Efficient programming with R:
Some tips to reduce time in computer intensive
programs

Josep A.Sanchez-Espigares

Dept. Statistics and Operational Research
UPC- BarcelonaTech

Jornades de Consultoria Estadistica i Software - 2011

CosmoCaixa Barcelona, Setember 26-28th, 2011 ooy

J.A.Sanchez-Espigares Efficient R

Outline

@ Motivation
@ Programming with R
e use fast instructions

J.A.Sanchez-Espigares Efficient R

Outline

@ Motivation
@ Programming with R

e use fast instructions
@ Adding Compiled Code

e avoid interpretation for recurrent processes

J.A.Sanchez-Espigares Efficient R

Outline

Motivation

Programming with R

e use fast instructions
Adding Compiled Code

e avoid interpretation for recurrent processes
Taking full advantage of hardware

e parallelization and GPUs

J.A.Sanchez-Espigares Efficient R

Outline

Motivation

Programming with R
e use fast instructions
Adding Compiled Code

e avoid interpretation for recurrent processes

Taking full advantage of hardware
e parallelization and GPUs

@ Conclusions

J.A.Sanchez-Espigares Efficient R

Improvement in processor speed and memory capacity

Transistor count

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

2,600,000,000
1,000,000,000 4

100,000,000 -

10,000,000+

1,000,000 -

100,000

10,000 4

2,300-

16-Cees SRR T

Stwon Core 17,

DuakCorn farium 28
i

PO
MHarnum 2 wih M8 cacho®

s e g,

FOVE]

", " SxGore Optaron 2600
‘Cora 7 {Gad}

Mo koow
wnemze /BE O
&m0k
Fonieem g’ *E e
(i
curve shows transistor AMD K5
count doubling every gfmf";f,pw "
o years waunES
& Puriium
sise,
awaove,
wzmee
w0 LTHES
oo e wéoes
aous;
oy eam
e, | @z
r T T T
1971 1980 1990 2000 2011

Date of introduction

ez-Espigares Efficient R

A combinatorial problem: Distances in a grid

@ nx n Grid

@ Two points randomly
Selected L] L] L] L] L] L] L] L] L] L]

@ Euclidean distance e s e e e
between the two points e+ s e e e e s e

@ Which is its expected e e e e e e e e e
value?

@ Combinatorial problem: e
solve numerically as a L
function of n s s s s s s e s s

J.A.Sanchez-Espigares Efficient R

A combinatorial problem: Distances in a grid

((3,5),(9.6))=y(3- 9)%+ (5-6)*=6.08

@ n x n Grid

@ Two points randomly
Selected L] L] L] L] L] L] L] L] L] L]

@ Euclidean distance e s e e e
between the two points . s .

@ Which is its expected . . .
value?

@ Combinatorial problem: e
solve numerically as a A
function of n e s s s e e s e e

J.A.Sanchez-Espigares Efficient R

A combinatorial problem: Distances in a grid

O{(2,10),(8,3))=y(2- 8%+ (10-3)F=9.22

n x n Grid

(]

Two points randomly
selected

Euclidean distance .
between the two points .

Which is its expected
value?

@ Combinatorial problem:

solve numerically as a ’ ’
function of n e s e e e e e e e
L] L] L] L] L] L] L] L] L] L]

J.A.Sanchez-Espigares Efficient R

A combinatorial problem: Distances in a grid

(]

n x n Grid

Two points randomly
selected

Euclidean distance .
between the two points .
Which is its expected
value?

Combinatorial problem:
solve numerically as a ’
function of n .

J.A.Sénchez-Espigares

d((2,3),(5,2))=(2-)%+ (3-2)=3.16

. . » .
. . » » .
Efficient R

Distances in a grid

For each (x1,y1), (x2,y2) € {1:n} x {1:n}
calculate d((x1,y1), (x2,y2)) = /(31 — x2)2 + (y1 — y2)?
average all those quantities

Analytical Solution:

P =1 D=1 D=1 2y V(0 = 0)? + (11 — y0)?

n

E(d) =

J.A.Sanchez-Espigares Efficient R

Programming with R

First approach with R

Four loops and dynamic memory growth

f1 = function(n) {
d = NULL # No elements in d
for (x1 in 1:n) {
for (y1 in 1:n) {
for (x2 in 1:n) {
for (y2 in 1:n) { # Adding a value each step
d = c(d, sqrt((x1 - x2)°2 + (y1 - y2)°2))
}
}
}
}
return(mean(d))

}

Very slow, mainly because of the memory management

J.A.Sanchez-Espigares Efficient R

Programming with R

Second approach with R

Four loops and static memory management

f2 = function(n) {
d = rep(0, n"4) # Initialize d with zeroes
k=0

for (x1 in 1:n) {
for (y1 in 1:n) {
for (x2 in 1:n) {
for (y2 in 1:n) { #Assign value to position k
d[k <- k + 1] = sqrt((xl - x2)°2 + (y1 - y2)°2)
}
}
}
}
return(mean(d))

}
Faster, less memory fragmentation

J.A.Sanchez-Espigares Efficient R

Programming with R

Performance of £1 and £2

> system.time(print (£1(10)))

[1] 5.186872
user system elapsed
0.24 0.00 0.23

> system.time(print (£2(10)))

[1] 5.186872
user system elapsed
0.08 0.00 0.08

@ user: time for user instructions of the calling process
@ system: time for execution by the system

@ elapsed: Total R process time (seconds)

J.A.Sanchez-Espigares Efficient R

Programming with R

formance of £1 and f2

Elapsed time: f1 vs f2

o]
<
B fl-dynamic
W f2-static
30.09
8 0
1
!
1
[
) 1
g o U
8 N 1
2 1653
id
/7
7
1
S 078
’
520"
%
2.94
161 -
002 003 004 014 025 0:7 086, ot
{092 -t o oo
© 78 To%i 0%3 o%5 o 01 01z 017 095 033 042 053 067
T T T T T T T
6 8 10 12 14 16 18
n
Espigares Efficient R

It's better to reserve
memory in advance!

Programming with R

Third approach with R

Avoiding loops by using vectorization

f3 = function(n){
making all combinations!
combi = expand.grid(l:n,1:n,1:n,1:n)

operations by columns
d = sqrt((combil,1]-combil,3]) 2+(combil,2]-combil,4])"2)

return(mean(d))

}

Even faster, no loops!

J.A.Sanchez-Espigares Efficient R

Programming with R

Performance of £2 and £3

Elapsed time: f2 vs f3

o
°
B f2-loops
I f3-vectorization
«© _]
° 0.67
© 054,
o 7 ’
;
5 . . .
8 o, Vectorial arithmetic is
o ’
3 < 032 o
g 3 . faster than loops!
025 7
,
018 -
~ 0.13 e
S 06 0% e
003 004 % o
0.01 0.02 o
-7 -
2 =823 oo -e-o-—--c """ "
0.04
o 0 o 0 o0 00l 00l 001 001 002 00300

T T T T T T T
6 8 10 12 14 16 18

Espigares Efficient R

Programming with R

Fourth approach with R

Using specialized functions

f4=function(n){
Outer product of arrays with subtract function
and square
val=outer(1:n,1:n,"-")"2
val2=outer(1:n,1:n,"-")"2

Outer product of resulting arrays with add function
and square root
d=sqrt (outer(val,val2,"+"))

return(mean(d))

}
The fastest with efficient primitives (apply-like functions)!

J.A.Sanchez-Espigares Efficient R

Programming with R

formance of £3 and f4

Elapsed time: f3 vs f4

o
S
o
B f3-vectorization
W f4-outer product
©
3 |
=
©
8 |
o 0047 . L
-] SpeC|f|c prImItIVGS are
S 14
S = 0032, . .
3 S ; implemented efficiently!
0023 5
0018/
8 | 0012 _* .
3 00050 L v
010,001 0.0020.0020.0030-0047 e’ o 0.02%
-~
e -2l g 0.015
S leg=s=9====8-°"" 00s”01
= X
0.005
o 0 000100010001000200030.004
T T T T T T T
6 8 10 12 14 16 18

Espigares Efficient R

Programming with R

Comparing all variations

replications per second

40 60 80 100 120 140

20

Comparaison of four apporaches

f1-dynamic

f2—static+loops
f3-vectorization
f4—-outer product

[,

n

J.A.Sénchez-Espigares

Efficient R

There are options in R
to do things faster in
an easy way!

Programming with R

Im vs. Im. fit

Computer intensive methods

@ Monte Carlo simulation
Bootstrap
Cross-validation
MCMC

@ Unnecessary instructions penalize computing time.

@ 1m function has an interface from a formula and generate the
model matrix to solve the normal equations by calling 1m.fit

J.A.Sanchez-Espigares Efficient R

Programming with R

Parametric Bootstrap: Im vs. Im fit

n=100; p=5; beta=1:(p+1); s=3
X=cbind(rep(1,n) ,matrix(runif (p*n) ,nc=p))

linear model fit with formula interface
Iml = function(k){

Y = X\%*\%betat+rnorm(n,sd=s)

coef (Im(Y"X-1))

}
system.time(resl<-apply(matrix(seq(2000)),1,1m1))

linear model fit on matrices
1m2 = function(k){
Y = X\V%x*\%betatrnorm(n,sd=s)
coef (Im.fit (X,Y))
}
system.time (res2<-apply(matrix(seq(2000)),1,1m2))

J.A.Sanchez-Espigares Efficient R

Programming with R

Parametric Bootstrap: Im vs. Im fit

Elapsed time: Im vs Im.fit

© -
H |Im
B Imfit
w
4.25
»
] 378, 7
P g
33g -
@ 208 -~ -
i ’ |
£ 26. - Im_fit avoid unnecessary
g -
8 213 < : .
] g instructions!
1.66,
1@,’
= 0.34,,"’
a
01~ R
o s T T g5 053 O
f - ST % 03 04 045
° 0;7 011 o017 024 0.28
— _]
|
T . ‘ ‘ |
200 400 600 800 1000

A.Sanchez-Espigares Efficient R

Adding Compiled Code

Compiled Code in R

Beyond smarter code the most direct speed gain comes from
switching to compiled code.

@ compiler: Transform into byte code

@ inline: Automated wrapping of single expression

@ Rcpp: Interface between R and C++

e External Fortran/C/C++: Dynamic linking

J.A.Sanchez-Espigares Efficient R

Adding Compiled Code

Package compiler

compiler(Luke Tierney): byte code compiler for R
library(compiler)
f2 = function(n) {
d = rep(0, n"4) # Initialize d with zeroes
k=0
for (x1 in 1:n) {
for (y1 in 1:n) {
for (x2 in 1:n) {
for (y2 in 1:n) { #Assign value to position k
dlk <- k + 1] = sqrt((xl - x2)°2 + (y1 - y2)~2)
}
}
}
}
return(mean(d))
}
f2c=cmpfun(£2)

J.A.Sanchez-Espigares Efficient R

Adding Compiled Code

Performance of £2 and f2c

Elapsed time: 2 vs f2c

e
=]
W f2-loops
@ f2c-Compiled
@ |
) 0.67
3 054,
< ’
/
g 042 »
H 7’
g ’
8 3+ 033 ¢
& o]
025
.
018 -
o
N 013 -
e 007 090 e .
0.04 _ .
0.01 002 003 - .
et -7 0.18
o e 015
O |eg=g=32"%---* o
° 0.09
004 005 007
0o o 001 001 002 0037
T T T . ‘ ‘ ‘
6 8 10 12 14 16 18

n

Compiled Byte Code
outperforms interpreted
code!

A.Sanchez-Espigares Efficient R

Adding Compiled Code

Package inline

inline(Oleg Sklyar et al): can wrap Fortran, C or C++ code

library(inline)
code <- "SEXP m;
float s = 0;
int nt=*INTEGER(n)+1;
for (int a = 1; a < nt; a++)
for (int b = 1; b < nt; b++)
for (int ¢ = 1; ¢ < nt; c++)
for (int d = 1; d < nt; d++)
s += sqrt((a-c)*(a-c)+(b-d)*(b-d));
*REAL(m)=s/(n"4) ;
return(m) ;"

f2i <- cfunction(sig=signature(n="integer"), body= code)

J.A.Sanchez-Espigares Efficient R

Adding Compiled Code

Rcpp / External Code

@ Exposing C++ functionality to R is facilitated by the Rcpp
package (Eddelbuettel and Frangois)
o Explicit constructor/destructor lifecycle of objects
e Rcpp classes to avoid managing memory directly

o Data interchange R/C++ is managed by powerful yet simple
mechanisms

@ With external code, it is important to coerce all the
arguments to the correct R storage

e .Cand .Fortran: older and simpler
e .Call and .External: less restrictive

J.A.Sanchez-Espigares Efficient R

Taking Full Advantage of Hardware

Parallelization of processes

By default...

@ ...R use only one core
@ ...R reads data into memory

Parallelism: running several computations at the same time, taking
advantage of multiple cores or CPUs

| registevsl | stack |

[regsirs | egotes | reoses |

thread — g g g ? *—— fthread

single-threaded multithreaded

J.A.Sanchez-Espigares Efficient R

Taking Full Advantage of Hardware

Types of parallelization

Implicit parallelism
@ Set up and distributing data is done by the system.

@ It is simpler but there is lack of control in the parallel features

Explicit parallelism

@ User controls the cluster settings.

@ It requires the user to know the specificities of the
implementation

J.A.Sanchez-Espigares Efficient R

Taking Full Advantage of Hardware

Implicit parallelization: some R Packages

@ multicore: locally running parallel computations in R on
machines with multiple cores or CPU

o pnmath and pnmathO: parallel implementation of math
functions

o fork: wrappers around the Unix process management API
calls

Only Unix versions. Not working properly on Window
platforms

J.A.Sanchez-Espigares Efficient R

Taking Full Advantage of Hardware

Explicit parallelization: Package snow

snow (Simple Network Of Workstations)

Provides an interface to several parallelization packages:

MPI: Message Passing Interface, via Rmpi
o NWS: NetWork Spaces via nws

o PVM: Parallel Virtual Machine
°

Sockets via the operating system

They allow intrasystem communication (multiple CPUs), or
intersystem communication (cluster)
snowfall: Wrapper for snow with an easier interface

J.A.Sanchez-Espigares Efficient R

Taking Full Advantage of Hardware

Package snow. Main functions

@ makeCluster sets up the cluster and initializes its use

@ clusterCall calls a specified function with identical
arguments on each node in the cluster

o clusterApply takes a cluster, arguments and a function and
calls it with the first element of the list on first node, second
element on second node...

@ clusterApplyLB same as above, with load balancing

@ parCapply, parRapply, parLapply, parSapply parallel
versions of column apply, row apply and the other apply
variants

J.A.Sanchez-Espigares Efficient R

Taking Full Advantage of Hardware

Parallelization: Example

Iterating the mean grid distance problem
@ Repeat 20 times calculation of the mean distance in a 10 x 10
grid
@ Record time for each iteration and total time for the whole
process

One thread: by default

(tl <- system.time(pl <- unlist(lapply(rep(10,20),
function(el) system.time(f2(el)) ["elapsed"]))))

J.A.Sanchez-Espigares Efficient R

Taking Full Advantage of Hardware

Package snow and snowfall

Two Threads: create a cluster with 2 sockets
library (snow)
cl<-makeCluster (2, "SOCK")
clusterExport(cl,"f2")
(t2<- system.time(p2<- parSapply(cl, rep(10,20),
FUN=function(el) system.time(f2(el)) ["elapsed"])))
stopCluster(cl)

library(snowfall)

sfInit(parallel=TRUE, cpus=2, type="SOCK")

sfExport ("£2")

(t3<- system.time(p3 <- sfLapply(rep(10,20),
function(el) system.time(f2(el)) ["elapsed"])))

sfStop()

J.A.Sanchez-Espigares Efficient R

Taking Full Advantage of Hardware

Performance one vs. two threads

Parcial times for each of the 20 iterations and total time

1 2 3 4 5 6 7
One thread 0.13 0.13 0.13 0.11 0.10 0.11 0.13
Two threads 0.11 0.11 0.11 0.11 0.11 0.11 0.12

8 9 10 11 12 13 14
One thread 0.11 0.11 0.11 0.11 0.11 0.11 0.13
Two threads 0.12 0.11 0.12 0.11 0.12 0.12 0.12

15 16 17 18 19 20 | TOTAL
One thread 0.11 0.10 0.11 0.13 0.11 0.11 2.72
Two threads 0.12 0.12 0.11 0.11 0.12 0.11 1.44

J.A.Sanchez-Espigares Efficient R

Taking Full Advantage of Hardware

Explicit parallelization

@ Sometimes, parallelization of a process can be slower than a
serial approach...

@ Setting up slaves, copying data and code can be very costly

General Rule

"Only parallelize with a certain method if the cost of computation
is (much) greater than the cost of setting up the framework.”

J.A.Sanchez-Espigares Efficient R

Taking Full Advantage of Hardware

Computing on GPUs (Graphics Programming Units): hardware
acceleration
@ GPUs are hardware that is optimised for I/O and floating
point operations
@ Much faster code execution than standard CPUs on
floating-point operations
@ Development environments:
o Nvidia CUDA (Compute Unified Device Architecture)
Provides C-like programming

e OpenCL (Open Computing Language)provides a
vendor-independent interface to GPU hardware

J.A.Sanchez-Espigares Efficient R

Conclusions

Conclusions

@ Many statistical analysis tasks are computationally very
intensive

@ R has enhanced its efficiency by including vectorization or
specific primitives

@ With computer intensive methods it is important to avoid
unnecessary instructions

@ It is possible to work faster with compiled code

@ Even parallelization and hardware capabilities can speed up
processes

J.A.Sanchez-Espigares Efficient R

Conclusions

Questions?

Thank you!

J.A.Sanchez-Espigares Efficient R

	Programming with R
	Adding Compiled Code
	Taking Full Advantage of Hardware
	Conclusions

