A Conditional Independence Property

for the Solution of a Linear Stochastic
Differential Equation with Lateral Conditions

Aureli Alabert and Marco Ferrante

Abstract. Let L be an nth order linear differential operator
with smooth coefficients and {W(t) : ¢ € [0,1]} a standard
Wiener process. We consider the stochastic differential equa-
tion

LX] =W

on [0, 1], with the lateral condition
m
Zaij.X(tj) = ¢ , ISZSTL 3
i=1

where 0 < ¢; < ... < iy <1 and a45,¢; € IR. We prove that
the solution to this system, considered as the vector Y (¢) =
(X(n*l)(t), ..., X'(t), X(t)), is not a Markov field in general
but satisfies a weaker conditional independence property.

1 Introduction

In the last few years there has been some work on stochastic differential equations
(SDEs) with boundary conditions (see e.g. [8], [6], [7], [1], [2]). This means, SDE
driven by white noise on a compact time interval, say [0, 1], where instead of the
customary initial condition, a relationship h(Xp, X1) = 0 is imposed between the
first and the last variable of the solution process.

Due to this relationship, the existence of a solution adapted to the driving process
cannot be expected and in some instances the theory and techniques of the recently
developed anticipating stochastic calculus have to be employed.

Besides the fundamental problem of existence and uniqueness, the main interest
has resided in the study of some suitable Markov-type property for the solution pro-
cess. In most cases, the boundary condition prevents the Markov process property
from holding, and weaker conditional independence properties (e.g. the Markov field
property, see Definition 3.1) have been considered.

The case of first order equations with linear coefficients and linear boundary
condition was studied at length by Ocone and Pardoux [8] (see also [4]). Most of
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the subsequent papers centered on obtaining necessary and sufficient conditions on
the coefficients of some nonlinear equation for the solution to be a Markov field or
to enjoy a similar property, for some specific boundary condition.

In the present paper we fix a linear SDE and study a conditional independence
property for its solution when subject to more general conditions. Specifically, we
consider a linear SDE of arbitrary order with additive white noise on the right-hand
side and additional linear conditions which may involve the value of the solution
process at some points in the interior of the time interval.

2 Linear SDE with lateral conditions

Let I =[0,1] and consider the differential operator

d
dt ’
where a; € C°(I), 0 < ¢ < n—1. Let {W(t) : t € I} be a standard Wiener

process. We assume that W is the coordinate process in the classical Wiener space

(C(I),B(C(I)), P). We shall consider the SDE

L=D"+au D" +... 4+ a1D +ay , D=

LIX] =W (2.1)

together with the lateral condition
m
> aiX(t) =a , 1<i<n | (2.2)
j=1

wheren <m, 0<t; <...<t, <1, and @4, ¢; are real numbers. The matrix of
coefficients (a;) is assumed to have full rank.

As in the case of ordinary differential equations, (2.1) can be regarded as a first
order system

DY (t) + A) Y(t) = B(t) , tel |, (2.3)

where Y (t) = (Yi(¢),...,Ya(®), Yi(t) = D"iX(t) for 1 < i < n, B(t) =
(W(t),0,...,0), and

an—1(t) an—2(t) an-3(t) - - - ai(t) aop(t) T
—1 0 0 R 0 0
0 -1 0 R () 0
0 0 -1 N § 0

(2.4)
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The lateral condition (2.2) is a special case of the general linear condition
AX] = ¢ (2.5)

with A a linear JR"-valued functional on C™"!(I), and ¢ € IR". By the Riesz
representation theorem, (2.5) can be written as

/O VARG YW = ¢ (2.6)

where F' is an (n X n)-matrix whose components are functions of bounded variation
on I.

When the right-hand side of (2.3) is a continuous vector function g, it is well
known that the system

DY) + AR Y(t) = g(t) , tel

! (2.7)
/ dF() V() = ¢
0

 admits a unique solution, which belongs to CY(I; R™), if and only if for some s € I

(equivalently, for every s € I)

1
(H) det /O dF(t) 35(t) # 0

where ®°(t) denotes the fundamental matrix solution of DY (t) + A(t)Y (t) = 0, that
is, Vs € I,

d 8 8 —
Ei@(t)+A(t)<I>(t)_0 , tel
PS(s)=1d

with Id the identity matrix. When (H) holds, the solution to (2.7) is given by

1
Y(t) = Jt) e + /0 G(t,s) g(s) ds
where
1
J(t)z/o dF(u) ®(u) (2.8)

and G(t, s) is the (matrix-valued) Green function associated to A and F'. An explicit
expression for this function is the following (see e.g. [3] or [5]):

G(t,s) = J(t)! [ /0 ) dF(u) J(u)™' — Llyeqy Id| J(s) . (2.9)
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Under (H), we define the solution to (2.3)-(2.2) as the n-dimensional stochastic
process

Y(t) = Jt) e + /1 G(t,s) dB(s) (2.10)
0

and the solution to (2.1)-(2.2) as the process {X (t) = Y,(¢), t € I}. The Green
function (2.9) has bounded variation, so that the Wiener integrals in (2.10) can be
interpreted pathwise by means of an integration by parts

/GtsdB /ths s)(w)

(we take into account that G(¢,1) = 0, Vt), and therefore Y can be defined every-
where. We shall assume throughout the paper that the solution is taken in this
pathwise sense. Furthermore, it is not difficult to show that the process Y (t) so
defined is continuous (hence X (t) is a C™~! process) and that, for each t € I, the
mapping w — Y (t)(w) is continuous from C(I) into R™.

Notice that, with the notation introduced in (2.6), the particular lateral condi-
tion (2.2) corresponds to

(0 0 - 0 3TN oy ]
0 0 - 0 ZT:l agjétj

dF = | . . ... . . , (2.11)
[0 0 -+ 0 T anby |

where 6; denotes Dirac measure at t, and Jy(t) = >0, ;@ (t;). Notice also
that only the first column of G(t, s) is relevant in (2.10).

Example: Nualart and Pardoux [7] studied the following second order SDE with
boundary conditions:

2X(t) + f(DX (), X(®) = W) , tel

X(O) = , X(l) = C9

(2.12)

In Proposition 1.5 of [7] the authors prove directly that in case f is an affine function
f(z,y) = a1z + apy + b, (2.12) admits a unique solution if

/01 (exp [(s - I)AD21 (aps +a1) ds#1 (2.13)

where the subindex 21 means taking the entry of second row and first column.
This condition is in fact a particular case of (H) and therefore is also neces-
sary. Indeed, with the formalism of (2.6), we have that the boundary condition

corresponds to
10 b
iF = [0 61]




SDEFEs with Lateral Conditions 163

Recall that if the matrices A(¢) and fOt A(s) ds commute for every t, then the
fundamental solution ®°(¢) is given by exp{— fOt A(s) ds}. This is the case when
A(t) is constant. By (H), we have that (2.12) admits a unique solution if and
only if (exp[—A])y; # 0. Noticing that D (exp[—At])y; = (exp[—At]);; and that
D (exp[—At]);; = — a1 (exp[—At]);; — ag (exp[—At])s;, it is easy to prove that the
integral in (2.13) is equal to 1 — (exp[—A]),;.

3 A Markov-type property

In the study of boundary value stochastic problems, the authors have examined
which conditions on the coefficients of the equation make the solution process sat-
isfy some suitably defined Markov-type property. Intuition suggests that a relation
h(Xo,X1) = 0 will possibly prevent the Markov process property from holding in
general. One might think that nevertheless the Markov field property, which can be
defined as follows, will be satisfied. It is easy to see that any Markov process is a
Markov field. The converse is not true in general.

Definition 3.1. A continuous process {Xi,t € I} 1is said to be a Markov field
if forany 0 <a<b< 1, theo-fields o{Xy,t € [a,b]} and o{X:,t € [0,a] U [b,1]}
are conditionally independent given o{X,, Xp}.

However, even this weaker property holds only in special cases. For instance, in
[1] it was shown that the solution to

DX(t)=b(X(t)+o(XE) o W(t) , tel
(3.1)

is a Markov field if and only if (essentially) b(z) = Ao(x) + Ba(m)/ ——%t—)— dt, for
c O

some constants A, B, c. As a corollary, in case o is a constant (additive noise), X is
a Markov field if and only if b is an affine function.

What can we say in such linear—additive cases when the additional condition
takes into account the value of the solution in some interior points of the time
interval? The following simple example illustrates how the situation may change.

Example: Consider the first order SDE with a lateral condition

DX(t) = W) , tel
(3.2)
XH+x1) =0

The solution is the process

Xt)y==-3sWE)+WQL)+W() ,
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which is not a Markov field. Indeed, fora =0 and b = %,
and X (1) are not conditionally independent given o{X(

is a Markov field when restricted to [0, 3] or [$,1].

2

the random variables X (1)
a), X (b)}. Nevertheless, X

<

We will write in the sequel

Fl_lgj_]-'g

to mean that the o-fields F; and F» are conditionally independent given the o-field
g.

In the present section we are going to prove for our equation (2.3)-(2.2) the
following property:

(P) If [a,b]N{t1,...,tm} =0, then

o{Y (t),t € [a,b]} a{y@i)l:m)} o{Y (t),t €la, b} (3.3)

except maybe for some singular pairs (a,b) € I%, a < b (see Assumption (A) below).
It is easily seen that (P) is satisfied by the solution to (3.2), for all a,b € I.

To prove that the solution of (2.3)-(2.2) satisfies property (P), we shall use a
multidimensional version of Theorem 2.1 in [1] on the characterization of conditional
independence in terms of a factorization property. This version was stated in [4],
and we recall it here.

Let (2, F, P) be a probability space and F; and F; two independent sub-o-fields
of F. Consider two functions g7 : JR% x Q — JR? and go : R x Q — IR? such that
g; is B(IR%) @ Fi—measurable, i = 1,2. Set B(e) := {z € R%, |z| < €}, and denote
by A the Lebesgue measure on IR%. Let us introduce the following hypotheses:

(H1) There exists go > 0 such that for almost all w € Q, and for any [£] < eo,
|| < eo the system

T -— gl(yaw) = 5
(3.4)
y—go(z,w) =7

has a unique solution (z,y) € R??,

(H2) For every z € IR® and y € IR?, the random vectors g1(y, -) and gz(z, -) possess
absolutely continuous distributions and the function

6(z,y) = sup mP{|z-—vgl<y>l<e,|y——gz<x>a<s}

O<e<eg

is locally integrable in IR??, for some o > 0.
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(H3) For almost all w € @, the functions y — g1(y,w) and z +— go(z,w) are
continuously differentiable and

sup
ly—g2(z.w)|<eo
lz—g1(y,w)l<eo

det [Id — Va1 (y,w) Vgg(w,w)} '_1 e L' Q)

for some g¢ > 0, where Vg; denotes the Jacobian matrix of g; with respect
to the first argument.

Notice that hypothesis (H1) implies the existence of two random vectors X and
Y determined by the system

X(w) = g1(Y(w),w)
(3.5)
Y (w) = ga(X (w),w)

Theorem 3.1.  Suppose the functions g1 and go satisfy the above hypotheses (H1)
to (H3). Then the following statements are equivalent:

(i) F1 and Fa are conditionally independent given the random vectors X, Y.

(ii) There exist two functions F; : R x Q) — IR, i = 1,2, which are B(IR*) ® F;-
measurable, such that

tdet [Id —Vagi(Y) ng(‘X)] 1 — F(X,Y,0)F(X,Y,w) , as.

To apply Theorem 3.1 in proving a conditional independence with respect to
o{Y (a), Y (b)}, we will split (Y (a),Y (b)) into two vectors T and T? of the same
dimension (vectors X,Y in Theorem 3.1) in such a way that T’ 2 is determined by T
and the increments of the Wiener process W in [a,b], and in turn T is determined
by T2 and the increments of W in ]a, b[® (functions g1 and g, above).

In general it is not true that the lateral value problems that should define g,
and g, are well-posed. We will plainly exclude those points a,b which fail to have a
unique solution. Specifically:

(A) Suppose 0 <1 < ... <tp<a<b<ign < .. < tm <1 andlet £ and p be
the number of lateral conditions that do not involve points in [b, 1] and [0, a],
respectively, i.e.

E:#{z’:tj>b:>aij20} ;
(3.6)
pz#{i:tj<a:>aij=0}

Consider the following sets of lateral conditions:
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a)
E(b) =0 > 7':17 ,TL"'F
, on[a,b];
Yifa) =0 , i=n—-£+1,...,n
b)
Y;((L) =0, i1=1, yn—1~
k , onl0,a];
Zaijyn(tg) =0 , =1, N4
j=1
c)
(Yib) =0 , i=n~£f+1,...,n
m
Z Ozinn(tj) =0 , 2=n—p+1,...,n
J=k+1
, on [b1],

\Yn(tJ)ZO 3 j:]_,...,k

(notice that the third and fourth lines result in n — p — £ equations not
involving points in [0, a]).

We will assume that L[X] = 0 with conditions a), b) or c¢) has a unique
solution. In this situation, we will say that the couple a, b satisfies Assumption

(A).
We shall use in the proof of the next theorem the following known result:

Lemma 3.1.  Let F1,7,,G, Fi, Fy be o-fields such that F; C F1V G and Fj C
FoVG. Then,

fl_lgl_ Fo = F JgLf—g
We are now ready to prove the following

Theorem 3.2.  Under (H), the solution Y = {Y'(t), t € I} of (2.8)-(2.2) satisfies
the conditional independence property (P), for a,b € I verifying Assumption (A).

Proof of Theorem 3.2:  Let us define the o-fields
]T;,b = O"{Wt - Wa,t - [U,,b]}

Fey=0o{Wyte0,a]} Vo{W, — Wit e b1]}

fo

tt

al

Q N =g
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for 0 <a < b<1. Notice that F;’b and F;)b are independent.
We shall divide the proof into several steps.

Step 1  Denote Gop = 0{Y (a),Y(0)}. If
FavglFop (37)
a,b

then (8.83) holds.
Proof of Step I: It is immediate to prove that o{Y'(¢), t € [a,b]} C Gap V F2,,
and o{Y (t), t € |a,b[°} C Gap V F;,. We apply then Lemma 3.1.

o
From now on we shall assume that [a, b] C I is fixed and such that [a, b])N{t1,... ,tm} =
0, and that Assumption (A) is satisfied by a,b. Our goal is to prove (3.7).

Step 2 Let ¢ and p be as in (3.6). Denote by Y the solution to (2.3)-(2.2), and
define

Tl = (i}l(b), BN ,?n—l(b)a ?ﬂ—E"rl(a)) s 7?N(a)) )

T2 = (171(@), o Vos(@), Vg (), - .. ,?n(b))

Then, there ezist two functions g1,g2 : IR™ X {2 — IR", measurable with respect to
B(IR™) ® F., and B(IR™) ® F¢, respectively, and such that

T2 = g(Thw) and T' = g(T%w) . (3.8)
Proof of Step 2:  Consider equation (2.3) with the boundary conditions

(3.9)
Yife) = T} , i=n—{+1,...,n

on [a,b]. The process Y trivially satisfies (2.3)-(3.9) on [a,b]. By the uniqueness
Assumption (A), the vector T? is determined by T' and the increments of the
Wiener process in [a, b].

Moreover, the function g; (y,w) so defined has a sense for every y € IR", because
we have that the solution to (2.3)-(3.9) is unique, and this fact does not depend on
the particular right-hand sides (see (H)).

We want to prove analogously the existence of a function gy defined by the
solution to (2.3) on |a,b[® with a different set of lateral conditions. Suppose that
0< - <tp<a<b<tgr; <---<1. Consider first (2.3) on [0, a] with conditions

Yifa) = T? , i=1,...,n—¢

1

k (3.10)
Z Q5 Yn(tj) = C; izl,... ,f
Jj=1
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The restriction to [0, a] of the solution ¥ to (2.3)-(2.2) solves (2.3)-(3.10). Consider
now the problem (2.3) on [b, 1], with conditions

V;(b) = T2 , i=n—L+1,...,n
m (3.11)
Z aij Yo(t;) = ¢ , i=n—-p+1,...,n
j=k+1
and the n — p — £ equations on [b, 1] that result from

m

ZQinn(tj) =¢ , 1=£+1...,n—p
j=1 (3.12)

Yn(tj) = {fn(tj) , J=1,. ak

Again, Y restricted to [b,1] is its unique solution. Therefore, T! is determined by
T? and the increments of the Wiener process W in la,b[¢. As before, the function
g2(z,w) so defined has a sense for all z € IR™.

o

Step 3  The functions g1 and gy above satisfy (H.1).

Proof of Step 8 The solution to a linear differential equation depends linearly on
the lateral data c (see (2.10)). Therefore, for each w fixed, the system (3.8) is linear
and it is enough to check that it has a unique solution for £ = n = 0.

By arguments similar to those of Step 2, a point

(11(0), -, Yn—e(b), Yn—r41(a), . .. ,yn(a)) € R"
determines through g, a sample path on [a, b] and, in particular, the point
(y1(a),- - s yn—e(a), Yn-e41(0), ... , yn(b))
This point in turn determines through g, a sample path on ]a,b[® and a point
@10); - Tne(6), Tne41(a), - ,Tn(a))
which coincides with

(yl(b)v ooy Yn—e(b), Yn—r+1(a),- .., yn(a))

Hence, the resulting sample path on [0,1] is continuous and satisfies (2.3)-(2.2).
Therefore, there can be only one solution (77, 7%) to (3.8). The existence is obvious.
o

Step 4 g1 and g2 satisfy (H.2)
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Proof of Step 4: As a preliminary result, we will see that for an initial value
problem

DY () + AQ)Y(t) = B(t) , tel

Y(0) = ¢ ,

the random vector Y (t) (¢t > 0) is absolutely continuous with respect to Lebesgue
measure on IR™. Indeed, in this case

t ®5,(0) dW;
v = @] jer [ |
@;1(0) dWs

and it is enough to prove the absolute continuity of

</0t 51(o>dws,...,/0t ;1(0)dws>

Suppose this is not true. Since the vector is centered Gaussian, its law will be
supported by a linear subspace of dimension less than n. This means that for some

coeflicients by, ... , bn, not all of them equal to zero,
n ¢
> b / £(0) dW, = 0
1=1 0
which implies
n
D b ®5(0) =0 , Vse[0,4] . (3.13)
i=1
Differentiating (3.13), we get
n
b, D®3(0) =0 , Vselo,d . (3.14)
i=1
On the other hand, since ®(0) = [®°(s)]™!, we have
D®*(0) = —[®%(s)]7 D®°(s) [8°(s)]"! = @°(0) A(s) (3.15)

where A is the matrix defined in (2.4). From (3.15), (3.14) and (3.13), we obtain
that

(o) 1
-1
n n O
(0,3 bs 3(0), .. Zl b 05,0)) | =0,
i=1 i=
L 0]
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from which

i bi 35(0) = 0 , Vselod . (3.16)

=1

Differentiating now (3.16), and using again (3.15), we also get that
n
> b ®H(0) =0 , Vse[o,
i=1

Recursively, we arrive to
(b1,...,by) ®°(0) = (0,...,0) ,

which implies that ®°(0) is singular, a contradiction. For an initial value condition
Y (to) = ¢, a similar proof shows that Y (t) is absolutely continuous for all ¢ # £;.

We consider now the boundary value problem that defines g;: Equation (2.3) on
[a,b] with T! = (y1,...,yn) fixed. We want to see that

T? = (Yi(a),. .., Yn-2(a), Yn_rs1(b), ..., Yn(b))

is an absolutely continuous random vector. We reason by contradiction. Suppose
there is a point z € IR™ and a ball B.(z) of radius £ centered at z such that

P{(Yi(a),...,Yn-r(a), Yn_g41(b),...,Yn(b)) € Be(2)} =0
(3.17)

For any initial condition at a point a €]a, b[, we know that we can find wy € C (I)
such that

Y(a)(wo) = (Z1,-- - Zn—t, In—t+1s-- - 9n) € Bp(21, -+, Zn—t, Yn—t41+- - - 1 Yn)
and
Y (b)(wo) = (15 -+ s Tn—ty Zn—tt1s-- -1 Zn) € Byly1, - Yn—t, Zn—t41,-- -, Zn)
for any n > 0. This implies that with the boundary condition
(Y1(b), .-, Ya—e(b), Ya—rs1(a), .., Yn(a)) = (31, - -, ¥n)
and taking n < %, we get
(Yi(a), ..., Yn_e(a),Yn_pr1(0),..., Yo (b)) (wo) = (Z1,. .., Zn) € Be(2)

Taking into account the continuity of the solutions with respect to the boundary
data, starting with

(Yl(b)>°'-7Yn~2(b):Yn—€+l(a>7~~':Yn(a)) = (y1,- --ayn) )
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and for n small enough, we obtain also

(Yi(a), -, Ya_o(a), Yooeq1(B), - - -, Ya(B)) (wo) € Be(2)

This fact contradicts (3.17), due to the continuity of w — Y'(¢)(w).
For the function g a similar proof can be given: We consider equation (2.3) on
la, b[¢ with T2 = (y1,...,yn) fixed. Assume

P{ (Y1<b)7 co 7Yn——£(b)a Yn—Z-{—l(a)» v >Yn(a)> € Be(z)} =0
(3.18)

For any initial conditions at o €]tg, a[ and § €]b, tg41[, there exists wg € C(I) such
that solving (2.3) in [, a] and [b, 3], we get

Y(a)(wo) = (gl, ey Un—ty Zn—f4+1, - - -y Zn) & Bn(yl, oy Yn—y Zn—ft1y - Zn)

and

Y(b)(wﬂ) - (217 ey Zp—t) gn~£+l) R Zjn) € Bn(zla sy Zn—by Yn—L4+15 - - - >Z/n) )

for any n > 0, and we can finish as for the case of g;.

Finally, the random vectors = — g1 (y,w) and y — ga(z,w) are independent and
have the form z — M1y + Z1(w) and y — Myz + Z3(w) respectively, for some matrices
- M; and M, and some Gaussian absolutely continuous vectors Z; and Z3. We deduce

“that the IR?"-valued random vector (z — g1 (¥, w), y — g2(z,w)) has a density which is
uniformly bounded in z and y. It follows at once that the function é(z,y) in (H2)
is locally bounded.

o

Step 5 g1 and go satisfy (H.3). Precisely,
det [1d = Vg1 (y, w) Vga(a,w)|

is a constant different from zero.
Proof of Step & g1 and go are affine functions of the first argument, with a
non-random linear coefficient (see (2.10)). Therefore, Vg;(y,w) and Vgy(z,w) are
constant matrices, which we denote Vg; and Vgyo. We have seen that the linear
system

z = g1(y,w)

y = g2(z,w)

admits a unique solution. This is equivalent to

— Id -Vg
det [1d — Vg1 Vga| = det <_v92 o ) £ 0
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Conclusion =~ We can apply Theorem 3.1 and the factorization in (ii) trivially
holds. We deduce the relation (3.7) and, by Step 1, that the process

{y(t) — (D™IX (1), ..., X(1) : te 1}

verifies property (P), for a,b € I satisfying Assumption (A).
o

Remark 3.1. We conceive the result of Theorem 8.2 as a first step towards the
analysis of the Markov-type properties of linear SDE subject to a general lateral
condition A[X] = &, with A a linear functional on C™ ! and a possibly random
datum . In this sense it should be pointed out that Theorem 8.2 is still not optimal.
For instance, consider the trivial problem

DX (t) = W(t)
(3.19)
X3 =0

The solution X (t) = =W (L) -+ W(t) is in fact a Markov field. Even more, it is a
Markov process.

A study of the form that must have the operator A to turn the solution of L[X] =
W into a Markov process has been carried out by Russek [9].
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