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Abstract
We consider the classical problem in truth-tracking judgment aggregation of a con-
junctive agenda with two premisses and one conclusion. We study this problem from 
the point of view of finding the best decision rule according to a quantitative crite-
rion, under very mild restrictions on the set of admissible rules. The members of the 
deciding committee are assumed to have a certain probability to assess correctly the 
truth or falsity of the premisses, and the best rule is the one that minimises a com-
bination of the probabilities of false positives and false negatives on the conclusion.

Keywords Judgment aggregation · Truth tracking · Discursive dilemma · Doctrinal 
paradox

1 Introduction

1.1  Statement of the Problem

We consider the problem in judgment aggregation where there are two clauses P and 
Q and each member of a committee has to decide between P and its negation ¬P and 
between Q and its negation ¬Q ; and that the final goal is to assess the truth value of 
C ∶= P ∧ Q.

In practice, the situation appears when a court is deciding if a defendant is guilty 
(a set of evidences are all verified), or not-guilty (at least one of the evidences is 
false); or when a prize or a job position is awarded if and only if several debatable 
conditions concur; or when several subjective medical indicators determine the pres-
ence of an illness or the need of a treatment; and so on.
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The so-called doctrinal paradox is the fact that two different reasonable majority-
type voting rules may lead to different outcomes. Suppose the voters first decide 
by simple majority between P and ¬P , and separately between Q and ¬Q . If both P 
and Q get the majority, then the conclusion is C, and otherwise it is ¬C . This deci-
sion rule is called premiss-based. Suppose on the other hand that each voter decides 
directly on C or ¬C , and then the collective decision is taken by simple majority on 
these alternatives. This rule is called conclusion-based. There are cases where the 
premiss-based rule leads to C, while the conclusion-based yields ¬C.

A slightly different formulation receives the name of discursive dilemma, and is 
illustrated in Table 1. The committee votes on the three propositions P, Q and C, and 
each one is decided by majority. The result may be inconsistent with the agreed logi-
cal relation between the propositions, despite the individual votes being consistent.

In this paper we study general decision rules for the situation given. We will con-
sider the set of all possible decision rules, subject only to a very mild requirement. 
They will be called admissible rules. We want to study this set as a whole, and find 
the best rule according to some objective criterion, disregarding whether that rule 
can or cannot be explained on “logical” or “intuitive” grounds, it is a consequence of 
some political or sociological idea, or it satisfies some other desirable property.

The mentioned requirement states only that if a member of the committee 
changes their1 opinion on a clause in some direction, the conclusion can only even-
tually change in the same direction.

We take the epistemic point of view that there is an actual truth that we want to 
guess with the highest possible confidence. This is different from the aggregation 
of preferences as in elections, or in taking decisions on the course of actions, where 
there is not an absolute truth.

Our objective criterion is related to the minimisation of the combined chances 
to incur in false positives (deciding C when the reality is ¬C ) and in false nega-
tives (deciding ¬C when the reality is C). This is explained in detail in Sect. 3 and 
involves a mathematical (probabilistic) setting where all elements have to be pre-
cisely defined. Our point of view is thus “conclusion-centric”, in the sense that we 
do not care about the correct guessing of the premisses.

We emphasise that the adoption of a particular criterion is a modelling choice, 
and it is what confers the rationale to the best rule under it. The criterion proposed 
here can be replaced by another one, if deemed better for the situation at hand, and 

Table 1  The discursive 
dilemma: The collective 
majority voting on the three 
propositions is inconsistent with 
the doctrine C ⇔ P ∧ Q

Voter Proposition P Proposition Q Proposition C

1 P Q C
2 P ¬Q ¬C

3 ¬P Q ¬C

Majority P Q ¬C

1 The singular they/their will be used to avoid gender bias.
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the philosophy of finding the best under the chosen criterion can be applied as well. 
We consider here, in fact, a family of criteria, parametrised by the relative weight 
put on false positives and false negatives.

With this optimisation approach, we do not need to talk about majorities. The 
votes of the n members of the committee will be split into four slots: P ∧ Q , P ∧ ¬Q , 
¬P ∧ Q , and ¬P ∧ ¬Q , and the aggregated number of votes for each possibility will 
be non-negative integers x, y, z,  t, respectively, with x + y + z + t = n , being n the 
number of voters. In the case of three premisses, there will be 8 slots, and in general 
p premisses would give 2p different possible votes of each member. A decision rule 
states, for each possible values of x, y, z, t which decision, C or ¬C , is taken.

The number of rules grows exponentially with n. The admissible rules are much 
less, and they can be implicitly enumerated so that all computations needed to find 
the optimal rule or a ranking of rules are relatively efficient.

 If each committee member could infallibly guess the truth or falsity of each 
premiss, then the correct truth or falsity of the conclusion will be reached without 
difficulty. In fact, a single-member committee would suffice. The whole point of 
having multi-member committees is to alleviate the possibility that the final conclu-
sion be wrong. It is therefore quite natural to use a probabilistic model that starts 
with the (estimated) probability that the committee members make the correct 
guessing on each premiss. We call this probability their competence, and we assume 
that it is greater that 1

2
 , and that is the same for all members of the committee and for 

all premisses, although this is easily relaxed, as we will see in the final section.
The collective decision guesses correctly or incorrectly with some probability 

that depends on the voters’ competence and on the real truth value of the premisses. 
Only the conclusion matters, and only the premisses are voted. One may think, as 
pointed out by Mongin (2012), that an external judge has to decide on the conclu-
sions after the committee has sent them their individual opinions.

We state here some definitions that are used below: In general, an agenda is a 
logically consistent set of propositions, closed under negation, on which judgments 
have to be made, and that can be entangled by logical constraints. In our case the 
agenda is 

{
P,¬P,Q,¬Q,C,¬C

}
 , with the constraint C ⇔ P ∧ Q . A judgment is 

defined as a mapping from the agenda to the doubleton {True, False} ; a feasible 
judgment respects moreover the underlying logical constraints of the propositions,2. 
The judgment aggregation problem is then defined as the construction of a feasible 
reasonable collective judgment from the voters’ individual judgments. Formally, an 
aggregation rule F is a mapping that assigns to every profile (J1,… , Jn) of individ-
ual judgments Ji of the n voters, a collective judgment J = F(J1,… , Jn) . A feasible 
aggregation rule must assign a feasible judgment to any input of feasible profiles. 
Feasible rules trivially exist; for instance J ≡ Ji for a given i is such a rule (called a 
dictatorship, for obvious reasons). Banning dictatorships and imposing other mild 
desirable conditions leads very quickly to non-existence of feasible aggregation 
rules. The range of possible voting paradoxes is the set of non-feasible mappings. In 

2 Lang et al. (2017) call it consistent judgment in the sense that it is logically consistent (not a contradic-
tion) when the logical constraints are added.
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a truth-functional agenda, the propositions are split into a set of premisses, and a set 
of conclusions. Assigning a Boolean value to all premisses, and applying the logical 
constraints, the value of all conclusions is determined. When there is an underlying 
objective truth of each proposition under scrutiny (as in court cases), we are in the 
realm of truth-tracking (or epistemic) judgment aggregation, and it is where the pre-
sent work belongs.

1.2  Related Literature

Doctrinal Paradox/Discursive Dilemma The term doctrinal paradox appears first 
in the works of Kornhauser (1992a, 1992b), and Kornhauser and Sager (1993). They 
were interested in legal court cases, so that they spoke of issue-by-issue and case-
by-case majority voting.

Pettit (2001) and List and Pettit (2002) formulate the problem in terms of propo-
sitional logic, called it the discursive dilemma, and coined the terms premiss-based 
and conclusion-based.

In the Kornhauser–Sager formulation, the committee votes either on the first two 
propositions (premiss-based/issue-by-issue), or on the third (conclusion-based/case-
by-case), and the two results are different. In the List–Pettit formulation, the com-
mittee votes on the three propositions, and this leads to a logical inconsistency. The 
inconsistency comes from the constraint C ⇔ P ∧ Q (the “doctrine” to which there 
is a previous agreement). We can see in Table 1 that the individual members of the 
committee adhere to the doctrine; however the committee as a whole does not. The 
advantage of the formulation in terms of propositional logic is that it can be gener-
alised to any set of propositions, to the point that the distinction between premisses 
and conclusions may be unnecessary.

The two classical rules are quite natural, and both can be justified on intuitive 
or philosophical grounds; see for example, Mongin (2012, section 2). In particular, 
the conclusion-based rule respects the deliberation of the individual judges; in the 
premiss-based rule the decision can be fully justified in legal terms. Others rules can 
be proposed. In Alabert and Farré (2022), a new rule was introduced, which stands 
in some sense midway between the premiss-based and the conclusion-based rules.

Judgment Aggregation The body of knowledge that has been developed from 
List–Pettit formulation is known as Judgment Aggregation Theory (or Logi-
cal Aggregation Theory, as proposed by Mongin (2012)). In a quite natural way, 
the backbone of the theory is formed by (im)possibility results on the existence of 
aggregation rules satisfying certain desirable axioms. List and Pettit (2002) and List 
and Pettit (2004) already proved results of this kind, extended very soon by Pauly 
and van Hees (2006), Dietrich (2006) and Nehring and Puppe (2008).

The aggregation problem is described in full generality for example in the pre-
liminaries of Nehring and Pivato (2011) and Lang et al. (2017), and in the complete 
surveys by Mongin (2012), List and Puppe (20009), List and Polak (2010) and List 
(2012).
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The specialisation to the truth-functional case has been studied mainly in Nehring 
and Puppe (2008), for independent as well as interdependent premisses, and in 
Dokow and Holzman (2009) (see also Miller and Osherson (2009)).

Distance-Based Methods and Truth-Tracking From 2006 Pigozzi (2006) and 
Dietrich and List (2007) another point of view emerged, in which specific judgment 
rules are proposed, and their properties studied. See Lang et al. (2017) for a partial 
survey, and the references therein. Most of these rules can be defined as some sort 
of optimisation with respect to a criterion, i.e. the rule is defined as the one(s) that 
maximises or minimises a certain quantity, usually a distance or pseudo-distance to 
the individual profiles, while providing a consistent consensus judgment set.

They can be applied either when the collective judgment set is a decision on the 
course of actions (as in the adoption of public policies), or in the truth-tracking 
setting. In the latter, the goal is to get the right values of the pre-existent “state of 
nature”, or at least the right values of the set of conclusions in the truth functional 
case. In this context, the concept of competence of the voters arise naturally: how 
likely is that a voter guess the correct answer to an issue? And it is also natural to 
model this likelihood as a probability. Actually, this approach dates back to Con-
dorcet and his celebrated Jury Theorem.

The competence as a parameter has been studied, for example, in Bovens and 
Rabinowicz (2006) and in Grofman et  al. (1983) for the one-issue case. The lat-
ter extends the Condorcet theorem in several directions, particularly for the case of 
unequal competences among voters.

List (2005) computed the probability of appearance of the doctrinal paradox, and 
the probability of correct truth-tracking as a function of the different states of nature, 
allowing for different competences in judging both premisses but the same across 
individuals. Fallis (2005) also observed that the premiss-based rule is better or not 
than the conclusion-based rule depending on the competence and on the “scenario” 
(state of nature).

The fact that the probability to guess correctly the truth depend on the unknown 
true state of nature leads to a modelling choice: Either we specify an a priori prob-
ability distribution on the possible states of nature (in our setting, the four states 
P ∧ Q , P ∧ ¬Q , ¬P ∧ Q and ¬P ∧ ¬Q ), or we have to resort to conservative estima-
tions, as in classical (non-Bayesian) statistics. The main approach in this paper is the 
second, but most of the related literature assumes the first. Notably:

The cited paper by Bovens and Rabinowicz (2006) compares the premiss-based 
and the conclusion-based rules under the assumption of same competence for both 
premisses and their negations, and independence of voters, as in the present paper. 
They impose a Bernoulli prior on each premiss, the same for all.

Hartmann et  al. (2010) aims at generalising (List 2005) and Bovens and Rabi-
nowicz (2006) with a conjunctive truth-functional agenda allowing more than two 
premisses. The authors propose a continuum of distance-based rules, parametrised 
by the weight of the conclusion relative to the premisses, and containing the prem-
iss- and conclusion-based procedures as extreme cases. The hypotheses are essen-
tially the same as in Bovens and Rabinowicz (2006). Miller and Osherson (2009) 
also propose a variety of distance metrics, and distinguish between “underlying 
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metric” and “solution method”. Each solution method chooses a loss function to 
minimise (based on the metric) and a set of eligible rules.

The point of view of Pivato (2013) is that the votes are observations of the ‘truth 
plus noise’. This allows to think of the profile of individual judgments as a statistical 
sample (at least under the hypothesis of the same noise distribution for all voters), 
and study the decision rules as statistical estimators.

Truth-Functional Agendas and Truth-Tracking The abovementioned papers List 
(2005), Fallis (2005), Bovens and Rabinowicz (2006), Hartmann et al. (2010) and, 
partially, Miller and Osherson (2009), deal with truth-functional agendas. Nehring 
and Puppe (2008) focusses on truth-functional agendas with logically interdepend-
ent premisses.

Combined with a truth-functional agenda, the truth-tracking setting can still be 
concerned either with guessing the truth of all propositions (‘getting the right answer 
for the right reasons’) or only on the conclusion (‘getting the right answer for what-
ever reasons’). Bovens and Rabinowicz (2006) discuss the merits of premiss- and 
conclusion-based procedures for both goals. Bozbay et al. (2014) and Bozbay (2019) 
also study both aims, for independent and for interrelated issues, respectively. The 
cited work by Hartmann et  al. (2010) is conclusion-centric (“whatever reasons”), 
while Pigozzi et al. (2009), being conclusion-centric, applies later a procedure based 
on Bayesian networks to get the premisses that “interpret” the previously decided 
conclusions.

Distance-based methods are nothing else that the minimisation of a loss function 
that measures the dissatisfaction with every possible consistent outcome. Equiva-
lently, one may maximise utility functions. Both are capable to account for the con-
sequences of the decisions, and thus allow to set up more complete models, in line 
with Statistical Decision Theory (Berger 1985). Different loss functions or utilities 
give rise to possibly different optimal rules, and it is a modelling task to choose the 
right loss function for the problem at hand.

In this sense, Fallis (2005) writes about the ‘epistemic value’, highlighting that 
guessing correctly a proposition may have a different value that guessing correctly 
its contrary; Bozbay (2019) uses a simple 0–1 utility function to indicate incorrect-
correct guessing (of all propositions or of the conclusions alone); Hartmann et al. 
(2010) tries giving different utilities to false positives and false negatives on the con-
clusion to assess the performance of their continuum of metrics; finally, Bovens and 
Rabinowicz (2006), in the discussion section, suggest introducing different utilities 
to each correct guessing to compare the premiss-based and the conclusion-based 
voting rules in each practical case.

Our proposal in this paper is an optimisation criterion in the truth-tracking, con-
clusion-centric case of a conjunctive agenda. The best decision rule minimises a 
combination of false positives and false negatives, and any two rules can be eas-
ily compared according to this criterion. No prior on the states of nature needs to 
be established, although it can be accommodated without difficulty. In the theoreti-
cal results we assume the same competence level of all committee members and all 
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premisses, and independence among premisses. In practice, the specific computation 
of the score of each rule can be done under much less assumptions. In any case, the 
loss function fully determines the optimal rule.

We do not consider strategic voting; we assume that everyone votes honestly 
each of the premisses. Strategic voting is conceivable even in our simple setting: 
someone who honestly would vote for P and ¬Q could change to ¬P and ¬Q just 
to push more for the ¬C conclusion). Strategic voting is considered in Bozbay 
et al. (2014), de Clippel and Eliaz (2015), Terzopoulou and Endriss (2019) and 
Bozbay (2019).

1.3  Organisation of the Paper

The remainder of the paper is organised as follows: In Sect. 2 we study the structure 
of the sets of voting tables and of decision rules, which are both partially ordered 
sets with an order induced by the admissibility condition.

Section 3 introduces in the first part our probabilistic model, based on the proba-
bility that each committee member guesses correctly the truth value of each premiss, 
and the concepts of false positive and false negative when the true state of nature is 
unknown. In the second part, we introduce the family of optimisation criteria, para-
metrised by a relative weight assigned to the two errors.

Section 4 contains our main theoretical results. It turns out that it is relatively 
easy to determine whether a given voting table leads to the conclusion C or ¬C 
in the optimal rule. Moreover, this depends only on two numbers: the differ-
ence between votes to P ∧ Q and to ¬P ∧ ¬Q , and the difference between votes 
to P ∧ ¬Q and to ¬P ∧ Q . This simplifies the structure of the set of voting tables, 
and shortens the evaluation of the rules. In this section we also characterise com-
pletely the set of values of competence and weight for which the premiss-based 
rule is optimal.

Section 5 explains details on the actual computations, and describes the accom-
panying software, downloadable from https:// discu rsive- dilem ma. sourc eforge. io. 
Finally, in Sect. 6 we discuss the results and propose possible extensions. Some mar-
ginal computations and checks have been left to an “Appendix”.

2  The Set of Decision Rules

A possible voting result of a committee with n members assessing on issues P and Q 
will be a table, denoted 

[
x y

z t

]
 , or (x, y, z, t) to save space, with non-negative integer 

entries, adding up to n, representing the quantity of votes received by the options 

https://discursive-dilemma.sourceforge.io
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P ∧ Q , P ∧ ¬Q , ¬P ∧ Q and ¬P ∧ ¬Q , respectively. The set of all such tables will be 
denoted by � .

A decision rule can be thought of as a mapping � ⟶ {0, 1} . Tables mapped to 1 
are those that entail the decision C = P ∧ Q ; those mapped to 0 represent the oppo-
site, ¬C . Sometimes we will call them positive tables and null tables, and denote 
by �+ and � 0 the respective sets. The decision rule can also be seen as the subset of 
positive tables, and we will make use of both interpretations.

There are N =
n!

x!y!z!t!
 ways to fill a voting table, and 2N decision rules, as many as 

subsets of the set of tables. This is a huge number, already for n = 3 , but the set of 
“reasonable rules” will be much more modest.

Two tables (x, y, z, t) and (x, z, y, t) are transposed of each other. Since P and Q 
will play symmetric roles, it makes sense to admit only rules that assign the same 
decision to both tables.

Besides this symmetry, we impose another condition for the admissibility of a 
decision rule, which is a monotonicity-type condition. Suppose that, given a positive 
voting table (x, y, z, t), one of the voters of ¬P changes their choice to P, or one of 
the voters of ¬Q changes to Q. The new table would support better the conclusion C 
than the older; hence it makes sense to impose that the new table be also a positive 
table. To formulate the condition in a mathematically practical way, let us introduce 
the partial order on �  generated by the four relations

that means, the smallest partial order ≤ that satisfies relations (1) above, for all 
x, y, z, t for which they make sense. A partially ordered set is also called a poset, for 
short. The relations (1) are called the transitive reduction of the poset (� ,≤) . Posets 
can be represented by Hasse diagrams, which are directed graphs with the transitive 
reduction represented by arrows pointing in the increasing direction. The case of 
committee size n = 3 is depicted in Fig. 1, where transposed tables have been identi-
fied; they occupy the same spot and are not comparable. When two tables T , S ∈ �  , 
satisfy T ≤ S and T ≠ S , we shall obviously write T < S , or S > T .

We thus arrive to the following reasonable definition of admissibility:

Definition 2.1 A decision rule r ∶ � → {0, 1} is admissible if: 

1. It takes the same value on transposed tables: 

2. It is order-preserving on the partially ordered set (� ,≤) : 

(1)

(x, y, z, t) ≤ (x, y, z + 1, t − 1)

(x, y, z, t) ≤ (x, y + 1, z, t − 1)

(x, y, z, t) ≤ (x + 1, y − 1, z, t)

(x, y, z, t) ≤ (x + 1, y, z − 1, t) ,

r(x, y, z, t) = r(x, z, y, t) .

(x, y, z, t) ≤ (x�, y�, z�, t�) ⇒ r(x, y, z, t) ≤ r(x�, y�, z�, t�) .
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Example 2.2 The classical premiss-based rule rpb is defined by

whereas the conclusion-based rule rcb is given by

It is readily checked that both rules are admissible in the sense of Definition 2.1. 
In Alabert and Farré (2022), another admissible rule was introduced, called path-
based, and defined by

As an example of a non-admissible rule, consider declaring C true if and only if the 
votes for P ∧ Q are more than any other combination of premisses (i.e. x > y and 
x > z and x > t ).   ◻

We will see later that the second admissibility condition is not restrictive with 
respect to our optimisation criterion: given a non-order-preserving rule, there exists 
an order-preserving one that performs better.

The poset (� ,≤) is ranked (also called graded), i.e.  there exists a rank func-
tion � compatible with the order relation: It satisfies T < S ⇒ 𝜌(T) < 𝜌(S) , and 
if S is an immediate successor of T (there are no elements in between), then 

rpb(x, y, z, t) = 1 if and only if x + y > z + t and x + z > y + t,

rcb(x, y, z, t) = 1 if and only if x > y + z + t.

rhb(x, y, z, t) = 1 if and only if x > z + t and x > y + t.

Fig. 1  Hasse diagram of the 
poset (� ,≤) for committee size 
n = 3 , and transposed tables 
identified. The arrows corre-
spond to the transitive reduction. 
All other relations are deduced 
by transitivity. The rank func-
tion �(x, y, z, t) = x − t is also 
represented
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�(S) = �(T) + 1 . In the Hasse diagram, each rank can be pictured as a “level” in 
the graph (see again Fig. 1).

To prove that (� ,≤) is a ranked poset, we use the known result that a finite 
poset admits a rank function if and only if all maximal chains have the same 
length.3 Recall that a chain is a totally ordered subset of the poset. A maximal 
chain is a chain with maximal cardinality.

A poset is connected if for every two elements T and S there is a finite sequence 
T = U1,… ,Un = S of elements such that Ui and Ui+1 are comparable, i.e. either 
Ui ≤ Ui+1 or Ui+1 ≤ Ui . The poset (� ,≤) is connected, because we can transform 
a table into any other one by moving votes one at a time through the transitive 
reduction.

Proposition 2.3 (� ,≤) is a ranked poset, with �(x, y, z, t) = x − t as a rank function.

Proof There is a unique minimal element, namely m = (0, 0, 0, n) , and a unique maxi-
mal element M = (n, 0, 0, 0) . Since (� ,≤) is connected, all maximal chains start and 
finish in these elements. To go from m to M, each vote must make two steps, one of 
them up or to the left of the table (that means, from t to y or z), and the other one to the 
left or up respectively (from y or z to x). These individual movements are the transi-
tive reduction of the partial order ≤ , and therefore there are no other tables in between. 
Since there are n votes, we need 2n steps to move all votes from the minimal to the 
maximal element, and in consequence any maximal chain has exactly 2n + 1 elements.

Notice that a movement towards an immediate successor imply subtracting one 
unit to t or adding one unit to x, but not both. Therefore �(T) = x − t is a rank func-
tion for (� ,≤) .   ◻

The rank function of a ranked poset is not unique, but it is completely determined 
by setting the rank of any element of the poset.

The set A of admissible decision rules possesses also a natural partial order: r ≤ s 
if r(T) ≤ s(T) for all tables T ∈ �  . This is the usual partial order in a set of real func-
tions on any domain. Since the range of decision rules mappings is {0, 1} , the rela-
tion r ≤ s means that the set of positive tables relative to r is included in the set of 
positive tables relative to s. It can be said that r is less liberal (or more conservative) 
than s in the sense explained in the Introduction. In terms of the risk of opting for C 
when it is wrong, ≤ is the relation “to be less risky or equal to”.

Example 2.4 Refer to the rules of Example 2.2. The premiss-based rule is more lib-
eral than the path-based rule, and this one is in turn more liberal than the conclu-
sion-based rule. In other words, we are saying that, in (A,≤),

rcb ≤ rhb ≤ rpb.

3 Called the Jordan–Dedekind property.
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This can be seen using the characterisations given in Example 2.2 (see Alabert and 
Farré 2022, Proposition A.2 for the proof). To precise a little more, one can check 
that rules rhb and rcb coincide for committee sizes n = 3, 5 , and they are different for 
n ≥ 7 . Rule rpb is always strictly greater than rhb .   ◻

An upper set is a subset U of a poset such that x ∈ U, x < y ⇒ y ∈ U . It is imme-
diate to see, from the second condition of admissibility, the following equivalence.

Proposition 2.5 A decision rule r ∶ � → {0, 1} is order-preserving if and only if 
{T ∈ � ∶ r(T) = 1} is an upper set of (� ,≤).

Given a poset, the family of its upper sets, with the inclusion order relation, is 
a complete lattice: A partially ordered set in which all subsets have a supremum (a 
least upper bound) and an infimum (a greatest lower bound). Applied to our case, 
we are saying that the union and the intersection of upper sets are upper sets or, in 
terms of rule mappings, that the maximum ( = sum) and the minimum ( = product) of 
admissible rules are admissible rules.

An antichain is a subset � of a poset such that any two elements of � are not com-
parable. Antichains and upper sets are related in the following way: The minimal 
elements of any upper set form and antichain; conversely, any antichain A deter-
mines the upper set

The empty antichain is also considered, and corresponds in our case to the rule 
r ≡ 0.

For finite posets, the correspondence between antichains and upper sets is bijec-
tive. Enumerating upper sets is therefore equivalent to enumerating antichains. Even 
computing the number of upper sets is not easy in general. For example, in the well-
known poset of the subsets of a given set of k elements, with the inclusion rela-
tion, the number of upper sets (called the Dedekind numbers, see OEIS Foundation 
https:// oeis. org/), is not known for k > 8.

3  Probabilistic Model and Optimisation Criterion

We want to find the best of all admissible rules, according to some quantitative cri-
terion, formulated in terms of a probabilistic model. In this section the criterion will 
be introduced, and the next one will be devoted to the characterisation of the optimal 
rule.

3.1  Probabilistic Model

Suppose C = P ∧ Q is the true state of nature. If for some rule r and a table of 
votes T = (x, y, z, t) , we have r(T) = 1 , we say that this is a true positive (TP). Oth-
erwise, if r(T) = 0 , it is a false negative (FN). Similarly, if ¬C is the true state, 

{x ∶ (∃y)(y ∈ A ∧ x ≥ y)} .

https://oeis.org/
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r(T) = 0 will be a true negative (TN) and r(T) = 1 will be a false positive (FP). 
Ideally, a good decision rule should minimise somehow the occurrence of false 
positives and false negatives. To assess the likelihood of these occurrences we 
need a probabilistic model in which to evaluate the probability of appearance of 
FP and FN. To that end, we need an estimate of the probability that the members 
of the committee guess correctly the true value of the premisses P and Q.

The probability that a committee member vote the correct value of the prem-
isses will be called its competence. We will assume that all committee mem-
bers have the same competence, a number strictly between 1

2
 and 1. Notice that a 

competence less than 1
2
 does not make sense, because in that case we can reverse 

all opinions of the committee, and we get another committee with competence 
greater than 1

2
 . If it were exactly 1

2
 , there is a trivial solution that will be pointed 

out later; if it is 1, then a one-member committee is enough and they are always 
right. We will also assume that the committee size n is odd and two additional 
independence conditions. Specifically, we assume in the sequel the following 
hypotheses: 

 (H1) Odd committee size: The number of voters is an odd number, n = 2m + 1 , with 
m ≥ 1.

 (H2) Equal competence: The competence � satisfies 1
2
< 𝜃 < 1 and it is the same for 

all voters and for both premisses P and Q.
 (H3) Mutual independence among voters: The decision of each voter does not depend 

on the decisions of the other voters.
 (H4) Independence between P and Q: For each voter, the decision on one premiss 

does not influence the decision on the other.

Formally, hypotheses (H2)–(H4) can be rephrased by saying that for each voter in 
the committee and each premiss, there is a random variable that takes the value 1 
if the voter believes the clause is true, and zero otherwise, and all these random 
variables are stochastically independent and identically distributed. Their specific 
distribution depends on the true state of nature. See Sect. 6 for possible relaxa-
tions of these hypotheses.

Proposition 3.1 Assume hypotheses (H1)–(H4), with committee size n, and compe-
tence � . Then the probability that the votes result in a particular table T = (x, y, z, t) 
is, under the different states of nature,

(2)if P ∧ Q, then
n!

x!y!z!t!
�2x+y+z(1 − �)y+z+2t ,

(3)if P ∧ ¬Q, then
n!

x!y!z!t!
�x+2y+t(1 − �)x+2z+t ,
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where ! means the factorial of a number.

Proof See Proposition A.4 of Alabert and Farré (2022).   ◻

Let us denote ℙP∧Q the probabilities computed under the state of nature P ∧ Q . 
According to the proposition above, the probability of obtaining a true positive 
when rule r is employed is the sum of the probabilities (2) for all tables T such 
that r(T) = 1:

Therefore, the probability of incurring a false negative is

We cannot proceed in a completely analogous way to define true negatives and false 
positives, because ¬(P ∧ Q) is not a state of nature, but an ensemble of three states, 
each of which may yield different probabilities. At this point, there are two possible 
modelling paths, according to the information available: Either there is no further 
information about the true state of nature (or we do not want to use it); or, there is 
enough information to postulate an “a priori” probability � on the states of nature, 
and we can follow a Bayesian approach.

The main line in this paper is the first path, always applicable. Let us deviate 
for a moment and sketch the second one, which corresponds to a situation consid-
ered, among others, in Terzopoulou and Endriss (2019), Bovens and Rabinowicz 
(2006) and Bozbay (2019). In the Bayesian approach, ℙP∧Q is interpreted as a 
conditional probability given P ∧ Q , and analogously for the other ones, that we 
denote ℙP∧¬Q , ℙ¬P∧Q , and ℙ¬P∧¬Q . Hence, the probability of a true negative in this 
setting will be

and then the probability of a false positive is given by

(4)if ¬P ∧ Q, then
n!

x!y!z!t!
�x+2z+t(1 − �)x+2y+t ,

(5)if ¬P ∧ ¬Q, then
n!

x!y!z!t!
�y+z+2t(1 − �)2x+y+z ,

ℙP∧Q(TP) =
∑

{r(x,y,z,t)=1}

n!

x!y!z!t!
�2x+y+z(1 − �)y+z+2t .

ℙP∧Q(FN) = 1 − ℙP∧Q(TP) =
∑

{r(x,y,z,t)=0}

n!

x!y!z!t!
�2x+y+z(1 − �)y+z+2t .

(6)

ℙ¬(P∧Q)(TN) = ℙP∧¬Q(TN) ⋅ �(P ∧ ¬Q)

+ ℙ¬P∧Q(TN) ⋅ �(¬P ∧ Q)

+ ℙ¬P∧¬Q(TN) ⋅ �(¬P ∧ ¬Q) ,

(7)ℙ¬(P∧Q)(FP) = 1 − ℙ¬(P∧Q)(TN)
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For example, if � is assumed to give the same probability to all three negative states, 
then ℙ¬(P∧Q)(TN) will be the arithmetic mean of the probabilities of TN under each 
state. This is the chosen prior in Terzopoulou and Endriss (2019); that of Bovens 
and Rabinowicz (2006) is different, and Bozbay (2019) completely forbids the result 
¬P ∧ ¬Q . In general, if the committee knows the prior, the independence in the 
judgments of the premisses (H4) cannot be assumed.

Now, using expressions (3), (4) and (5), the probabilities of a true negative 
under the three negative states are

and the probability of a false positive is then computed from (6) and (7).
After this digression, let us turn to our main setting. For the non-Bayesian situ-

ation, we can resort to the following analogy with the classical theory of Statisti-
cal Hypothesis Testing: Suppose one has to decide if there is enough evidence 
that a certain population parameter is equal to a value C, as provided by a sample 
drawn from the population. To this end, one computes how likely the observed 
sample could have been produced by the value of the parameter in the comple-
ment set ¬C which is “the closest” to C. If that likelihood is acceptable (by some 
numerical threshold), the decision is to stick to the “null” (status quo) conclusion 
¬C . If it is not acceptable, C is proclaimed as the new estimated conclusion.

Translating the analogy to our case, we must ask ourselves which of the states 
of nature belonging to the complement set ¬(P ∧ Q) is closest to P ∧ Q . Intui-
tively, P ∧ ¬Q and ¬P ∧ Q are equally close, and are closer than ¬P ∧ ¬Q . This is 
rigorously stated in the next proposition. Although intuitive, the rigorous proof is 
a little bit technical. We use a probabilistic procedure called coupling, that trans-
forms inequalities about probabilities into inequalities about random variables.

These arguments support the definition of the “probability” of a false positive 
as the probability that a rule decides C when P ∧ ¬Q is the true state of nature: 
ℙP∧¬Q(FP) ∶= 1 − ℙP∧¬Q(TN) . It can be also thought as the maximum of the prob-
abilities of a false positive for all possible choices of a prior � on the states of 
nature. It is therefore a conservative estimate of the possible error, in response to 
the lack of information about the underlying truth.

Proposition 3.2 Under hypothesis (H1)–(H4), for any admissible decision rule r,

(8)ℙP∧¬Q(TN) =
∑

{r(x,y,z,t)=0}

n!

x!y!z!t!
�x+2y+t(1 − �)x+2z+t

(9)ℙ¬P∧Q(TN) =
∑

{r(x,y,z,t)=0}

n!

x!y!z!t!
�x+2z+t(1 − �)x+2y+t

(10)ℙ¬P∧¬Q(TN) =
∑

{r(x,y,z,t)=0}

n!

x!y!z!t!
�y+z+2t(1 − �)2x+y+z

ℙP∧¬Q{r = 1} = ℙ¬P∧Q{r = 1} ≥ ℙ¬P∧¬Q{r = 1} .
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Proof The first equality is clear from Definition 2.1, item 1. We only need to prove 
the inequality on the right. Let �¬P∧¬Q and �P∧¬Q be two probability measures 
defined on the subsets of a set Ω , and let T be a random variable T ∶ Ω → �  such 
that the law of T under �¬P∧¬Q is ℙ¬P∧¬Q and the law of T under �P∧¬Q is ℙP∧¬Q . 
That is, using (5) and (3),

Suppose we could define another random variable S ∶ Ω → �  such that 

(a) T(�) ≤ S(�) , for all � ∈ Ω , and
(b) The law of S under �¬P∧¬Q coincides with the law of T under �P∧¬Q.

Then, since r is order-preserving, we will have {𝜔 ∶ r(S(𝜔)) = 1} ⊇ {𝜔 ∶ r(T(𝜔)) = 1} , 
and the conclusion

Let us prove the existence of S ∶ Ω → �  with the properties a) and b) above, and 
we are done: Let T1,… , Tn be independent identically distributed random variables 
Ti ∶ Ω → �  with the same law as T but for the vote of one individual. We will switch 
to table notation again, for clarity, in the rest of the proof.

Let S1,… , Sn be another collection of independent identically distributed random 
variables Si ∶ Ω → �  , defined as follows:

We have clearly that Ti(�) ≤ Si(�) , for all � ∈ Ω.
Let us compute the law of Si under �¬P∧¬Q , using conditional probabilities to the 

value of Ti:

𝕄¬P∧¬Q{� ∶ T(�) = (x, y, z, t)} = ℙ¬P∧¬Q{(x, y, z, t)} =
n!

x!y!z!t!
�y+z+2t(1 − �)2x+y+z ,

𝕄P∧¬Q{� ∶ T(�) = (x, y, z, t)} = ℙP∧¬Q{(x, y, z, t)} =
n!

x!y!z!t!
�x+2y+t(1 − �)x+2z+t .

ℙP∧¬Q{r(T) = 1} = ℙ¬P∧¬Q{r(S) = 1} ≥ ℙ¬P∧¬Q{r(T) = 1} .

If Ti =

�
1 0

0 0

�
, then Si =

�
1 0

0 0

�

If Ti =

�
0 1

0 0

�
, then Si =

�
0 1

0 0

�

If Ti =

�
0 0

1 0

�
, then Si =

⎧⎪⎨⎪⎩

�
0 0

1 0

�
with probability

1−�

��
1 0

0 0

�
with probability

2�−1

�

If Ti =

�
0 0

0 1

�
, then Si =

⎧⎪⎨⎪⎩

�
0 0

0 1

�
with probability

1−�

��
0 1

0 0

�
with probability

2�−1

�
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We see that the law of each Si under �¬P∧¬Q coincides with that of Ti under 
�P∧¬Q . Now, we have that

and that T has the law given by (5) under �¬P∧¬Q , and by (3) under �P∧¬Q , and S has 
the law given by (3) under �¬P∧¬Q.

Hence, T and S are the random variables we were looking for, and the proof is 
complete.   ◻

As a corollary, since the maximum is always greater than any weighted mean in 
(6), we get that ℙP∧¬Q{r = 1} is greater or equal than the probability of a false posi-
tive computed with any prior distribution on the set ¬(P ∧ Q).

In a completely analogous way, one can also prove that for admissible rules the 
probability to conclude C is greater when the true state of nature is P ∧ Q than with 
any other state.

We do not need any more the subindexes in the probabilities of false positives and 
false negatives, since ℙ(FN) always refers to the state P ∧ Q , and ℙ(FP) refers to the 
state P ∧ ¬Q (or to the given prior on ¬(P ∧ Q) in the Bayesian case). Instead, we 
will subindex ℙ by the rule employed. For reference in the sequel, we repeat here the 
formulae for FP and FN: For any rule r ∶ � → {0, 1},

T(�) ∶=

n∑
i=1

Ti(�) ≤

n∑
i=1

Si(�) =∶ S(�) , � ∈ Ω ,

(11)ℙr(FP) =
∑

{r(x,y,z,t)=1}

n!

x!y!z!t!
�x+2y+t(1 − �)x+2z+t ,
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3.2  Optimisation Criterion

We want to obtain the best decision rule, under the probabilistic model stated above 
and the optimisation criterion what we develop in this subsection. This criterion was 
introduced in Alabert and Farré (2022) and is based on minimising a weighted sum 
of the probability to commit a false positive and the probability to commit a false 
negative. It can be thought as a multi-objective optimisation problem, but that point 
of view does not contribute any practical insight.

Any rule r ∶ � → {0, 1} (admissible or not) has associated probabilities of pro-
ducing a False Positive ℙr(FP) and a False Negative ℙr(FN) according to formulae 
(11)–(12). Despite the simplified notation, recall that these two probabilities stem 
from different states of nature. If both failures are considered equally harmful, it is 
natural to look for the admissible rule r ∈ A that minimises the sum

If one of them is considered worse that the other, one can take a weighted sum

where w is a real number, 0 < w < 1 , as the loss function that to minimise. For 
example, if a false positive is deemed twice as harmful as a false negative, w =

2

3
 

is the suitable value. Note that the weight w is a modelling choice relative to each 
particular application, and it is supposed to be fixed in advance of the voting stage.

In Statistics, the combination (13) of probabilities of the two types of error is 
called the area of the triangle, a term that comes from its origin in signal processing 
and the graphical methodology called Receiving Operating Characteristics (ROC). 
We refer the reader to Fawcett (2006) for a simple introduction to ROC.

If r and s are two admissible rules, and r ≤ s (equivalently, Ur ⊆ Us , where Ur and 
Us are the upper sets defining r and s respectively), then obviously, from (11) and 
(12),

This means that r ↦ ℙr(FP) and r ↦ ℙr(FN) are respectively an increasing function 
and a decreasing function defined on the poset of admissible rules (A,≤) . Moreover 
the rule r ≡ 0 (always conclude ¬C ) satisfies ℙr(FP) = 0 and ℙr(FN) = 1 , and the 
rule r ≡ 1 (always conclude C) satisfies ℙr(FP) = 1 and ℙr(FN) = 0.

As we said before, the value � =
1

2
 can be excluded because it is trivial: If w <

1

2
 , 

the decision must be always C; if w > 1∕2 , the decision must be ¬C ; and if w = 1∕2 , 

(12)ℙr(FN) =
∑

{r(x,y,z,t)=0}

n!

x!y!z!t!
�2x+y+z(1 − �)y+z+2t .

(13)ℙr(FP) + ℙr(FN) .

(14)Lw(r) ∶= wℙr(FP) + (1 − w)ℙr(FN) ,

ℙr(FP) ≤ ℙs(FP)

ℙr(FN) ≥ ℙs(FN) .
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then the problem is completely equivalent to a single coin toss. See the “Appendix” 
for the details.

4  Main Results

Suppose we have an admissible rule r, with sets �+ of positive tables and � 0 of 
null tables (recall the definitions in Sect.  2). If we choose a table T ∈ �

0 and 
move it to �+ , we are increasing the probability of a false positive and at the same 
time decreasing the probability of a false negative. In doing that, we also have to 
move its transposed table, to maintain the first condition of admissibility. This 
movement may result in a decrease or an increase of the loss function Lw.

Definition 4.1 Let r ∶ � → {0, 1} be an admissible decision rule, with positive set 
�
+ and null set � 0 . If moving a table T and its transposed table (and no other) from 

�
0 to �+ results in a decrease of the loss function, we will say that we have a good 

table.

Here “good” only means that the voting table T “should be supporting decision 
C”. Thus, it seems that the set �+ of the optimal rule must consist of the good 
tables and no others. However, we still have to see that the rule defined in this 
way is indeed admissible.

Theorem 4.2 The rule whose positive set �+ consists exactly of the good tables is 
admissible and optimal.

This is a consequence of the following two lemmas, which are interesting in 
their own. Lemma  4.3 characterises the good tables in terms of w and � , and 
confirms that a table and its transposed are both good or both bad. Lemma 4.4 
proves that the second condition of admissibility is also satisfied, in view of 
Proposition 2.5.

Lemma 4.3 Given weight 0 < w < 1 and competence 1

2
< 𝜃 < 1 , a table 

T = (x, y, z, t) ∈ �  is a good table if and only if

Proof Using formulae (11) and (12), the change in the quantity 
wℙ(FP) + (1 − w)ℙ(FN) when T and its transposed table are moved from the null to 
the positive set is given by

(15)
(

𝜃

1 − 𝜃

)(y−z)−(x−t)

+
(

𝜃

1 − 𝜃

)(z−y)−(x−t)

<
2(1 − w)

w
.

(16)

n!

x!y!z!t!

[
w�x+2y+t(1 − �)x+2z+t + w�x+2z+t(1 − �)x+2y+t

− 2(1 − w)�2x+y+z(1 − �)y+z+2t
]
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Dropping the factorials and dividing by

we see that (16) is negative when

and this is immediately equivalent to (15). In the case y = z , the quantity (16) should 
be divided by two, but the conclusion is the same.   ◻

Lemma 4.4 The set of good tables is an upper set of (� ,≤).

Proof It is easy to see that, for each fixed 1
2
< 𝜃 < 1 , the function

is decreasing in (� ,≤) . It is enough to check it for the pairs of the transitive reduc-
tion (1). Moving from the smallest to the greatest table of the pair, one of the terms 
in (17) remains unchanged whereas the other one is multiplied by 

(
𝜃

1−𝜃

)−2
< 1 . 

Therefore, if a table is good, according to Lemma 4.3 a greater table in the poset 
(� ,≤) is also good, and the good tables indeed form an upper set.   ◻

Notice that the optimal rule according to Lw among those satisfying the first 
admissibility condition only, automatically satisfies the second.

The next theorem determines when, under the optimal decision rule, a vot-
ing table leads to a verdict of C = P ∧ Q or the opposite, for the symmetric case 
w = 1∕2 . This is a further characterisation of the condition (15). We prove this 
special case because the statement and the proof are neater, and the extension to 
general 0 < w < 1 is straightforward, as will be seen after the theorem.

In words, the theorem says that: if votes in favour of P ∧ Q are less than those 
in favour of ¬P ∧ ¬Q or there is a tie, then the decision must be ¬C ; otherwise, 
if the difference is greater than the difference in absolute value between votes for 
P ∧ ¬Q and votes for ¬P ∧ Q , then the decision must be C; otherwise, the deci-
sion must be C if the competence � of the committee is below a certain threshold 
(which can be computed to any desired accuracy), and ¬C if it is above.

Theorem  4.5 Assume w = 1∕2 , and let � be any competence level, 1

2
< 𝜃 < 1 . 

Assume r is an optimal rule and denote

Then, given a voting table T = (x, y, z, t) , 

�2x+y+z(1 − �)y+z+2t ,

𝜃y+t−x−z(1 − 𝜃)x+z−y−t + 𝜃z+t−x−y(1 − 𝜃)x+y−z−t <
2(1 − w)

w
,

(17)H(x, y, t, z) =
(

�

1 − �

)(y−z)−(x−t)

+
(

�

1 − �

)(z−y)−(x−t)

� ∶= x − t and � ∶= |y − z| .
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(a) if � ≤ 0 , then r(T) = 0.
(b) if 𝜌 > 𝛼 , then r(T) = 1.
(c) if 0 < 𝜌 < 𝛼 , then there exists �0 ∈ (

1

2
, 1) such that r(T) = 1 for 𝜃 < 𝜃0 , and 

r(T) = 0 for 𝜃 > 𝜃0.

And these are all possible cases.

Proof Starting with the last claim, these are all possible cases because 
n = x + y + z + t odd implies that � and � have different parity. In particular, � ≠ � 
and � ≠ −�.

Consider the bijective increasing transformation � =
�

1−�
 , which maps ( 1

2
, 1) onto 

(1,∞) . The left-hand side of (15) can then be written as a function

with � and � integers, � ≥ 0 . The restriction x + y + z + t = n implies that

with � and � of different parity, as already noted. According to Lemma 4.3, the table 
T is good for values of � such that G(𝜂) < 2 , and the optimal rule r should assign it 
the value 1; for values of � such that G(𝜂) > 2 , the table is bad and we must have 
r(T) = 0.

Clearly, G is differentiable on (1,∞) and lim�↘1 G(�) = 2 , for all � and � . Also, 
the derivative of G can always be written as

(18)G(�) ∶= �−�−� + �−�+� , � ∈ (1,∞) ,

0 ≤ � ≤ n

−(n − �) ≤ � ≤ n − �

Fig. 2  Different possible shapes 
for function G of (18) according 
to the three cases in the proof of 
Theorem 4.5
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and we have lim�↓1 G
�(�) = −2� . Thus, G takes the value 2 at the left boundary of 

the domain of interest, and starts from there decreasing or increasing according to 
the sign of �.

Let us now proceed with the three cases of the statement. Please refer to Fig. 2. 

Tables of type a:  � ≤ 0.
  If � = 0 , then � cannot be zero, by parity. We have � ≥ 1 and G is clearly 

increasing, with lim�→∞ G(�) = +∞ . If 𝜌 < 0 , G is also increasing for all 
� ≥ 0 and lim�→∞ G(�) = +∞ again. The table is bad in both situations.

Tables of type b:  𝜌 > 𝛼.
  Both exponents in (18) are negative, and G is therefore decreasing. More-

over lim�→∞ G(�) = 0 . The table is good.

Tables of type c:  0 < 𝜌 < 𝛼.
  Now G′ is negative near � = 1 ; therefore G is decreasing at least on some 

interval to the right of 1. Solving for � in G�(�) = 0 , and taking into 
account that 𝛼 + 𝜌 > 𝛼 − 𝜌 > 0 , we find that 

 is the only critical point of G, which is a minimum since lim�→∞ G(�) = +∞.
  Thus, there exists a unique point �0 ∈ (�∗,∞) where G(�0) = 2 . The table 

is good for � ∈ (1, �0) , and bad for � ∈ (�0,∞).
  In other words, for a competence value � less than �0 ∶=

�0

1+�0
 , the table is 

good. For 𝜃 > 𝜃0 , the table is bad. This finishes the proof.

  ◻

The case for general 0 < w < 1 is very easy to explain with the help of Fig. 2. 
For w <

1

2
 , the dashed horizontal line is above level 2. All tables are good for small 

enough competence levels � (the decision must always be C). The tables of type a 
and c are bad for � greater than some �0 . The tables of type b are all good for all 
competence levels.

For w >
1

2
 , the dashed line is below level 2, and all tables are bad for low enough 

competence levels (the decision must always be ¬C ). Tables a stay bad for all � , and 
tables b turn good after some point. For tables of type c, two things may happen: 
Either they are always bad or, as � increases, they have an interval of “goodness” 
before turning bad again.

(19)G�(�) = �−�−1
[
(� − �)�� − (� + �)�−�

]
,

(20)�∗ =
(
� + �

� − �

)1∕2�

∈ (1,∞)
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All intersection points are easily computed to any desired precision by solv-
ing numerically for � the equation G(�) = 2(1−w)

w
 on (1,∞) . See Sect. 5 for more 

details.
Lemma 4.3 allows a notable conceptual, notational and computational simplifica-

tion: Since function G in (18) only depends on � = x − t and � = |y − z| , the tables in 
�  with the same � and � will all be good or bad, once � and w are fixed. If, on the con-
trary, two given tables do not share these values, they produce two different functions 
G.

This allows to consider an equivalence relation in (� ,≤) that gives rise to a quotient 
ranked poset, reducing in this way the complexity of the Hasse diagram and the compu-
tations. Define

In particular, this equivalence relation identify transposed tables. The elements of 
the quotient set �∕∼ are classes of voting tables and can be represented by the pair 
(�, �) . We can write T ∈ (�, �) if T is in the class represented by (�, �).

Now define the preorder relation in �∕∼ given by

We use the same symbol ’ ≤ ’ for both relations in �  and �∕∼ , since there is no pos-
sible confusion. It can be proved in general that a relation defined in this way in 
the quotient set is reflexive and transitive, therefore a preorder. In general it is not 
antisymmetric.

We shall prove that in our case the antisymmetry holds, so that we have again a par-
tial order. To this end, we make use of the following lemma (see Hallam 2015). A proof 
is included in the “Appendix”, for the reader convenience.

Lemma 4.6 Let (X,≤) be a finite poset, ∼ an equivalence relation on X, and the pre-
order ⪯ on X∕∼ defined as: x̄ ⪯ ȳ ⇔ ∃x ∈ x̄,∃y ∈ ȳ ∶ x ≤ y.

Assume that if x̄ ⪯ ȳ in X∕∼ , then for all x ∈ x̄ , there exists y ∈ ȳ such that x ≤ y 
in X. Then, (X∕∼,⪯) is a poset.

It is not difficult to show that the hypothesis of the lemma holds in our case; see the 
“Appendix”.

Since we are identifying tables in the same rank level, the resulting quotient poset is 
also ranked, with the same rank function �.

Example 4.7 Figure  3 illustrates the resulting poset of (�, �)-tables, for n = 3, 5, 7 , 
with different intensities according to types a, b, c of Theorem 4.5.   ◻

The relations (1) defining the transitive reduction in (� ,≤) translate to

(x, y, z, t) ∼ (x�, y�, z�, t�) ⟺ x − t = x� − t� and |y − z| = |y� − z�| .

(�, �) ≤ (��, ��) ⟺ there existT ∈ (�, �) and T � ∈ (��, ��) such thatT ≤ T � .
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in the quotient poset, and it is easy to see, while proving that Lemma 4.6 is applica-
ble to (� ,≤) (see the “Appendix”), that (21) is precisely the transitive reduction in 
the quotient poset. This makes the Hasse diagrams like those of Fig. 3 very easy to 
generate for any n.

The classical premiss-based rule coincides with the one formed exactly by the 
tables of type b (see Example 2.2). This suggests that it is possible to characterise 

(21)
(�, �) ≤ (� + 1, � − 1)

(�, �) ≤ (� + 1, � + 1)

Fig. 3  Hasse diagrams for n = 3, 5, 7 , in the quotient poset of (�, �)-tables. In boldface, tables of type b, 
in normal type those of type c, and greyed out those of type a 
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exactly under what conditions on w and � the premiss-based rule is the optimal 
one. The result is given in Theorem 4.9. It will be a consequence of the following 
lemma. In the sequel we will denote G�,� the function defined in (18).

Lemma 4.8 In the poset (�∕∼,≤) of (�, �)-tables, 

1. The subset of tables of type b has a unique minimal element: Table (1, 0).
2. The union of tables of type a and c has a unique maximal element: Table ( n−1

2
,
n+1

2
).

Proof The statements are equivalent to say that G�,� ≤ G1,0 for 𝜌 > 𝛼 ≥ 0 , and that 
G�,� ≥ Gn−1

2
,
n+1

2

 for 𝜌 < 𝛼 with � ≥ 0 . For the first inequality, both exponents −� − � 
and −� + � are negative, hence G�,�(�) ≤ �−1 + �−1 = G1,0(�) ; for the second, the 
first exponent is positive, and the second is greater or equal to −n , hence 
G�,�(�) ≥ � + �−n = Gn−1

2
,
n+1

2

(�) .   ◻

Theorem  4.9 Let 0 < w < 1 and 1
2
< 𝜃 < 1 be the given weight and competence 

level, and n the committee size. The premiss-based rule is optimal if and only if

Proof Denote, as before, � ∶=
�

1−�
 , and set also � ∶=

2(1−w)

w
 . In view of Lemma 4.8, 

the necessary and sufficient condition for the premiss-based rule to be optimal is that 
the point (�, �) lie above the curve G1,0 and below the curve Gn−1

2
,
n+1

2

 . That means 
2�−1 ≤ � ≤ � + �−n , or equivalently,

The first inequality is equivalent to � ≥ w , and we are done.   ◻

(22)� ≥ w and
�

1 − �
+
(

�

1 − �

)−n

≥
2(1 − w)

w

2
(

�

1 − �

)−1

≤
2(1 − w)

w
≤

�

1 − �
+
(

�

1 − �

)−n

.

Fig. 4  Region of optimality of 
the premiss-based (pb) rule, in 
the natural coordinates (�,w) . 
The thinner curves correspond 
to n = 3, 5, 7 approaching mono-
tonically the curve � =

2−2w

2−w
 as 

n → ∞ . If 𝜃 < w , some tables 
of type b must leave the set �+ ; 
if (�,w) falls below the lower 
curve, other tables must join 
those of type b in the set �+ ; 
and both things may happen at 
the same time, for 𝜃 < 2 −

√
2
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A simpler sufficient condition, independent of the committee size, is given in the 
next corollary. Figure 4 illustrates both theorem and corollary.

Corollary 4.10 Let 0 < w < 1 and 1
2
< 𝜃 < 1 be as in Theorem 4.9. If

then the premiss-based rule is optimal, for all committee sizes.

Proof The second inequality results from ignoring the negative exponential term in 
(22).   ◻

Example 4.11 From the corollary, in the balanced case w =
1

2
 , one can be sure that 

the premiss-based rule is optimal as soon as the competence level is above 2
3
 . If this 

is not the case, other voting tables (those of type c) have to be successively added 
to the set of positive tables, as the competence level decreases. Table 2 shows the 
critical �0 , to four decimal places, for the tables of type c with n ≤ 7 . Notice that the 
value of �0 is independent of n.

One might conjecture that the tables of type c enter the optimal rule following 
the increasing value of −� + � , an among those with the same value, following the 
decreasing value of � + � . This is true up to n = 11 . For n = 13 this regularity breaks 
down and table (3, 10) enters before (1, 6), at �0 = 0.5160 . Hence, we do not find 
here any computational shortcut to determine the optimal rule for general n, even in 
the case w =

1

2
 .   ◻

By contrast, the classical conclusion-based rule is never optimal: For any n, a 
pair of tables (x, y, z, t) and (x�, y�, z�, t�) can be found that lead to different results 
according to conclusion-based, and yet they belong to the same (�, �) class. For 
instance, for n = 3 , we have (2, 0, 0, 1) leading to C and (1, 1, 1, 0) leading to ¬C ; 
but both belong to the class (1, 0) and should have the same status in the optimal 
rule. However, it is worth noting that the conclusion-based rule can be better than 
the premiss-based for certain values of w and �.

� ≥ w and � ≥
2(1 − w)

2 − w
,

Table 2  Positive tables of type c 
when w =

1

2
 and � ∈ (

1

2
, �0)

(�, �) (3, 4) (2, 3) (1, 2) (2, 5) (1, 4) (1, 6)

�0 0.6658 0.6628 0.6478 0.5449 0.5326 0.5141
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5  Computations and Software

The optimality condition adds some more relations to the partial order defined 
by the admissibility requirement. This simplifies further the computation of the 
optimal rule.

Proposition 5.1 If (�, �) is a positive table in the optimal rule, then (�, � − 2) is also 
a positive table in the optimal rule, whenever these values make sense.

Adding the relations (�, �) ≤ (�, � − 2) to (� ,≤) , the new partial order has the 
transitive reduction defined by

Proof We need to see that for the functions G�,� defined in (18), we have 
G�,�−2 ≤ G�,� in their whole domain (1,∞) . The inequality can be expressed as

which is obviously true for all 𝜂 > 1 and � ≥ 2.
The first relation in the transitive reduction (21) is no longer present in the new 

transitive reduction, since now there is an element in between:

except in (n − 1, 1) ≤ (n, 0) .   ◻

The resulting Hasse diagram is “thinner”, and the total number of upper sets 
is reduced. As an example, the case n = 3 is depicted in Fig.  5. There are only 

(�, �) ≤ (�, � − 2)

(�, �) ≤ (� + 1, � + 1)

(n − 1, 1) ≤ (n, 0)

0 ≤ �2� − �2�−2 − �2 + 1 = (�2�−2 − 1)(�2 − 1) ,

(�, �) ≤ (�, � − 2) ≤ (� + 1, � − 1)

Fig. 5  Partial order in �  induced 
by the optimality condition (see 
Proposition 5.1)
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twelve upper sets left after this simplification. The new poset is still ranked, but 
� = x − t is no longer a rank function.

This reduction is relevant if we are only interested in the optimal rule. If we want 
to build instead a ranking of rules, then Proposition 5.1 is not useful.

We have built a program in Python, with a graphical interface, that allows the 
user to input the values of n, w and � , and produces a ranking of decision rules. It 
can be currently found as a public Mercurial repository in https:// discu rsive- dilem 
ma. sourc eforge. io/, or requested directly to the authors. The program allows to spec-
ify different competence levels for the different committee members (an extension 
discussed in the next section), so that in fact formulae (11) and (12) are not used, 
but instead the probability to get a voting table (x, y, z,  t) is computed taking into 
account all possible permutations of voters.

As an example of output, see Fig. 6. Two rankings are produced, the first cor-
responding to voting tables and rules in extended form (x, y, z, t), and the second in 
compact form (�, �) . They are not a direct translation of each other, since a rule that 
cannot be expressed in compact form (because members of the same (�, �) class are 
assigned different conclusions) may actually be better than the next rule respecting 
the equivalence relation.

The rules are expressed by means of the antichain that determines the upper set 
of positive tables. A name is printed if the rule is one of premiss-based, conclu-
sion-based or path-based, and the value of the loss function (14) of each rule is also 
given. Notice that in this example the rules in positions 3 to 5 in the extended ver-
sion are not expressible in compact form, but are better than the third rule in the 
second ranking. Of course, the optimal rule will always coincide in both rankings.

At the moment, the program only outputs up to the five best rules, but this is an 
arbitrary parameter that can be easily changed in the source code. Also, we have not 
made any special effort for efficiency. It has been conceived only as a playground 
and checking tool.

Fig. 6  The two rankings produced by the Python code: For rules in the form (x, y, z, t) and for rules in 
the form (�, �) . In this example, the input was n = 3 , w = 0.5 , � = (0.6, 0.7, 0.8)

https://discursive-dilemma.sourceforge.io/
https://discursive-dilemma.sourceforge.io/
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Concerning the computational complexity of producing the admissible deci-
sion rules, let us note first that the total number of voting tables is equal to 
1

24
(2n3 + 15n2 + 34n + 21) in the original poset (� ,≤) , after identifying transposed 

tables. In the quotient poset (�∕∼,≤) , this number is reduced to 1
2
(n + 1)(n + 2).

Since admissible rules are in bijection with upper sets, and these in turn 
are determined by their antichains, we first identify the latter. For this task 
we make use of the Python package networkx, which contains a function  
antichains(). The generation of the corresponding upper set and the evalu-
ation of each table contained in it is very easy. The contribution to the loss func-
tion of tables previously computed is stored to speed up the computations. The 
maximum cardinality of an antichain (after identifying transposed tables) is 
1

8
(n + 3)(n + 1) in (� ,≤) and 1

2
(n + 1) in (�∕∼,≤) . We sketch in the “Appendix” 

the computation of these numbers.

Apart from having the optimal rule or a ranking of the best rules, one might be 
just interested in knowing which conclusion has to be assigned to a given voting 
table T under the optimal rule. This is very easy by asserting inequality (15), in 
the case of equal competences. Otherwise, the probabilities of a False Positive 
and a False Negative have to be computed for that table, taking into account the 
different competences, and then determine their contribution to the loss function.

Finally, in the equal competences case, one may like to determine, given a 
fixed weight w, the intervals of competence � where r(T) = 0 or 1 for the optimal 
rule r. We need to find the root or roots of the equation

This is very easy numerically. The functions involved are simple to evaluate so that 
pure bisection, for instance, is very fast. We only need to have a bracket where the 
roots are guaranteed to lie. Indeed, they are readily found: 

Tables of type a:  (� ≤ 0).
  If w ≥

1

2
 the table is bad.

  If w <
1

2
 , the unique root of (23) is less than the root of �−�+� =

2(1−w)

w
 . 

Therefore, the solution to (23) will be found between 1 and 

Tables of type b:  (� ≥ �).

  If w ≤
1

2
 the table is good.

  If w >
1

2
 , the unique root of (23) is less than the root of 2�−�+� =

2(1−w)

w
 , 

and it will be found between 1 and 

(23)G�,�(�) = �−�−� + �−�+� =
2(1 − w)

w
.

(24)
(2(1 − w)

w

) 1

−�+�
.
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Tables of type c:  (0 < 𝜌 < 𝛼).
  If w ≤

1

2
 there is a unique root, and the same bound (24) is valid.

  If 1
2
< w ≤

2

3
 , we first check if the minimum �∗ of G�,� (see (20)) satisfies 

G𝜌,𝛼(𝜂
∗) >

2(1−w)

w
 , in which case there are no roots of (23) and the table is 

bad; or G𝜌,𝛼(𝜂
∗) <

2(1−w)

w
 and there are two roots: The first between 1 and 

�∗ , and the second between �∗ and (24).
  If w >

2

3
 , the table is bad, because then 2(1−w)

w
< 1 , whereas G𝜌,𝛼(𝜂

∗) > 1 
always.

6  Conclusions and Discussion

We have studied the simplest conjunctive truth-functional agenda, origin of the dis-
cursive dilemma between the two classical decision rules. We proposed a method to 
obtain the best rule (or a ranking of rules) by minimising a loss function that com-
bines false positives and false negatives. Actually, we have introduced a family of 
loss functions, parametrised by the number 0 < w < 1.

We have seen that, given a voting table, it is very easy to determine the decision 
that the optimal decision rule dictates, by applying Theorem 4.5, in the symmetric 
case, and finding the root(s) of equation (23) if necessary, in general.

The decision rules considered satisfy very mild and reasonable conditions of 
symmetry and monotonicity (Definition  2.1). In fact, the second condition is not 
necessary a priori if one is only interested in the best rule and not in ranking rules. 
In that case, monotonicity appears a posteriori as a property of the optimal rule.

Generically, the optimal rule will be unique, but specific values of weight w and 
competence � may lead to ties in the evaluation of the loss function, in particular in 
its minimum value. To make the exposition simpler, we have avoided mentioning 
this possibility throughout the paper.

The loss function is a modelling choice; an object to be decided upon a priori and 
that makes clear what is the criterion under which a rule will be declared “best”. It 
contains all the information that the mathematical model needs to know. With this 
approach, we draw attention away from the properties of specific decision rules, or 
from a set of desirable axioms, to focus on the consequences of the decisions.

In any real instance the loss function must be chosen to reflect what the best rule 
is intended to achieve. Both the choice of the loss function and the optimisation 
point of view as a whole can be a matter of extensive discussion. But in any case we 
strongly believe that our approach is worth considering for problems of judgment 
aggregation in general.

(
w

1 − w

) 1

�−�
.
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The classical premiss-based and conclusion-based decision rules are linked to the 
concept of majority: The value of each clause is the one most voted. But we do not 
use majorities in determining the best rule. We rather support a qualified majority 
principle: the loss function quantifies the bad consequences of a wrong decision; 
in turn, this determines the “threshold” for this qualified majority. Not a threshold 
premiss-by-premiss, but a threshold (or a cut, in terms of graph theory) in the par-
tially ordered set of voting tables. In an extreme case, when the competence of the 
committee is too low, an unanimous vote in one direction may still lead to the con-
trary decision, if the consequence of deciding the first is too bad. On the other hand, 
an ample range of values of competence and weight do support the application of 
the classical premiss-based rule (Corollary 4.10 and Fig. 4).

In Alabert and Farré (2022), where the present point of view was first introduced 
to compare three specific decision rules, some possible extensions and open prob-
lems were discussed substantially. We summarise them here:

• Different competence for each voter This is the simplest extension. If Jk is the 
voting table consisting only on the vote of voter k, with competence level �k , the 
resulting table is J1 +⋯ + Jn , whose probability law can also be computed, and 
the probabilities of false positive and false negative will be 

 Our software already computes the ranking of rules in this more general 
situation.

• Different competence for each premiss or state of nature. The competence of a 
voter may be in fact a vector � = (�P, �¬P, �Q, �¬Q) of competences depending 
on the premiss and/or the true state of nature. In List (2005), the probability of 
appearance of the doctrinal paradox is studied also when the competence is dif-
ferent on P and Q. The computation of ℙr(FP) and ℙr(FN) is more involved in 
this case, but still feasible.

• Non-independence between voters If the committee members do not vote inde-
pendently, perhaps through a deliberation process with influential individu-
als, then the full joint law of the vector (J1,… , Jn) of individual voting tables 
is needed to compute the law of the sum J1 +⋯ + Jn under the different states 
of nature. Boland (1989) studied this situation for the voting of a single question 
assuming the presence of a “leader” in the committee. Other works that studied 
epistemic social choice with correlated voters in the last decade include Peleg 
and Zamir (2012), Dietrich and Spiekermann (2013a), Dietrich and Spiekermann 
(2013b) and Pivato (2017).

• Non-independence between premisses In practical examples, the premisses P and 
Q can very well be interconnected, in the sense that believing that P is true or 
false can change the perception on the truth or falsity of Q. This may lead to a 
different competence in asserting Q depending on the decision on P. Then the 

ℙr(FP) =
∑

{r(x,y,z,t)=1}

ℙP∧¬Q{J1 +⋯ + Jn = (x, y, z, t)} ,

ℙr(FN) =
∑

{r(x,y,z,t)=0}

ℙP∧Q{J1 +⋯ + Jn = (x, y, z, t)} .
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joint law of the competences under the four states of nature are needed to com-
plete the computations.

  The extreme case where one combination of premisses is impossible it is 
treated in Bozbay (2019), where in addition abstentions are allowed.

• More than two premisses Conceptually, there is no difficulty in extending the set-
ting to a conjunctive agenda with any number of premisses P1,… ,Ps . A voting 
table will be an element of 𝕋 = {(x1,… , x2s ) ∈ ℕ

2s ∶
∑2s

i=1
xi = n} . The con-

cepts of admissible rule and of false positive are easily extended, and the loss 
function is the same. However, the analogue of the left-hand side expression of 
equation (15), and consequently the function G used in the proof of Theorem 4.5, 
are not so easy to obtain explicitly. There are many more symmetries in the vot-
ing arrays to take into account, and this requires further non-trivial work.

Note that disjunctive agendas, in which the conclusion is true if and only if at least 
one premiss is true, are dual to the conjunctive case, by negation of the doctrine (see 
List 2005, Bovens and Rabinowicz 2006, or Miyashita 2021). They can be consid-
ered easily within our framework. We do not know how sensitive the results will be 
to other type of truth-functional agendas.

An extension with an obvious practical interest is allowing abstentions, or com-
mittees with an even number of members. It is clear that enforcing an opinion on all 
clauses of the agenda may be inconvenient or simply impossible. These so-called 
incomplete judgments have been considered in Gärdenfors (2006), Dietrich and List 
(2008), Terzopoulou and Endriss (2019) and Bozbay (2019).

It is natural to ask which desirable properties satisfies the optimal rule of a given 
criterion. We leave this as an open question. In relation to the classical axioms of 
judgment aggregation and their (im)possibility theorems (see e.g.   List 2012), and 
since here we are centred in reaching a right conclusion for whatever reasons, col-
lective rationality can only be achieved by assigning a value to the premisses after 
deciding on the conclusion (see Pigozzi et  al. 2009); but then the properties of 
monotonicity (in the classical sense), unanimity and systematicity need not be satis-
fied on the whole agenda. On the other hand, the anonymity requirement is trivially 
met in our setting. In any case, the advantage of the optimisation model is the imme-
diate existence of decision rules; each of the rules is evaluated through a real-valued 
loss function, hence at least one rule with a minimal value must exist. Distance-
based methods to reach consensus share this feature.

Appendix

• Proof of the equivalence between admissibility and upper sets (Proposition 2.5)

Given r ∈ A , the set { u ∈ � ∶ r(u) = 1 } is an upper set of �  . We want to see that 
for all x ∈ S = {u ∈ � ∶ r(u) = 1} and for all y ∈ �  , such that x < y , we must have 
y ∈ S . Take x ∈ S and y ∈ �  such that x < y . Since r ∈ A we have 1 = r(x) < r(y) , 
hence r(y) = 1 , and therefore y ∈ S.
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• Proof of the final claim in Sect. 3.2

In case � =
1

2
 , the problem is trivial because denoting Σ =

∑
r(x,y,z,t)=0

n!

x!y!z!t!
(
1

2
)2(x+y+z+t) , 

we have Lw(r) = w(1 − Σ) + (1 − w)Σ = w + (1 − 2w)Σ.
If w <

1

2
 , the minimum of Lw is equal to w, achieved when Σ = 0 , that is, when 

r ≡ 1 ; if w >
1

2
 , the minimum of Lw is equal to 1 − w , achieved when Σ = 1 , that is, 

when r ≡ 0 ; if w =
1

2
 , the function Lw is constant and equal to 1

2
 , that is, all rules are 

equally good and we might as well toss a coin.

• Proof that  (�, �) ≠ (��, ��)  implies  G�,� ≠ G�′,�′ (Sect. 4)

Since G�
�,�
(1) = −2� , two different � yield for sure two different func-

tions. Suppose � = �� and 𝛼′ > 𝛼 ≥ 0 . Then, lim𝜂→∞ 𝜂𝜌−𝛼G𝜌,𝛼(𝜂) < ∞ and 
lim�→∞ ��−�G�,�� (�) = ∞ , hence G�,� and G�,�′ must be different.

• Proof of Hallam’s lemma (Lemma 4.6)

His proof can be found in Hallam’s PhD thesis (Hallam 2015); we include it here for 
the reader’s convenience, and because his statement does not correspond completely 
to the proof.

Suppose x̄ ⪯ ȳ and ȳ ⪯ x̄ . Then x1 ≤ y1 for some x1 ∈ x̄ and y1 ∈ ȳ . But ȳ ⪯ x̄ 
implies there must be some x2 ∈ x̄ such that y1 ≤ x2 . But then, there must be some 
y2 ∈ ȳ such that x2 ≤ y2 . And so on. At some point we must have an equality of ele-
ments, since the set is finite. Then the classes x̄ and ȳ must coincide.

• Proof that the hypothesis of Hallam’s lemma holds in our case

We can assume everywhere that y ≥ z . Otherwise, at any time we can interchange the roles 
of y and z. Assume that (�0, �0) ≤ (�1, �1) , with elements (x0, y0, z0, t0) ∈ (�0, �0) and 
(x1, y1, z1, t1) ∈ (�1, �1) , such that (x0, y0, z0, t0) ≤ (x1, y1, z1, t1) , and assume in addition 
that they belong to the transitive reduction in (� ,≤) . It is easy to find that there are two 
cases: Either (I) �1 = �0 + 1 and �1 = �0 − 1 , or (II) �1 = �0 + 1 and �1 = �0 + 1.

Take a generic element (x, y, z, t) ∈ (�0, �0) . In case (I), we have in particu-
lar 𝛼0 > 0 , which implies y > 0 . Then (x, y, z, t) ≤ (x + 1, y − 1, z, t) ∈ (�1, �1) . 
In case (II), if t > 0 , take (x, y + 1, z, t − 1) ∈ (�1, �1) , and if t = 0 , take 
(x + 1, y, z − 1, t) ∈ (�1, �1) . Note that z = t = 0 cannot happen.

If the elements of (�0, �0) and (�1, �1) are not related by the transitive reduction, the 
argument can be iterated through a chain of elements related by the transitive reduction. 
Note that we have also deduced en passant the transitive reduction of the quotient poset.

• Computation of the number of voting tables (Sect. 5)

The Whitney numbers W� of a finite ranked poset are defined as the number of elements 
in rank level � . We compute the total number of tables in �  by computing first the 
Whitney numbers. We assume transposed tables are identified.
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For odd positive ranks � , the possible values of the pair (x,  t) are (� + r, r) , for 
r = 0, 1,… ,

n−�

2
.

For each fixed r, the possible values of the pair (y,  z), with y ≥ z , are 
(n − � − 2r − s, s) , for s = 0, 1,

n−�−2r

2
 . Thus, there are n−�−2r

2
+ 1 such pairs. adding up 

these quantities from r = 0 to n−�
2

 , yields 1
8
(n − � + 4)(n − � + 2).

A similar counting gives 1
8
(n − � + 3)(n − � + 1) for even non-negative ranks � , 

which is the same number as the odd rank immediately above. The case of negative 
ranks is deduced by symmetry. Therefore we can write

A simple but tedious computation, adding up all the Whitney numbers for −n ≤ � ≤ n , 
yields the total number of tables 

∑n

�=−n
W� =

1

24
(2n3 + 15n2 + 34n + 21) .

The number max� W� is the maximal cardinality of an antichain: Indeed, since there 
is a unique minimal and a unique maximal element in (� ,≤) , any element of the poset 
is comparable to the minimal and maximal element of the poset, and therefore to some 
element of the most populated rank level. This implies that there cannot be more that 
max� W� elements in any antichain. Ranks −1 , 0, and 1 are the most populated, and its 
Whitney number is 1

8
(n + 3)(n + 1).

For completeness, let us just mention that the number of tables in the original poset 
(� ,≤) , without identifying transposed tables, is 1

24
(4n3 + 24n2 + 44n + 24) , and the 

most populated rank has 1
4
(n + 3)(n + 1) elements. In the quotient poset of (�, �)-tables, 

there are 1
2
(n + 2)(n + 1) tables and a maximum of 1

2
(n + 1) members in any antichain. 

All computations are similar to those shown here.
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1

8
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W�+1, if � = 0, 2,… , n − 1

W−�, if − n ≤ � ≤ −1
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