sampling the O-U path at a few points (up to 2°),
with “eqd” an with “Bb-eqp” sampling, versus sampling it at equidistant 2*°
points. The latter can be done efficiently by means of a recursive dyadic
partition of [0, 1], taking into account that conditioning an O-U bridge at
an interior point results in two independent O-U bridges connected at that
point. Therefore, the values at points of the form k-27" k=1,3,...,2"—1
can be generated after computing the values at all points of the form
k-27"=1), and using only these values.

The resulting computational cost is anyway much bigger than in the sim-
ulations involving only Brownian bridges. For efficiency, in this case they
have been coded in C++ instead of maxima, using the random number
generator of the GNU Scientific Library. As before, we have produced 1000
paths for each of the sample sizes n = 2,4, 8,16, 32, 64.

For each run, the global minimum of the discretized path is recorded.
Then, the values at the “eqd” »n points and at the “Bb-eqp” n points are
simulated, taking into account the small bridge of length 272 to which
they belong. Finally, we construct as before asymptotic 95% confidence
intervals for the differences between the global minimum of the (discre-
tized) path and the best sampled point for each method.

The results are summarized in Table 5, for the same nonsymmetric
bridge of Section 5.1. We have considered three different pairs of values for
the parameters of the O-U bridge:

Case 1. With B =0.01,06% = 1, we have a process with a covariance very
similar to that of the Brownian bridge.

Case 2. With =4, 6 = 1, the variances of the O-U bridge variables B,
are always lower than those of the Brownian bridge. At the midpoint of the
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Table 5. Approximate confidence intervals for the expectation of the error when applying
equidistant sampling (a) and equiprobable sampling based on the law of a Brownian bridge
(b) for the minimum of a Ornstein—Uhlenbeck bridge from (0, 0) to (1, 1). (a) Equidistant sam-
pling and equiprobable sampling based on the sampling points of a Brownian bridge.

@ 95% C.l. eqd
a
# points B=0.01,62=1 p=4,02=1 B=001,06%=2
2 0.2454,0.2675 0.2976,0.3183 0.3739,0.4046
4 0.2039,0.2215 0.2424,0.2584 0.3103,0.3351
8 0.1557,0.1682 0.1834,0.1962 0.2359,0.2535
16 0.1219,0.1308 0.1324,0.1417 0.1712,0.1839
32 0.0895,0.0961 0.0966,0.1031 0.1331,0.1423
64 0.0673,0.0719 0.0709,0.0756 0.0959,0.1027
95% C.I. Bb-eqp
(b)
# points B=0.01,062=1 p=4,02=1 B=0.010°=
2 0.1972,0.2179 0.2858,0.3087 0.3369,0.3707
4 0.1603,0.1770 0.2235,0.2428 0.2715,0.2990
8 0.1211,0.1338 0.1723,0.1868 0.1980,0.2184
16 0.0930,0.1023 0.1268,0.1380 0.1562,0.1733
32 0.0681,0.0749 0.0909, 0.0991 0.1161,0.1285
64 0.0497,0.0548 0.0700, 0.0770 0.0855,0.0950

bridge, where the variance is always maximal, the O-U bridge variance is
approximately half of that of the Brownian bridge.

Case 3. With B = 0.01, 6 = 2, the variances are always greater than those
of the Brownian bridge, and approximately double at the midpoint.

The first thing we notice is that “Bb-eqp” sampling continues to perform
better than “eqd” in all cases, and the results are closer when the variances
of the process are small (case 2). The confidence intervals are slightly wider
for “Bb-eqp,” as they were with the Brownian bridge.

In case 1, the results are very close to the corresponding ones of Tables 2
and 4 (first columns), with slightly wider confidence intervals, in both meth-
ods. This is to be expected, since the O-U and Brownian bridges are very
similar stochastic processes in this case. In cases 2 and 3, where variances are
sensibly different from Brownian bridge, we see that the errors are also not-
ably bigger. Higher variances lead to higher errors (case 3), which is not sur-
prising either. We can conclude that “Bb-eqp” seems to be better than “eqd”
for small samples even when the underlying model deviates from the
Brownian bridge, at least when it deviates towards the O-U model.

The use of the Ornstein-Uhlenbeck process for testing sensitivity is a nat-
ural choice here since it is the solution of the stochastic differential equation

{ dX, = —BX; + cdW,, t>t
Xy, = Xi,

where W is a Brownian motion, which models the velocity of a particle
under diffusive forces with noise intensity o, and friction coefficient . No
friction and unit intensity results in a standard Brownian motion.
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Another natural option for a sensitivity analysis would be the fractional
Brownian motion (fBm), that can be defined as a centered Gaussian pro-
cess with covariance

R(t,s) = 5 ([t + [ =] =),

N =

where 0<H<1. When H=1/2 we get again the standard Brownian motion,
whereas H>1/2 produces more regular paths and positive long-range
dependence, and H < 1/2 leads to more irregular paths and negative long-
range dependence. One can therefore consider several (or random) values
of H € [0, 1] to study the sensitivity of the algorithms.

We have not used fBm as a perturbed model because, besides the fact
that the law of the minimum of the fB bridge is not known, one faces the
additional difficulty that conditioning to an interior point does not produce
two independent bridges, due to the absence of the Markov property.
Approximating an entire (discretized) path of a fB bridge thus involves a
higher cost in time and computing memory (see, e.g. Asmussen and
Glynn!" . Xy The same happens with another natural alternative, the
integrated Brownian motion, with covariance

R(t,s) = Jt JS (unv) dv du,

0J0

and whose paths are of class C' with probability one.

6. Simulating the law of the location of the minimum

The location of the minimum of a continuous function is an ill-posed prob-
lem: small changes in the function may result in big changes in the location of
the minimum. Therefore, the information about the location of the minimum
given by the sampled values is limited, and possibly of less practical import-
ance than the information about the minimum value. Anyway, we can try to
visualize this information through the law of 6(X) := argming ;X;.

This law can be simulated with the auxiliary use of the minima of all
bridges B’, ..., B", which in turn can be easily simulated as we have seen in
Section 4. We prove first that conditioned to all these minima, the variables
0(X) and 0(B/), where j is the index of the interval where the global minimum
is attained, have the same law. This is the contents of the next proposition:

Proposition 6.1. Denote x* := ming<j<p1%; and ¥j:={y = (yo,...,yn) €
[—o0,x*]"™" : y; = min,y;}. For any Borel set A C [0, 1],

P{O(x) € A/m(B") = y,.....m(B") = y,} = P{0(B) € A/m(B) = y,}

on ¥; almost everywhere with respect to Lebesgue measure.
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Proof. First, we prove the equality

P{o(x) € A/m(B°) =y, ...,m(B") = y,}
= P{e(Bf) e A/m(B°) = y,,...,m(B") = yn}.

on ‘¥; almost everywhere with respect to Lebesgue measure (y-a.e. on ‘¥,
for short).

It is clear that the support of 6(X) and of 0(B/) with respect to the con-
ditional law is the interval I; := [t;,ti;,], y-a.e. on ¥j; therefore, we can
assume A C I;. ‘

Denoting s* := 0(X), since X; = B}, Vs € I;, and s* € I; almost surely with
respect to the conditional law, y-ae. on ¥;, we have
m(X) = Xy = B.. = m(B/). This implies 0(B') = s* almost surely, y-a.e. on
V;, due to the almost sure uniqueness of the location of the minimum of a
Brownian bridge.

Finally, the equality

P{@(Bi) e A/m(B') = y,,...,m(B") :yn} = P{@(Bi) e A/m(B) :yj}.

comes from the independence of B’ from all the other bridges. O

From Proposition 6.1, we see that to simulate the location of the min-
imum of X it is enough to simulate the minima of all bridges, select the
lowest of them y;, and then simulate the location 6(B/) of the minimum of
the bridge B’ conditioned only to m(B') = y;. We need first the law of the
vector (m(B/),0(B)). This is stated in the next proposition. We also give
the marginal law of 6(B), since we have not been able to find it in the lit-
erature in this generality, even though it will not be used directly in
the simulation.

Proposition 6.2. Writing { := tj—t; and d := |xj.1—x;j|, the minimum of
the bridge B from (tj, x;) to (tjs1,xj11) and its location have the joint dens-
ity

(6)

LG G M
P2 2(s—t) 2t — ) DGy < iss<tings

and the density of the location is
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d [ 2 — - 2\
Joww) (s) = LS/Z () &P {7’1(5)} +E—Zerfc{ (ﬁ h(S)) Lip<s<ays

™)

where

_ =9/ (=), i xS x
ne) = { (s—t)/(t1—5), i % < x4

and erfc( ) is the complementary error function 1—erf( ).

Proof. The joint law of W, with W a standard Brownian motion W =
{W,,s > 0} starting at Wy = g, its minimum m, up to time ¢ and the loca-
tion 0, of this minimum, is known to have the density

PA{W, € db,m; €dy,0; cds} =
o (b— —y)2 —y)?
ENE) pl G ()

ATe s>}1{y<“=y<h-rossr} ®)
/3 (t—s)’

(see Karatzas-Shreve [7, Prop. 2.8.15], or Csaki et al,l®! where it is
extended to general diffusions); the formula is usually stated for the max-
imum, but (8) is easily deduced by symmetry, taking into account that - W
is a Brownian motion with starting value - a at time 0.

Consequently, if W starts instead at time u < t, we have

P(u,a){Wt € db, m; € dy, 0; € dS} =
_ b_ _an2 N2
@A {_ (=7 ()

o 1 a,y<bu<s<t}-
my/ (s—u)*(t—s)’ 2(s —u) 2(t—s)} {y<ay< t}

Conditioning to {W; = b}, one finds the joint density of the minimum
m and its location 0 for a Brownian bridge B joining the points (u, a) and

(t, b):
Puayepy{m € dy,0 € ds} =
(a—y)(b—y)/2(t—u) exp{ (b—a)’ =P (by)?

n(s—u)’(t—s)’ 20t—u) 2(s—u) 2(t—s) } Lp<ay<buss<yy

which is equivalent to (6).
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Integrating out y, we get, if a <b,

bea flws) { _t(b_a)z(t_s) }

(t—u)® | m(s —u) 2(t —u)(s — u)

P(w)-,(t,b){e €ds} = [

(t—u)—(b—a)’ P
W@I’fc (b—(l) m ]1{u<s<t},

and, in case a > b,

P(u,u),(t7b){e €ds} = [ a=b |2(t—u)(s—u) exp {—(b—a) (S—u)}

(t—u)* n(t —s) 2(t —u)(t—s)

+Merfc{<a_b> _Hl{}

(t—u)? 2(t—u)(t—>s)

from where we get (7).

Proposition 6.3. The location of the minimum 0(B') conditioned to m(B)
has a density of the form

A B
o, ()= CON8) =) exp { 2(s (_y)t,) } z(tj+(1y)— s>} s
(©)

for y<xj, y<xj11, where A, B and C are positive constants depending only
on y.

Proof. This is an immediate computation from the joint density (6) and the
marginal (2), yielding (9) with
AP = 50)5 B) = (500)%
Co) = (G155 [ (s +5-2)°
V2R (X + x40 = 2y) 2(tj+1 — 1)

Notice that the density (7) is not bounded as h(s) goes to zero at one of
the end-points of the interval [t;,t,]. Therefore, it is not easy to sample
exactly from it. However, the conditional density (9) given a value
y<min{xj,x;;1} it is bounded, which makes it more amenable to the
acceptance/rejection method (see, e.g., Asmussen and Glynn''!). The result
is a sample from the joint density of the minimum and its location, from
where one obtains a sample of the marginal law of the location. This trick,
together with Proposition 6.1, will allow us to simulate the location of the
minimum of the whole process X, conditioned to pass through the given
set of points.
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Figure 3. Density estimation for the location of the minimum of the Brownian bridge condi-
tioned to the points (0, 0), (0.2,0.06), (0.5,0.16), (0.8,0.26), (1,0.20).

To apply acceptance/rejection by comparison with a uniform distribu-
tion, the global maximum of the function (9) should be easily calculated or
approximated from above. This is indeed the case: There are two obvious
minima at the end-points ¢; and t;,,; the remaining extremal points are the
roots of the 3-degree polynomial

3CO) (5= (G119~ (=) (51 =5)°] + Ap) (6115 —B) (51",

as can be seen by differentiating in s and multiplying by
2(s—tj)7/ 2(tj+1—s)7/ ?. This polynomial may have one or three real roots,
corresponding to a unique maximum, or to two maxima, with a minimum
in between. In any case, the global maximum can be computed exactly and
the acceptance/rejection method can be implemented for this density.

In Figure 3, we see the result of a simulation of size 10 000, with a dens-
ity estimation using the logsplines method in R. As it was remarked in
Section 2, once we are considering the minimum of the whole process, the
different bridges are no longer independent; in particular, the shape of the
density in each subinterval is not the one to be expected from formula (7),
and in fact it is quite difficult to predict from the conditioning values.
Hence the interest is to have an exact simulation method.

As a more clear example of the last remark, consider the concatenation
of two symmetric bridges, from (0, 0) to (0.5,0), and from (0.5,0) to (1,
0). Separately, the location of their minima follows a uniform distribution;
however, the location of the global minimum follows the density simulated
in Figure 4. The fact that the minimum of the two minima tends to take a
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Figure 4. Density estimation for the location of the global minimum of two concatenated sym-
metric identical Brownian bridges.

lower value than a single minimum drifts away its location from the end-
points of the subintervals.
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