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A B S T R A C T   

The aim of this study was to use satellite imagery of metropolitan regions to develop a method for predicting the 
evolution of Night-Time Light (NTL) and design a mathematical cellular automata model to predict urban 
progress scenarios. In order to validate the model with real data, we used NTL for 1992–2012 from the European 
NUTS-2 region of Catalonia. Lighted surface scenarios (as an estimate of urban expansion) were calculated using 
variations in light intensity (as an estimate of economic activity). In all, we applied the model to twelve NUTS-3 
European metropolitan regions. The model gives us three kinds of useful information related to urban surface 
areas: the main one is a NTL urban surface baseline, which in turn was used in calibration/validation 
processes; the second one is a regression line for NTL intensity and economic activity, which could be 
improved with further research; finally, we found a good coarse approximation to urban shape in urban 
progress scenarios. Since NTL is available for the entire globe, the model could be used to study urbanization 
dynamics in metropolitan regions for which, in particular, socio-economic data is not available at this 
territorial scale, and even megaregions emerging as global economic units.   

1. Introduction 

Ever since the nineteenth century, when industrial cities first began 
to emerge, urban areas around the world have continued to expand and 
increase their complexities (Batty, 2011). This has posed important 
problems when dealing with, assessing and understanding phenomena 
such as changes in land-use, transportation, economic growth and 
environmental sustainability (Barreira-González, Aguilera-Benavente, & 
Gómez-Delgado, 2015). Owing to their great complexity, as yet these 
problems are neither fully understood nor satisfactorily resolved (Batty, 
2015). However, it seems clear that contemporary cities are the outcome 
of complex, open social systems of interacting human agents subject to 
the effects of several endogenous factors and exogenous constraints (e.g. 
cognitive, cultural, economic, technological, environmental and social). 
Almost all of these factors and constraints involve networks of re
lationships between individuals, groups, institutions and whole soci
eties, which give rise to feedback loops of information that ensure that 
the understanding and simulation of all these interactions and relevant 
systems is highly complex (Ioannides, 2012; Portugali, 2011). 

From a macroscopic point of view (i.e. at the level of urban observ
ables such as GDP, number of patents, electrical consumption and road 
surface area), it is not yet known whether any city variables transcend 

their contextual constraints (i.e. do these measures obey universal laws 
other than the refuted scaling laws?) (Arcaute, Hatna, & Ferguson, 
2015). On the other hand, a trend towards the microscopic view of cities 
has emerged due to awareness of the inadequacy of the original 
centralized, top-down, static paradigm for modelling and planning 
urban systems, and to the growing need to consider interacting entities 
at different scales. This realization arose during the final quarter of the 
twentieth century and provoked a move towards a more decentralized, 
disaggregated, bottom-up, self-organizing and dynamic approach to 
simulating urban phenomena (Allen, 1997; Portugali, 2000). In this 
context a new generation of urban models based on Cellular Automata 
(CA) (Clarke, Hoppen, & Gaydos, 1997; Santé, Garca, Miranda, & Cre
cente, 2010; White & Engelen, 2000) and agents in general (Benenson 
and Torrens 2004, Rai & Robinson, 2015) began to emerge. 

On a microscopic scale (i.e. at the level of human interactions) agent- 
based models are used to simulate population dynamics. At a meso
scopic or coarse scale corresponding to the level of interacting entities 
without explicit consideration of the interactions of human agents, CA 
modelling of land-use dynamics are able to describe how the relatively 
slow changes in the physical structure of the city take place (Benenson, 
1999). Furthermore, the quest for accurate simulations of urban systems 
has led to the use of integrated models at different levels involving 
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exogenous constraints (Van Vliet, Hunkens, White, & Van Delden, 2012; 
White, 2006) and networks of relationships (Benenson, 1999), a com
bination that takes place within the context of Portugali’s cities of free 
agents in a cellular space (Portugali, 2000). Nevertheless, these ideas are 
still in their infancy (Batty, 2005). 

The concepts and tools used habitually to measure development in 
cities are only of limited use for understanding the sustainable progress of 
city networks, especially when they form metropolitan regions. The com
bination of official data and images from satellites enabled us to identify 
the metropolitan regions that exist in Europe and to analyse future sce
narios for urban progress (Marull, Farré, Boix, et al., 2019). In this context, 
despite – and also because of – the great complexity of city networks, we 
decided to investigate whether or not it is possible to obtain useful infor
mation – albeit necessarily approximate (Van der Leeuw, 2004) – about 
urban land dynamics using Night-Time Light (NTL) satellite imagery as the 
single input into a CA-based model with coarse cell space. This approach 
was motivated by the fact that NTL is a proxy of several urban observables 
(e.g. population, GDP and energy consumption) (Marull, Galletto, Domene, 
et al., 2013). We have developed a CA-based model for urban landscape 
changes using a non-standard CA that is typical of urban CA-based models 
(Couclelis, 1985; White & Engelen, 1997). A standard CA consists of a 
homogeneous grid whose cell space is characterized and configured at any 
time by a finite set of states. This configuration changes in discrete time 
steps according to a time and space invariant transition rule operating on 
each cell, and depending upon the previous states of a uniformly defined 
neighbourhood. 

In summary, CA would seem to be a suitable technique for this task 
since it involves evolution over time possibly influenced by spatial 
proximity. This technique has been used to model urban growth using 
several variables (Al-shalabi, Billa, Pradham, et al., 2013; Barreira- 
González et al., 2015; Guan, Li, & Inohae, 2011; Liu, 2009) but not with 
NTL lighting imagery. Even so, this type of image has been used in the 
context of energy consumption to evaluate the extension and intensity of 
the urban expansion (Nel⋅lo et al., 2017) and urban sustainable progress 
(Marull et al., 2019) in Western Europe. The goal of this paper is thus to 
propose a method for predicting the evolution of NTL in twelve Euro
pean metropolitan regions based on historical data (1992–2012) to 
optimise a mathematical CA model and predict urban progress scenarios 
(20-year time span: 2032). 

To generate this mathematical model and, above all, to analyse 
future scenarios for urban progress, we simulated NTL variation using a 
theoretically based and heuristically driven constrained CA model. We 
focussed on two definite macroscopic variables: lighted surface and light 
intensity. Defining the transition rules is the core problem to be solved 
when developing a CA model. We used an inverse and heuristic 
approach starting from data analysis (Rabino & Laghi, 2002). The 
resulting transition rules are not stochastic nor affected by distance 
decay, as expected in urban systems (White & Engelen, 2000), but, 
rather, depend upon the previous states of cell neighbours. These rules 
also depend upon additional variables that determine the type of tran
sition. In order to test the model with real data (Engelen & White, 2008), 
we used NTL data for 1992–2012 from the NUTS-2 region of Catalonia. 
Next, the same idea is applied to different NUTS-3 European metro
politan regions. Lighted surface scenarios (as a proxy of urban expansion) 
are expressed as variations in light intensity (as a proxy of GDP dynamics) 
imposed exogenously on the following metropolitan regions: Amster
dam, Barcelona, Brussels, Hamburg, London, Lyon, Madrid, Milan, 
Munich, Paris, Rome and Vienna. 

2. Materials and methods 

2.1. Overview 

In the next subsections we explain in detail the methodology followed 
in this study. Subsection 2.2 details the geographical regions and the data 
that we use, whereas Subsection 2.3 is devoted to the mathematical model 

employed. Specifically, the model is a Cellular Automaton, which is non- 
standard and novel in the way we treat the concept of neighbourhood of a 
cell and the boundary of the set of cells; this is explained in 2.3.1 and 
2.3.2. The model contains parameters that will be adjusted by means of 
the know data (1993–2012); that means, we look for parameter values for 
the evolution of the automaton that best mimics the evolution of the real 
data; the parameters are introduced in 2.3.3. The real data allow us to 
extract a “growth factor”, which is the relative increase or decrease of the 
total light intensity of the region from one year to the next; as explained in 
2.3.4. By means of this growth factor we force the total NTL of the pre
dicted evolution to match the total NTL of the known evolution. It is in 
fact the manner in which we treat the boundary of the region, explained 
in 2.3.5, that finally ensures this match. Once the evolution of the au
tomaton is determined for any given values of the parameters, these 
values are tuned up to minimise the discrepancy between the real 
1993–2012 data and the predicted evolution in those years; Then, 2.3.6 
and 2.3.7 describe the discrepancy criterion used and the minimisation 
algorithm employed, which is the classical Nelder-Mead optimisation 
method without derivatives. Finally, 2.3.8 describes how we project the 
evolution of NTL 20 years into the future with three different scenarios 
involving the growth factor. 

2.2. Satellite images of night lighting 

Night-time light (NTL) data detected by artificial satellites allow us to 
analyse on a global scale the evolution of city networks towards structures 
exceeding metropolitan scale (Zhang & Seto, 2011) that can be defined as 
metropolitan regions or even megaregions (Marull, Font, & Boix, 2015). 
Applications developed using NTL data (Doll, 2008) enable us to delineate 
urban extensions, calculate energy consumption, estimate economic ac
tivity, and model greenhouse gas emissions at regional level. 

The main database used for developing an urban CA model com
prises the series of images produced by DMSP-OLS sensors and freely 
distributed by the National Geophysical Data Center of National Oceanic 
and Atmospheric Administration (NOAA). These images are in GeoTiff 
format and have a spatial resolution of approximately 1 km2 per pixel in 
the equator (30 s or degree in latitude and longitude). Each pixel sensor 
of the satellite is assigned a specific value of light intensity as a DN 
(Digital Number) with a radiometric resolution of 6 bits that can vary 
between 0 and 63. Given that metropolitan regions are areas charac
terized by great physical contiguity in human settlements, NTL data has 
been used as a proxy for urban expansion (Nel⋅lo et al. 2017). Using this 
methodological procedure for an annual series of data (1992–2012), we 
developed and tested the model in a European NUTS-2 region, and then 
measured the simulated evolution of different metropolitan regions in 
the European Union. 

The European NUTS-2 region used for testing the model (Fig. 1) 
included the intensities of NTL in a rectangular area that covered Cat
alonia (NE Spain) with a 15-km buffer on all four sides. The area was 
divided into cells, each with its own NTL intensity recorded annually in 
1992–2012. Each cell was identified by the coordinates of its centroid 
and its NTL intensity was denoted by a number between 0 and 63. The 
study area embraced the whole of Catalonia. Each cell was marked as 
belonging either to this region, to another territory (Spain or France) or 
to the sea. We also used the percentage of cell corresponding to i) Nat
ural Protected Areas, ii) Slope > 20%, iii) Water Bodies, iv) Floodable 
Areas, and v) Sea, which necessarily had null or almost null illumination 
because theoretically there is no urban development in these areas and 
so no tendency to increase. To cope with this limitation, we defined a 
capacity (maximum allowed intensity), which was also a number be
tween 0 and 63. The intensity of a cell in a given year was a number 
between 0 and its capacity. 

European metropolitan regions are NUTS-3 regions or a combination 
of NUTS-3 regions that represent agglomerations of at least 250,000 in
habitants. These conglomerations were identified using the Larger Urban 
Zones in the Urban Audit (https://ec.europa.eu/regional_policy/en/) and 
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each was represented by at least one NUTS-3 region. If in an adjacent 
NUTS-3 region more than 50% of the population also lived within this 
agglomeration, it was included in the metropolitan region. We selected 
the following European metropolitan regions (Fig. 2) to apply the model 
(EU code): Amsterdam (NL002MC), Barcelona (ES002M), Brussels 
(BE001MC), Hamburg (DE002M), London (UK001MC), Lyon (FR003M), 
Madrid (ES001MC), Milan (IT002M), Munich (DE003M), Paris 
(FR001MC), Rome (IT001MC) and Vienna (AT001MC). 

The NTL intensities are given by the stable lights data collection 
available in the NOAA web site (https://ngdc.noaa.gov/eog/dmsp/do 
wnloadV4composites.html). The stable lights are derived from the raw 
satellite data, removing background noise, clouds, gas flares, and other 
ephemeral lights (Elvidge, Hsu, & Baugh, 2014). The stable lighting of a 
particular cell in a particular year is the mean of a number of clean daily 
data acquired by satellite sensors. Since there were two satellites in 
operation on certain years, the whole collection for the 21-year period is 
made of 33 files. Different sensors yield different values for the same 
spot in the same year (Li-Zhou, 2017), so that a joint calibration is 
needed for the whole period in order to make the data amenable to draw 
conclusions. We performed the calibration following the quadratic 

regression proposed by Elvidge et al. (2014). Finally, for the years with 
two sets of data, we took the mean value of the two already calibrated 
sensors. The upper bound 63 DN is due to a known limitation of the 
sensors. The real intensity can be higher, but the sensors get ̀ `saturated” 
at that value. We opted to not tamper with this upper bound, as will be 
justified later. 

2.3. Space-time dynamics of Urban Systems 

2.3.1. Cellular Automata (CA) 
CA are mathematical models that describe the evolution over time of 

a set of entities with a spatial internal relationship. The constitutive 
elements of a cellular automaton are: i) the cell: the basic spatial unit; ii) 
the states: there is a set of possible states such that at any point in time all 
cells are in one of these possible states; iii) the neighbourhood: the 
spatial distribution of the cells gives rise to a notion of proximity and 
cells that are ‘close’ in some sense to a given cell constitute its neigh
bourhood; iv) the time, which evolves in a discrete manner; v) the 
transition rule that determines how the state of a cell changes from one 
point in time to the next one as a function of the current state of the cell 

Fig. 1. European NUTS-2 region of Catalonia used for model calibration. Night-Time Light (NTL) real evolution over space and time (1992, 1998, 2005 and 2012).  
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and that of its neighbouring cells. 
CA are flexible models. Cells, states and time are usually largely 

determined by the specific situation under study. However, the neigh
bourhood and the transition rules can be chosen in a freer way and so 
there is some leeway for selecting parameters that configure the au
tomaton’s behaviour. 

Geographical information that evolves over time (yearly, monthly, 
weekly) is clearly suitable for modelling by CA. Indeed, the information 
(states) are related to points or small pieces of land (cells) on a given area 
of the Earth’s surface. As well, there is an intuitive notion of distance 
(although several variants can be used) and so the notion of the neigh
bourhood of each cell – as a set of other such cells – can be defined based 
on distance. Finally, depending on the information being employed, the 
state of a cell at time t + 1 may well be influenced by the states of nearby 
cells at time t, giving rise to local interactions. 

CA also feature a dimension, which is simply the spatial dimension of 
the array of cells. In our case, the dimension is 2, since we are analysing 
a segment of the Earth’s surface, which we can think of as being pro
jected onto a Euclidean plane. Classically, the cells in two-dimensional 

CA models are simply equal-sided squares and the neighbourhood is 
defined by the concept of layer. The 1-layer of a square cell is the set of 
eight cells that share a side or a vertex with it. The 2-layer is the set of 
sixteen cells which are in contact with the 1-layer, and so on. Hexagons 
are also used sometimes since they tessellate the plane and also seem to 
respect a little more the intuition of the usual (Euclidean) distance when 
considering layers. Indeed, the six 1-layer cells in a hexagonal tessella
tion all have one side in common with the central cell, whereas with 
squares, those in the cardinal directions are closer to the central cell than 
the others. 

In this paper, we abandon the layer concept. We use a model of 
neighbourhood that fully respects the notion of Euclidean distance: all 
points at the same distance from the central point of a cell will have the 
same influence on the evolution of the cell. As far as we know, this is a 
novel procedure in CA models, which we chose because we specifically 
did not want to consider obstacles or pathways and only wanted to 
assess the impact of the neighbourhood as a function of the straight-line 
distance. 

Concerning the transition rule, the state Si(t + 1) of a cell i at time t +

Fig. 2. The twelve European NUTS-3 metropolitan regions (Amsterdam, Barcelona, Brussels, Hamburg, London, Lyon, Madrid, Milan, Munich, Paris, Rome and Vienna) 
used for modelling the application. Night-Time Light (NTL) real evolution over space and time (1992, 1998, 2005 and 2012). 
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1 is usually determined by some function f of the states of the cells in its 
neighbourhood Ni (eq. 1): 

Si(t+ 1) = f
(
Sj(t) , j ∈ Ni

)
(1) 

For instance, in the classical (two-dimensional) Conway’s ‘Game of 
Life’ (Gardner, 1970), one of the first CAs to be studied, the states of the 
cells are 0 or 1. A cell at state 1, with two or three neighbours at state 1, 
will remain at state 1 in the next period; a cell at state 0, with precisely 
three neighbours at state 1, will change to state 1; in any other case, the 
cell will be at state 0 in the next period. This simple rule gives a sur
prising richness of evolutionary behaviour that depends on the initial 
state of the cells. It should be emphasized that Eq. 1 above implies that 
the change in state is synchronous, that is, all cells change at the same 
time. 

We can consider that a cell belongs to its own neighbourhood or not. 
For our purposes, it is simpler to think that the cell does not belong to its 
neighbourhood. We will consider the present state of a cell separately. 
This is only a formal distinction that helps present the model and its 
possible extensions. An important element that a transition rule must 
specify is how to treat the boundary of the set of cells. Theoretically, we 
would like to apply the same formula to all cells. However, cells near the 
boundary pose a problem. They do not have the same number of 
neighbours as the interior cells; therefore, the transition rule must be 
defined specifically for the close-to-boundary cells, whether the concept 
of layer is used or not. We believe that our approach to the boundary 
problem is original and was to some extent forced by the need to pre
serve the total illumination of the study region, as we will see later. 

2.3.2. Application to light intensity evolution 
Our aim was to use a CA to mimic the observed evolution of the NTL 

intensity of a cell in the period 1992–2012 as recorded in the satellite 
data at our disposal. A logical first step was to assign each geographical 
cell for which we have an annual value of NTL intensity a single cell in 
the CA. Typically, in a CA cells can take any of the values of the set of 
states. In our case, many of the cells have a capacity that is less than the 
general upper limit. Our set of states is the real interval of numbers 
[0,63], but the cells i with limited capacity Mi can only take a value in 
the interval [0,Mi]. An extreme example are the cells in the sea, far from 
the coast, which must have a capacity Mi = 0. The definition of the 
transition rule has to take this fact into account. 

Once it is clear how to model the cells, states and time in our real 
case, it still remains to determine suitable neighbourhood and transition 
rule definitions. As commented above, our intention is to build a model 
that uses the straight-line distance between geographical points, irre
spective of the existence of roads or natural barriers. Thus, we defined 
the neighbourhood of a cell in a way that most respects this idea. 
Moreover, this led us to abandon the concept of layers. Specifically, we 
defined the neighbourhood of a cell as consisting of all the cells that 
wholly or partially lie inside a circle whose centre is the mid-point of the 
cell (the centroid of the square) at a radius $r > 0$. This definition will 
be modified for the cells near the boundary, as we shall see. For the 
moment, let’s consider only the generic case. Not all the cells in the 
neighbourhood will have the same impact on the future state of the 
central cell and we’d like in some way for this impact to decrease with 
distance. The transition rule will model this. 

Let’s consider a non-negative function f : R2 → R that we will call the 
‘kernel’ of the sequel, with circular symmetry around its centre, 
decreasing in any radial direction, and with a finite total volume 
enclosed between the function surface and the horizontal plane. An 
example of such a function is the two-dimensional Gaussian probability 
density. We need the support of the function to be bounded; hence a 
proper Gaussian density is not a good candidate. However, it can be 
modified by truncation and so it qualifies. We have used this truncated 
Gaussian and a cone-shaped function, supported on a circle, that fea
tures a linearly decreasing value from the centre to the points at a 

distance r, where it vanishes. Details are given below. 
Once a kernel function is fixed, we can consider a given cell with its 

centroid located at the origin of the Euclidean plane, and compute the 
volume under the surface of the graph of the function f, enclosed by each 
cell in its neighbourhood. The proportion of the volume that each 
neighbouring cell encloses (discounting the central cell itself, which we 
will consider separately) will be regarded as a weight coefficient and 
taken to have a nominal contribution independent of distance. 

The nominal contribution of each neighbouring cell can be computed 
in the following way: let Ii := Si(t) denote the present intensity in cell i, 
and Ij := Sj(t) the present intensity in a cell j belonging to the neigh
bourhood of i. The proportion of intensities with respect to the capacities 
of these cells is therefore pi =

Ii
Mi 

and pj =
Ij
Mj

, respectively. This difference 
in proportions somehow measures the ‘pressure’ that the cell with the 
larger proportion exerts on the other cell. This will determine the di
rection of the transfer of light intensity; the amount of transfer will be 
proportional to the difference between the proportions. The amount will 
also be proportional to the intensity difference in an absolute value. 
Denoting wj(i) to be the weight given by the kernel function to cell j 
when contributing to cell i, we find that the amount of transfer from cell j 
to cell i will be, theoretically, 

wj(i)
(
pj − pi

)⃒
⃒Ij − Ii

⃒
⃒

which can be positive or negative. 
We have to introduce several restrictions to this quantity. If the 

transfer is positive, it cannot be greater than the difference Mi − Ii of the 
capacity and the current intensity of i, and it cannot be greater than the 
current intensity Ij of j. Analogously, if the transfer is negative, it cannot 
be less than − (Mj − Ij) and − Ii. Summing up for all cells j in the neigh
bourhood Ni of cell i, and denoting again Si(t) := Ii, we get the following 
formula (eq. 2) for the contribution of the neighbours of cell i at time t: 

Ci(t) = Si(t)+
∑

j∈Ni

wj(i)
(
pj(t) − pi(t)

)⃒
⃒Sj(t) − Si(t)

⃒
⃒ (2)  

∧(Mi − Si(t) ) ∧ Sj(t) ∨ −
(
Mj − Sj(t)

)
∨ − Si(t)

where ∧ and ∨ are the supremum and the infimum operators, respec
tively. 

We excluded cell i from the CA contribution because we want to 
consider it separately. This will facilitate the description and help 
interpret our results. Consider now a value λ ∈ [0,1] and the definition 
of the predicted state (intensity) of cell i at time t + 1 as follows (eq. 3): 

Si(t+ 1) = λSi(t)+ (1 − λ)Ci(t) (3)  

where Ci(t) has been computed in formula (eq. 2). In other words, our 
transition rule is a convex combination of the present value of the cell in 
question and the contribution of its neighbours. Instead of the present 
value, one can also consider a value that takes into account the past 
tendency of the cell; this will be discussed later but not as part of the 
analyses. Eq. 3 will still be modified by the growth factors (see below). 

2.3.3. The model parameters 
The above formula contains several parameters; one is apparent, the 

convex coefficient λ, and the other two hidden, the choice of the function 
f in Eq. 1 supported on a circle, and the radius r of that circle. 

There are infinitely many functions f with the desired properties and 
we shall consider two of them. One gives slightly better results than the 
other, although the difference is not great. The first function is the 
truncated Gaussian that, given a radius r, is the centred Gaussian 
probability density with a diagonal covariance matrix such that the 
probability (volume under the surface) of the circle of radius r is equal to 
0.99. The function is set to zero outside the circle. There is no need to 
normalise the function to a probability density since the cells will simply 
take the proportion of volume they contain so that all weights wj(i) add 
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up to 1. Thus, this function is given by the mapping 

(x, y) ↦
1

2πσ2exp
x2 + y2

2σ2 , x2 + y2 ≤ r2 

The variance σ2 is a function of the intended radius r according to 

σ2 =
− r2

2 log (0.01)

The second function considered is a cone-shaped function with an 
enclosing volume = 1. Given the radius r, the function is defined by 

(x, y) ↦
3

πr2

(

1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + y2

r2

√ )

, x2 + y2 ≤ r2 

To summarize, we have the freedom to choose λ, f and r and so make 
the evolution of the predictions as similar as possible to the observed 
values, according to certain criteria. This leads us to an optimisation 
problem: we want to find λ, f and r to ensure that the predictions are as 
close as possible to the real data. These optimal values can then be 
applied to predict the future evolution of the system. 

2.3.4. The growth factors 
Before turning to the optimisation problem itself, let’s examine one 

more element contained in the data: the growth factors. In the Appendix 
at the end we prove that the evolution according to Eq. 3 keeps the total 
intensity of the map constant over time. However, we can compute the 
sum of the intensities of all the cells, which, of course, will be different 
every year; indeed, we can interpret the ratio between successive total 
intensities as an indicator of economic growth, which can be either 
greater (economic expansion) or less (economic contraction) than 1. 
Therefore, to realistically model past evolution, the increase or decrease 
in total light intensity should be taken into account. When predicting the 
future evolution, these growth factors must be supplied, giving rise to 
different scenarios, according to different hypotheses of economic 
evolution. 

The growth factor can vary from one area to another if the study 
region is large. To keep things simple here, we employ a uniform growth 
factor throughout the whole study region. Therefore, we apply this 
factor G(t) given by 

G(t) :=
∑

i Si(t + 1)
∑

i Si(t)

to all cells on the map, thus getting the transition rule (eq. 4) 

Si(t+ 1) = G(t)(λSi(t)+ (1 − λ)Ci(t) ) (4) 

When the growth factor is less than 1, there are no further problems. 
If it is greater than 1, however, we have to deal with the possibility of 
cells reaching a light intensity that is beyond their capacity. In this case, 
it is natural that this surplus is spread in some way towards nearby cells. 

The left-over intensity of a cell is spread first to the neighbouring 
cells that are below their maximum. If after this redistribution there is 
still some surplus intensity, we have to check the second layer of 
neighbouring cells and repeat the procedure with the same conditions (i. 
e. the intensity is added to each cell that is below its maximum; more 
intensity than the cell can assume is not assigned). This procedure 
continues for as long as there is left-over intensity in the initial cell. The 
implemented algorithm has the following properties: i) assuming the 
amount of light in the system is less than its total capacity, the algorithm 
stops after a finite number of steps; ii) the algorithm does not depend on 
the order in which we check the cells that have more light than their 
capacity. 

2.3.5. The boundary of the cellular automaton 
The problem with the cells near the boundary is that the transition 

rule has to be adapted to the fact that these cells possess fewer neigh
bours within a distance less than r. 

Our aim is to obtain a transition rule that for a growth factor G = 1 
preserves the total intensity of the map, which means that, if G = 1, we 
must have 

∑
iSi(t + 1) =

∑
iSi(t). This can be achieved in the following 

way: if a cell is near the boundary, so that according to the radius r, it 
lacks some neighbours, we assume that these neighbours exist and have 
the same intensity and capacity as the cell in question. The effect of this 
is equivalent to an increase in the coefficient λ in Eq. 4 just for this 
particular cell. We prove in the Appendix that this construction effec
tively makes the total intensity constant in the absence of growth 
factors. 

The map we have used contains a generous buffer around the study 
region and so the artificial treatment of the cells near the boundary has 
little influence inside the region. 

2.3.6. Optimisation criteria 
Since we only considered two possibilities for the kernel function f, 

the optimisation essentially concerns the other two parameters r and λ 
for each choice of f. Given that the conic-shaped function introduced 
above gave better results than the Gaussian kernel in the first experi
ment, we considered only the first choice. With f already fixed, two 
parameters remain, namely λ, which is within the interval [0,1], and the 
positive radius r. 

The optimisation of the automaton must follow a criterion of 
discrepancy (or ‘distance’) between the predicted and the observed light 
intensities. We adopted the L2-criterion (or least squares) applied to the 
last predicted year. If Si(r,λ) is the final predicted state for cell $i$ when 
using given values of (r,λ), and Ii is the real observed intensity of that 
cell, we can compute the loss function (eq. 5): 

L(r, λ) =
∑

i
(Si(r, λ) − Ii )

2 (5) 

Next, we want to find the specific values of (r,λ) that make L as small 
as possible. The L2-criterion is a loss function measuring the goodness of 
an approximation. It tends to penalise larger deviations more and to be 
more lenient with smaller ones. Another alternative sometimes used in 
statistics is the L1-criterion, which gives a penalty proportional to the 
deviation, that is: 
∑

i
|Si(r, λ) − Ii |

The optimisation criterion is independent of all other modelling 
options and may be changed easily in any computational experiment. 
The specific optimal value of L(r,λ) has no natural interpretation in 
terms of the real data. It is just a measure of discrepancy or dissimilarity 
between two objects. The best way to visualize the goodness of the 
model obtained is to represent the distribution of the errors through all 
cells. We will show histograms of these distributions. 

2.3.7. Optimisation algorithm 
A first exploration of the value of the loss function L in the case of the 

studied NUTS-2 region showed that it is sufficient to search for values of 
(r,λ) inside the rectangle [1,9] × [0.5,1], since the loss function clearly 
gives larger values outside. It seems logical that the current light in
tensity of a cell influences its value the following year more than that of 
neighbouring cells because one year is too short a time in which to see 
large changes in the occupation and land use in the territory. Hence, it is 
enough to consider λ ≥ 0.5. On the other hand, it seems that radii over 9 
lead to larger values of the loss function unless λ is very close to 1, which 
means that the neighbourhood is not really playing any role in the 
prediction. A radius less than 1 means that the neighbourhood is prac
tically non-existent. 

The loss function depends in a very complicated way on the variables 
r and λ. To find its global minimum, we employed the Nelder-Mead al
gorithm in the version in the GNU Scientific Library, implemented in the 
C programming language. This algorithm does not need information 
about derivatives, which are not available in our case. Instead, it is fed 
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with three non-aligned points in the plane, as a first guess of the region 
where we expect to find the minimiser (r,λ). Then this triangle of points 
evolves according to deterministic rules, moving, stretching and 
shrinking until its size is less than a given tolerance. The best point 
evaluated at that moment is outputted as the result of the algorithm 
(Nelder & Mead, 1965). 

The Nelder-Mead algorithm is a local search method. This means that 
there is no guarantee of finding the global optimum of a function in a 
given bounded domain unless the function behaves well. In general, the 
algorithm will get stuck at a local optimum, that is, a point with the 
minimum value in a circle (perhaps very small) surrounding it. In fact, 
the algorithm can even stop at a point that is not near a local optimum 
depending on the tolerance set up as a stopping criterion. 

Indeed, the preliminary exploration in our case study of Catalonia 
showed that even with a quite strict tolerance parameter, the algorithm 
stops at many different candidates for local minimum depending on the 
starting triangle. In view of this, we decided to start with a simple 
evaluation of the function on a grid covering the initial rectangle. The 
option to change the optimisation algorithm capable of performing a 
global search, e.g. Simulated Annealing, was deemed too costly in terms 
of computational time. Instead, the picture of the function highlights the 
promising regions where the global optimum could be located. We 
successively refined the evaluation grid and finally applied the Nelder- 
Mead algorithm again to restricted small regions. 

2.3.8. Urban progress scenarios 
Several studies have shown a strong relationship between NTL sat

ellite data and socioeconomic parameters based on the assumption that 
there is more light emission where there is economic activity (Doll, 
2008; Ghosh, Powell, Elvidge, et al., 2010) and, in some countries, there 
is less light emission where there is poverty (Jean, Burke, Xie, et al., 
2016, Yu et al. 2015). In this study, we assumed that there is a linear 
relationship between the variables ‘light intensity’ and ‘Gross Domestic 
Product’ (GDP) (Sutton, Elvidge, & Ghosh, 2007, Marull et al. 213). 
Therefore, we can predict the dynamics of space-time urban systems by 
taking into account different theoretical economic growth: i) business as 
usual (NTL trend continues), ii) economic expansion (NTL increase), or 
iii) economic contraction (NTL decrease). 

Once we obtain the best possible values of r and λ, we can project 
ahead in time the evolution of the intensities using these best values. As 
has been mentioned above, the loss function has several local minima, 
some of which have values that are quite close to the global optimum. It 
is reasonable to expect that if two different pairs of values (r,λ) give a 
similar prediction error, then their projections will yield similar results. 
Nevertheless, this is a point that requires further computational 
checking. 

We hypothesized three different urban progress scenarios for eco
nomic growth values. The first is the continuation of the tendency of the 
previous years, with the overall growth in the past 20 years being 
computed from the total intensities in 1992 and 2012: 

G =

∑
iSi(2012)

∑
iSi(1992)

To project 20 years ahead, steady annual growth is computed for 
every year so that the final overall growth coincides with G, which is 
simply 

̅̅̅̅
G20

√
. The second scenario corresponds to an increase in the 

overall growth G by 5 percentual points (economic expansion), and the 
third to a decrease G by 5 percentual points (economic contraction). 

3. Results and discussion 

3.1. Model testing: European NUTS-2 Catalonia region 

The raw data had certain problems and so we took the following 
actions: i) some cells had intensities in particular years that were greater 

than their theoretical capacity; in these cases, we augmented the ca
pacity Mi to accommodate all recorded intensities; and ii) in general, in 
the evolution over time of a cell we observed great fluctuations in light 
intensity, many of which seemingly correspond to missing data that 
were filled in automatically; this results in a number of erratic ups and 
downs that do not appear to correspond to reality. We thus decided to 
smooth the data by interpolation when an increase or decrease in in
tensity in successive years is followed by a movement in the opposite 
direction (if the total fluctuation is greater than a fixed value). We 
established a fluctuation threshold of 15 intensity points; in all, there 
were 20,728 fluctuations, corresponding to 12,186 cells out of the total 
of 137,150. 

The first experiments with the Nelder-Mead algorithm to find the 
optimal values of r and λ revealed the existence of many local minima in 
the loss function (eq. 5), approximately around a curve in the (r,λ)- 
plane. The optimisation process converges on any of these minima 
depending on the choice of the initial triangle of points (see Subsection 
2.2.7). Since the optimisation is costly in terms of function evaluation 
(hence in terms too of the number of different CAs with different pa
rameters that have to be run), it is better to invest computational re
sources in picturing directly the values of the function on a grid of a 
reasonable range of points as a first step. Six minutes in a dedicated 
processor Intel i7-8850U at 1.80Ghz and sufficient RAM memory was 
needed to compute the values of the loss function with radii varying 
from 1 to 9 with steps of 0.25, and λ from 0.55 to 0.975 with steps of 
0.025. 

We found that, in general, the bigger the radius, the bigger λ is 
required to achieve a low value for the loss function. This has a natural 
interpretation: if we fix a large radius, thereby considering the influence 
of many distant cells, it is logical that the weight λ of the value of the cell 
itself will be greater to protect it against possibly irrelevant distant 
neighbours. Conversely, if we fix a small radius meaning that only 
proximate cells have an influence (given that this influence is possibly 
genuine), the weight of the central cell will be less. We should also bear 

Table 1 
Model calibration in the NUTS-2 region of Catalonia and the Barcelona NUTS-3 
metropolitan region. For each radius (km), the best λ in a 0.05-resolution grid is 
given.  

Catalonia NUTS-2 region 

Radius (km) Best λ Loss function 

2.50 0.835 1148.69 
2.50 0.840 1148.95 
2.60 0.835 1148.74 
2.70 0.830 1148.62 
2.70 0.835 1148.53 
3.10 0.870 1148.53 
3.20 0.875 1148.91 
3.50 0.910 1148.96 
3.50 0.915 1148.97 
3.90 0.875 1148.99 
Barcelona NUTS-3 region 
Radius (km) Best λ Loss function 
1.00 0.30 1311.47 
1.25 0.30 1310.90 
1.50 0.30 1310.28 
1.75 0.30 1309.42 
2.00 0.30 1308.08 
2.25 0.40 1308.08 
2.50 0.50 1307.97 
2.75 0.60 1308.28 
3.00 0.65 1308.31 
3.25 0.70 1308.53 
3.50 0.75 1308.93 
3.75 0.80 1309.27 
4.00 0.80 1309.72 
4.25 0.80 1310.37 
4.50 0.85 1310.88 
4.75 0.85 1311.14 
5.00 0.85 1311.77  
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in mind that the bigger the radius, the flatter the kernel function, which 
means that distant cells tend to contribute with a weight that is only 
slightly less than that of the closer ones. 

In the extreme case when λ = 1, the CA does not play any role and the 
value of the loss function is, of course, independent of r, and yields 
1,209.76, rounded to two decimal places. Anything below this value, as 
we indeed obtained, means that the combination of the CA and the 
current value of the cell is a better predictor than the current value of the 
cell alone, thereby proving the usefulness of considering the spatial 
interaction. 

A further finer grid was evaluated, with r ∈ [2.0,6.0], at steps of 0.1, 
and λ ∈ [0.65,0.95] at steps of 0.005, where the previous evaluation 
showed that loss function seemed to take lower values. It became clear 
that the loss function is very irregular and that it is not easy to locate the 
global minimum. There were 10 points with a value between 1,148 and 
1,149 in this region, which correspond approximately to four discon
nected regions in the (r,λ)-plane. 

In view of the results of Table 1, we can affirm that there are different 
pairs of radii of influence and relative weights of the cell that yield 
similar results. As a general conclusion, it is clear that a radius of 2.5–4 
km is a reasonable range for spatial influence, with a cell weight of 
83–91%. The best pick is given by a radius of approximately 3.5 km and 
a 91% cell weight vs. a 9% cell weight influence of neighbouring cells. 

A further zoom around the best point in each of the four disconnected 
regions gave a slightly better value (1,146.41) for a radius of 3.18 km 
and cell weight of 91.13%. We take this point to be the absolute mini
miser of the loss function. At the end of the time span of the prediction 
(year 2012), the discrepancy between the prediction and the real data 
for the optimal parameters is summarised in Fig. 3, with a description of 
the distribution of the errors. For instance, in 32,878 of the 50,158 cells 
(65.55% of the cells), the prediction error in the light intensity lies be
tween − 3 and 3 intensity points, in 5360 cells the error is between 3 and 
9 (overestimation), in 8276 between − 9 and − 3 (underestimation), and 
so on. Disregarding the central interval, a total of 6821 (13.60%) cells 
were overestimated, while 10,459 (20.85%) were underestimated. 

These results correspond to a prediction 20 years ahead in time since 
we used data from 1992, plus the growth in total illumination from one 
year to the next, to predict the illumination of each cell in 2012. Of 
course, better predictions will result if we reduce the time span. We 

repeated the above methodology to predict the values of 2012 starting 
from those of 1997 (15 years), 2002 (10 years) and 2007 (5 years). For 
the 15-year span, we obtained reasonably low values in the loss function 
for radii of 4.9 – 5.7 km, with λ of 90– 92.5%. The best places form three 
disconnected (but close) spots; a further refinement and application of 
the Nelder-Mead algorithm gave the absolute best point with a radius of 
4.99km and λ = 90.30%, with a loss function value of 1052.50. For the 
10-year span, reasonable values for the radius were 2.1–2.4km, and for λ 
79 – 81%, localised in two very nearby sites. Proceeding in the same way 
as before, we found the best values to be radius =2.35km and λ =
80.55%. Thus, in the 15-year prediction the radius decreases, with a 
corresponding decrease also in the importance of each cell with respect 
to the neighbourhood. The loss function becomes also more regular, 
with less local minima. When reducing the time span to just five years, 
we found only one spot of low loss values, very concentrated in radii 
around 1 or 1.1 km, but quite a wide spread in λ of 67.5 – 73.5%. The 
best point found corresponds to radius r = 1.00km and λ = 72.5%. Fig. 3 
contains the error distributions for the 20-year span. 

For the calculation of the scenarios in the NUTS-2 region of Cata
lonia, the overall growth factor in 1992–2012 was 1.118. The steady 
annual growth factor for obtaining this value in twenty years time 
(2032) is 1.005608. Under the contractive scenario (− 5%) it is 
1.003311, while for the expansive scenario (+5%) it is 1.007809. In the 
case of the 15-year prediction (2027), the overall growth is 1.011, and 
the corresponding annual values are, respectively, 1.000709, 0.997330 
and 1.003936; for the 10-year span (2022), the values are, respectively, 
overall 1.028, and annuals 1.002726, 0.997737 1.007501, while for the 
5-year (2017), the values are, respectively, overall 0.954, and annuals 
0.990699, 0.980093 and 1.000869. 

3.2. Model application: European NUTS-3-based metropolitan regions 

We applied the same methodology tested in the European NUTS-2 
region of Catalonia to data from twelve European NUTS-3 metropolitan 
regions (Fig. 2) that, unlike the Catalan case, are small regions around 
big cities. The data lacks the lighting capacity of each cell and so we 
assumed for this study that all cells have a maximum capacity 63. We 
used a 20-year time span, with the following results: 

i) Amsterdam (2032). The exploration of the best zones for the 

Fig. 3. Discrepancy between the prediction and the real data in the optimal parameters found in the case study of the European NUTS-2 region of Catalonia (20-year 
prediction: 1993–2012). 
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Fig. 4. Modelling results for the twelve European NUTS-3 metropolitan regions (Amsterdam, Barcelona, Brussels, Hamburg, London, Lyon, Madrid, Milan, Munich, Paris, 
Rome, and Vienna). Night-Time Light (NTL) economic scenarios (2032): continued trend scenario (business as usual), expansion scenario (+5% NTL) and contraction 
scenario (− 5% NTL). 
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Fig. 4. (continued). 
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parameters r and λ gave a radius of 2.8–3.7 km and a λ of 63–73%. The 
discrepancy between the simulated and real data is similar in this range 
of values, with λ tending to increase as r increases, as in the case of 
Catalonia. Running the optimisation algorithm gave an optimal value at 
r = 3.24 km and λ = 63.58%. ii) Barcelona (2032). The best values were 
2–3.5km, with λ 30–75%. The absolute minimum is found at 2.38 km 
and λ = 47.18%. Table 1 shows for this city all radii between 1 and 5 km 
and the best λ in a grid of resolution 0.05. iii) Brussels (2032). In this 
case, the optimal radius is much larger than in the previous two cases. 
Anything in the range 12–18 km was found to be a reasonable radius of 
influence, provided λ is kept consistently close to 54%. In this case, the 
rule that larger radii imply more cell weight does not seem to apply. The 
best point found was at r = 16.97 and λ = 53.99. iv) Hamburg (2032). As 
in the case of Brussels, the loss function continues to decrease as the 

radius increases. We reached our limit of 25km (the limit we imposed 
both for computational and modelling reasons) and the loss function still 
seems to give lower values beyond that limit. However, the decrease is 
very slow, and the parameter λ stabilises at around 90%. This means that 
better simulations are obtained with large radii with uniform neigh
bourhood influence with a weight of about 10% vs. the 90% of the cell 
itself. v) London (2032). Good results of similar quality are obtained for 
radii of 3–3.5 km, and λ of 50–56%. The best parameters were found at 
3.11km and 54.69%. vi) Lyon (2032). As in the case of Brussels, the radii 
tend to be large but here λ also increases. Local optimisation around the 
19-km mark gave the optimal pair (r,λ) = (19.51,0.9206). vii) Madrid 
(2032). As in the case of Hamburg, the loss function tends to prefer a 
very large radius of influence. Our limit of 25 km was reached, with an 
optimal λ of 72.99%. This means that about 37% of the prediction for the 

Fig. 5. Application of the Cellular Automata (CA) model to twelve European NUTS-3 metropolitan regions. Night-Time Light (NTL) variables: lighted surface (km2 as a 
proxy of urban expansion) and light intensity (sum of DN as a proxy of economic activity). Predicted economic scenarios (2032): continued trend scenario (business as 
usual), expansive scenario (+ 5% NTL) and regressive scenario (− 5% NTL). 
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cell comes from a very large neighbourhood, with small and almost 
equal weights for all cells within a radius of 25 km. viii) Milan (2032). 
Similar to the cases of Hamburg and Madrid, we reached a radius r = 25 
km, with values of λ of 86–92% giving similar values. With a radius fixed 
at 25 km, the best λ found was 87.00%. ix) Munich (2032). Again the 
maximum radius of 25 km was optimal, with a λ = 70.96% similar to 
that of Madrid. x) Rome (2032). This city has the same pattern as Cat
alonia (increasing radius implies increasing λ). The range of good radii 
seems to be 1.75–3.00 km, with λ 30–70%. The loss function is very flat 
in all this rectangle. The absolute minimum is found at 2.18 km and λ =
35.55%. This means that around 64% of the value of a cell 20 years later 
is explained by its surroundings at distances up to 2.18 km, and around 
36% by the current value of the cell. xi) Paris (2032). The loss function 
decreases steadily as the radius grows. At r = 25 km, a wide range of λ 
values, 66–84%, give similarly low values. The absolute minimum found 
was at 76.58%, but the loss function was very flat for each fixed (large) 
radius. xii) Vienna (2032). Similar to Paris, here the optimal radius was 
large and the loss function keeps decreasing when it reaches 25 km. As in 
the other cases where this occurs, all surrounding cells in a wide 
neighbourhood tend to contribute similar weights. The coefficient λ 
tends to stabilise at around 82% for large radii. The absolute optimum 
for 25 km was found at λ = 82.59%. 

Fig. 4 depicts cartographically the results of applying the model to 
the twelve studied metropolitan regions. The continued trend scenario 
(‘business as usual’), the expansive scenario (+5% NTL) and the 
regressive scenario (-5NTL) for each metropolitan region are shown. In 
general, an increase in light intensity and illuminated surface can be 
observed in the expansive scenario vs. the trend scenario, and a strong 
contraction of light intensity in the regressive scenario (Fig. 5). In the case 
of the illuminated surface variable (Fig. 5 shows DN > 10; above this 
value there is a relationship between NTL and urban area), no major 
changes are visible (for example, in Brussels and Milan) because the 
studied metropolitan regions are already highly urbanized. Therefore, 
the model behaves as expected (Figs. 4 & 5), in the sense that it is sen
sitive to changes in any increase in NTL. As this parameter is related to 
an increase in GDP, we believe that the model allows us to calculate 
urban progress scenarios related to economic activity. Consequently, 
albeit with possible further improvements, the CA model developed 
from NTL satellite data would seem to be a good option for calculating 
metropolitan dynamics at regional level. 

3.3. Model limitations and further improvements 

One of the limitations of the model is related to the existence of a 
maximum illumination of the cells. Intuitively, we expect that the cells 
with more intensity ‘contaminate’ those with less intensity without 
losing intensity, hence to visualize the urban expansion as an expansion 
of the red zones in the maps of Fig. 4. But the conservation of total in
tensity (except for the growth factor) entails also a decrease in the in
tensity of the more illuminated cells. The growth factor is not enough to 
keep the intensity consistently at the maximum. This is of course more 
noticeable in the contraction scenarios. In any case, the cellular au
tomaton has a diffusive effect, which is greater the radius of influence 
and lesser the coefficient λ. A value of λ close to 1 indicates that the cell 
resists the influence of the neighbourhood. In the NUTS-3 study, the 
diffusive effect can be noticed to a more or less extent. For instance, in 
the Catalan case, with λ = 91%, the diffusion has a moderate effect. 

A feature of the model is that very different values of the pair (r, λ) 
may give rise to similar low values of the loss function, when we are 
trying to find the optimal pair. This is somehow expected, because the 
radius of neighbourhood influence and the resilience to change of a cell 
are antagonist parameters. An increase in one of them can be compen
sated by an increase in the other. Of course, we took the best pair found 
in terms of the prediction obtained for the target year, and projected the 
scenarios using this optimal pair. Another simplification of the model is 
that the measure of the error (ordinary least squares) puts the same 

weight to all cells in its contribution to the total error. One could 
penalise more certain types of cells (those for which we want a better 
prediction), and obtain other optimal pairs (r, λ) that could project 
better the scenarios in those particular cells; or divide the region in 
classes of different typology (geographically or not) and obtain different 
(r, λ) for each class. 

As mentioned above, one possible way of improving the CA model 
would be to localise the growth factor for regions smaller than the scope 
of this study, each with a different growth factor. For instance, in the 
case of Catalonia, although the study used 50,158 cells, the growth 
factor is clearly not uniform throughout the whole territory. Instead of 
considering only the current state of the cell in its own contribution to 
the following year’s value, we could also consider its evolution. The 
evolution of the each cell constitutes a time series from which a pre
diction can be extrapolated for the next year. For instance, we could 
consider the five previous years and use them to predict the value of the 
cell in the sixth year. This value can be used in our transition rule instead 
of the current value of the cell. Possibly, another parameter η could be 
introduced to allow some flexibility in the individual projection of each 
cell, thereby optimising jointly the three resulting parameters r, η and λ. 
Nevertheless, the time series is necessarily short and it is not clear what 
we would gain by introducing this new optimisation variable. 

Despite the fact that our model considers separately the contribution 
of the cell itself and the contribution of the neighbourhood, this 
formalism can be focussed into a pure CA. With the extension proposed 
above, the model is no longer isomorphic to a CA. This would give a 
mixed model combining a time series evolution TSi of the individual cell 
i – possibly depending on one or more parameters η – and a CA yielding a 
prediction CAi, and depending on the radius parameter r by way of a 
convex combination parameter λ. The new state of the cell i, given the 
whole map at time t, would be: 

Si(t+ 1) = λTSi(t+ 1)+ (1 − λ)CAi(t+ 1)

If the predictions TSi and CAi are constructed to respect the bounds 
0 and Mi of the cell intensity, the convex combination will, of course, 
respect these limits. There is no guarantee, however, that the total in
tensity will be preserved (in the absence of a growth factor) unless a 
compensation mechanism is put into place. Only if such a mechanism is 
designed and well justified from a modelling point of view will it be 
worth trying this extension. 

4. Conclusion 

The goal of this paper was to use NTL satellite imagery from twelve 
NUTS-3 European metropolitan regions (Amsterdam, Barcelona, Brussels, 
Hamburg, London, Lyon, Madrid, Milan, Munich, Paris, Rome and Vienna) 
and historical data to develop a method for optimising a mathematical 
CA model and predict urban progress scenarios. The resulting transition 
rules were not stochastic or distance-decay-dependent, as expected in 
urban systems (White & Engelen, 2000), but were dependent on the 
previous states of a cell’s neighbours. In order to test the model with real 
data (Engelen & White, 2008), we used NTL data for the years 
1992–2012 from the NUTS-2 region of Catalonia. The lighted surface 
scenario (as a proxy of urban expansion) was given by variations in light 
intensity (as a proxy of economic activity) imposed exogenously (Ghosh 
et al., 2010). The CA model behaved as expected and was sensitive to 
changes in the increase in NTL. As this parameter is related to the in
crease in GDP (Sutton et al., 2007), we believe that the model allows us 
to calculate urban progress scenarios based on economic activity. 
Consequently, with possible further improvements, the CA model 
developed from NTL satellite data would seem to be a good option for 
calculating metropolitan dynamics at regional level. 

Since NTL is available for the whole planet, this CA model could be 
used to study urbanization dynamics in many regions (there may be 
exceptions in poor countries where there is no clear relationship be
tween urbanization and NTL; e.g. in many parts of African cities) 
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including, in particular, those for which socio-economic data are not 
available (Zhang & Seto, 2011) and emerging metropolis and mega
region global economic units (Marull et al., 2013). We used an inverse 
and heuristic approach based on data analysis to develop a new urban 
CA-based model with coarse cell size (Rabino & Laghi, 2002) defined by 
NTL satellite data. In a previous work (Chowdhury & Maithani, 2014) 
using another type of data, we considered a CA-based model related to 
NTL but with a simple on-off viewpoint. Our model gives us three kinds 
of useful approximate information related to urban surface areas: the 
main one is a NTL urban surface baseline, which in turn was used in the 
calibration and validation processes; the second one is a regression line 
for the NTL intensity and GDP, which arguably could be improved with 
further research; finally, we found a good coarse approximation to urban 
shape in urban progress scenarios. 

Future usage of these outputs relies on the fact that NTL occurs over 
the entire planet. Therefore, it is to be expected that our CA model and 
any further improvements will be useful for studying urbanization dy
namics in other metropolitan regions, above all in those for which socio- 
economic data are not available, and for assessing the sustainable 
progress of urban networks (Marull et al., 2019). Our model could be 
improved using an integrated approach that includes GIS and Dynamical 
System components if required data exists. 
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