
Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Efficient programming with R:
Some tips to reduce time in computer intensive

programs

Josep A.Sanchez-Espigares

Dept. Statistics and Operational Research
UPC- BarcelonaTech

’

Jornades de Consultoria Estad́ıstica i Software - 2011

CosmoCaixa Barcelona, Setember 26-28th, 2011

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Outline

Motivation

Programming with R

use fast instructions

Adding Compiled Code

avoid interpretation for recurrent processes

Taking full advantage of hardware

parallelization and GPUs

Conclusions

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Outline

Motivation

Programming with R

use fast instructions

Adding Compiled Code

avoid interpretation for recurrent processes

Taking full advantage of hardware

parallelization and GPUs

Conclusions

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Outline

Motivation

Programming with R

use fast instructions

Adding Compiled Code

avoid interpretation for recurrent processes

Taking full advantage of hardware

parallelization and GPUs

Conclusions

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Outline

Motivation

Programming with R

use fast instructions

Adding Compiled Code

avoid interpretation for recurrent processes

Taking full advantage of hardware

parallelization and GPUs

Conclusions

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Improvement in processor speed and memory capacity

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

A combinatorial problem: Distances in a grid

n × n Grid

Two points randomly
selected

Euclidean distance
between the two points

Which is its expected
value?

Combinatorial problem:
solve numerically as a
function of n

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

A combinatorial problem: Distances in a grid

n × n Grid

Two points randomly
selected

Euclidean distance
between the two points

Which is its expected
value?

Combinatorial problem:
solve numerically as a
function of n

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

A combinatorial problem: Distances in a grid

n × n Grid

Two points randomly
selected

Euclidean distance
between the two points

Which is its expected
value?

Combinatorial problem:
solve numerically as a
function of n

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

A combinatorial problem: Distances in a grid

n × n Grid

Two points randomly
selected

Euclidean distance
between the two points

Which is its expected
value?

Combinatorial problem:
solve numerically as a
function of n

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Distances in a grid

For each (x1, y1), (x2, y2) ∈ {1 : n} × {1 : n}
calculate d((x1, y1), (x2, y2)) =

√
(x1 − x2)2 + (y1 − y2)2

average all those quantities

Analytical Solution:

E (d) =

∑n
x1=1

∑n
x2=1

∑n
y1=1

∑n
y2=1

√
(x1 − x2)2 + (y1 − y2)2

n4

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

First approach with R

Four loops and dynamic memory growth

f1 = function(n) {

d = NULL # No elements in d

for (x1 in 1:n) {

for (y1 in 1:n) {

for (x2 in 1:n) {

for (y2 in 1:n) { # Adding a value each step

d = c(d, sqrt((x1 - x2)^2 + (y1 - y2)^2))

}

}

}

}

return(mean(d))

}

Very slow, mainly because of the memory management

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Second approach with R

Four loops and static memory management

f2 = function(n) {

d = rep(0, n^4) # Initialize d with zeroes

k = 0

for (x1 in 1:n) {

for (y1 in 1:n) {

for (x2 in 1:n) {

for (y2 in 1:n) { #Assign value to position k

d[k <- k + 1] = sqrt((x1 - x2)^2 + (y1 - y2)^2)

}

}

}

}

return(mean(d))

}

Faster, less memory fragmentation

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Performance of f1 and f2

> system.time(print(f1(10)))

[1] 5.186872

user system elapsed

0.24 0.00 0.23

> system.time(print(f2(10)))

[1] 5.186872

user system elapsed

0.08 0.00 0.08

user: time for user instructions of the calling process

system: time for execution by the system

elapsed: Total R process time (seconds)

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Performance of f1 and f2

● ● ● ● ● ● ●
●

●

●

●

●

●

6 8 10 12 14 16 18

0
10

20
30

40

Elapsed time: f1 vs f2

n

se
co

nd
s

0.02 0.03 0.04 0.14 0.25 0.47 0.86
1.61

2.94

5.22

9.28

16.53

30.09

● ● ● ● ● ● ● ● ● ● ● ● ●

0 0.01 0.03 0.05 0.06 0.1 0.12 0.17 0.25 0.33 0.42 0.53 0.67

f1−dynamic
f2−static

It’s better to reserve
memory in advance!

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Third approach with R

Avoiding loops by using vectorization

f3 = function(n){

making all combinations!

combi = expand.grid(1:n,1:n,1:n,1:n)

operations by columns

d = sqrt((combi[,1]-combi[,3])^2+(combi[,2]-combi[,4])^2)

return(mean(d))

}

Even faster, no loops!

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Performance of f2 and f3

● ● ●
●

●
●

●

●

●

●

●

●

●

6 8 10 12 14 16 18

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Elapsed time: f2 vs f3

n

se
co

nd
s

0.01 0.02 0.03 0.04
0.06

0.09
0.13

0.18

0.25

0.32

0.42

0.54

0.67

● ● ● ● ● ● ● ● ● ● ● ● ●

0 0 0 0 0 0.01 0.01 0.01 0.01 0.02 0.03 0.03 0.04

f2−loops
f3−vectorization

Vectorial arithmetic is
faster than loops!

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Fourth approach with R

Using specialized functions

f4=function(n){

Outer product of arrays with subtract function

and square

val=outer(1:n,1:n,"-")^2

val2=outer(1:n,1:n,"-")^2

Outer product of resulting arrays with add function

and square root

d=sqrt(outer(val,val2,"+"))

return(mean(d))

}

The fastest with efficient primitives (apply-like functions)!

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Performance of f3 and f4

● ● ● ● ● ●
●

●

●

●

●

●

●

6 8 10 12 14 16 18

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Elapsed time: f3 vs f4

n

se
co

nd
s

0.001 0.001 0.002 0.002 0.003 0.004 0.005
0.008

0.012

0.018
0.023

0.032

0.047

● ● ● ● ● ● ● ●
●

●
●

●

●

0 0 0.001 0.001 0.001 0.002 0.003 0.004 0.005
0.008

0.011
0.015

0.025

f3−vectorization
f4−outer product

Specific primitives are
implemented efficiently!

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Comparing all variations

15 16 17 18

f1−dynamic
f2−static+loops
f3−vectorization
f4−outer product

Comparaison of four apporaches

n

re
pl

ic
at

io
ns

 p
er

 s
ec

on
d

0
20

40
60

80
10

0
12

0
14

0

There are options in R
to do things faster in
an easy way!

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

lm vs. lm.fit

Computer intensive methods

Monte Carlo simulation

Bootstrap

Cross-validation

MCMC

...

Unnecessary instructions penalize computing time.

lm function has an interface from a formula and generate the
model matrix to solve the normal equations by calling lm.fit

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Parametric Bootstrap: lm vs. lm.fit

n=100; p=5; beta=1:(p+1); s=3

X=cbind(rep(1,n),matrix(runif(p*n),nc=p))

linear model fit with formula interface

lm1 = function(k){

Y = X\%*\%beta+rnorm(n,sd=s)

coef(lm(Y~X-1))

}

system.time(res1<-apply(matrix(seq(2000)),1,lm1))

linear model fit on matrices

lm2 = function(k){

Y = X\%*\%beta+rnorm(n,sd=s)

coef(lm.fit(X,Y))

}

system.time(res2<-apply(matrix(seq(2000)),1,lm2))

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Parametric Bootstrap: lm vs. lm.fit

●

●

●

●

●

●

●

●

●

●

200 400 600 800 1000

−
1

0
1

2
3

4
5

6

Elapsed time: lm vs lm.fit

B

se
co

nd
s

0.41

0.84

1.23

1.66

2.11

2.6

2.98

3.36

3.78

4.25

● ● ● ● ● ● ● ●
● ●

0.07 0.11 0.17 0.24 0.28 0.35 0.4 0.45 0.53 0.59

lm
lm.fit

lm.fit avoid unnecessary
instructions!

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Compiled Code in R

Beyond smarter code the most direct speed gain comes from
switching to compiled code.

compiler: Transform into byte code

inline: Automated wrapping of single expression

Rcpp: Interface between R and C++

External Fortran/C/C++: Dynamic linking

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Package compiler

compiler(Luke Tierney): byte code compiler for R
library(compiler)

f2 = function(n) {

d = rep(0, n^4) # Initialize d with zeroes

k = 0

for (x1 in 1:n) {

for (y1 in 1:n) {

for (x2 in 1:n) {

for (y2 in 1:n) { #Assign value to position k

d[k <- k + 1] = sqrt((x1 - x2)^2 + (y1 - y2)^2)

}

}

}

}

return(mean(d))

}

f2c=cmpfun(f2)
J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Performance of f2 and f2c

● ● ●
●

●
●

●

●

●

●

●

●

●

6 8 10 12 14 16 18

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Elapsed time: f2 vs f2c

n

se
co

nd
s

0.01 0.02 0.03 0.04
0.07

0.09
0.13

0.18

0.25

0.33

0.42

0.54

0.67

● ● ● ● ● ● ●
●

●
●

●

●

●

0 0 0.01 0.01 0.02 0.03 0.04 0.05 0.07
0.09

0.11
0.15

0.18

f2−loops
f2c−Compiled

Compiled Byte Code
outperforms interpreted
code!

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Package inline

inline(Oleg Sklyar et al): can wrap Fortran, C or C++ code

library(inline)

code <- "SEXP m;

float s = 0;

int nt=*INTEGER(n)+1;

for (int a = 1; a < nt; a++)

for (int b = 1; b < nt; b++)

for (int c = 1; c < nt; c++)

for (int d = 1; d < nt; d++)

s += sqrt((a-c)*(a-c)+(b-d)*(b-d));

*REAL(m)=s/(n^4);

return(m);"

f2i <- cfunction(sig=signature(n="integer"), body= code)

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Rcpp / External Code

Exposing C++ functionality to R is facilitated by the Rcpp

package (Eddelbuettel and François)

Explicit constructor/destructor lifecycle of objects
Rcpp classes to avoid managing memory directly
Data interchange R/C++ is managed by powerful yet simple
mechanisms

With external code, it is important to coerce all the
arguments to the correct R storage

.C and .Fortran: older and simpler

.Call and .External: less restrictive

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Parallelization of processes

By default...

...R use only one core

...R reads data into memory

Parallelism: running several computations at the same time, taking
advantage of multiple cores or CPUs

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Types of parallelization

Implicit parallelism

Set up and distributing data is done by the system.

It is simpler but there is lack of control in the parallel features

Explicit parallelism

User controls the cluster settings.

It requires the user to know the specificities of the
implementation

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Implicit parallelization: some R Packages

multicore: locally running parallel computations in R on
machines with multiple cores or CPU

pnmath and pnmath0: parallel implementation of math
functions

fork: wrappers around the Unix process management API
calls

Only Unix versions. Not working properly on Window
platforms

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Explicit parallelization: Package snow

snow (Simple Network Of Workstations)

Provides an interface to several parallelization packages:

MPI: Message Passing Interface, via Rmpi

NWS: NetWork Spaces via nws

PVM: Parallel Virtual Machine

Sockets via the operating system

They allow intrasystem communication (multiple CPUs), or
intersystem communication (cluster)
snowfall: Wrapper for snow with an easier interface

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Package snow. Main functions

makeCluster sets up the cluster and initializes its use

clusterCall calls a specified function with identical
arguments on each node in the cluster

clusterApply takes a cluster, arguments and a function and
calls it with the first element of the list on first node, second
element on second node...

clusterApplyLB same as above, with load balancing

parCapply, parRapply, parLapply, parSapply parallel
versions of column apply, row apply and the other apply
variants

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Parallelization: Example

Iterating the mean grid distance problem

Repeat 20 times calculation of the mean distance in a 10× 10
grid

Record time for each iteration and total time for the whole
process

One thread: by default

(t1 <- system.time(p1 <- unlist(lapply(rep(10,20),

function(el) system.time(f2(el))["elapsed"]))))

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Package snow and snowfall

Two Threads: create a cluster with 2 sockets

library(snow)

cl<-makeCluster(2, "SOCK")

clusterExport(cl,"f2")

(t2<- system.time(p2<- parSapply(cl, rep(10,20),

FUN=function(el) system.time(f2(el))["elapsed"])))

stopCluster(cl)

library(snowfall)

sfInit(parallel=TRUE, cpus=2, type="SOCK")

sfExport("f2")

(t3<- system.time(p3 <- sfLapply(rep(10,20),

function(el) system.time(f2(el))["elapsed"])))

sfStop()

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Performance one vs. two threads

Parcial times for each of the 20 iterations and total time

1 2 3 4 5 6 7

One thread 0.13 0.13 0.13 0.11 0.10 0.11 0.13
Two threads 0.11 0.11 0.11 0.11 0.11 0.11 0.12

8 9 10 11 12 13 14

One thread 0.11 0.11 0.11 0.11 0.11 0.11 0.13
Two threads 0.12 0.11 0.12 0.11 0.12 0.12 0.12

15 16 17 18 19 20 TOTAL

One thread 0.11 0.10 0.11 0.13 0.11 0.11 2.72
Two threads 0.12 0.12 0.11 0.11 0.12 0.11 1.44

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Explicit parallelization

Sometimes, parallelization of a process can be slower than a
serial approach...

Setting up slaves, copying data and code can be very costly

General Rule

”Only parallelize with a certain method if the cost of computation
is (much) greater than the cost of setting up the framework.”

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

GPU

Computing on GPUs (Graphics Programming Units): hardware
acceleration

GPUs are hardware that is optimised for I/O and floating
point operations

Much faster code execution than standard CPUs on
floating-point operations

Development environments:

Nvidia CUDA (Compute Unified Device Architecture)
Provides C-like programming
OpenCL (Open Computing Language)provides a
vendor-independent interface to GPU hardware

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Conclusions

Many statistical analysis tasks are computationally very
intensive

R has enhanced its efficiency by including vectorization or
specific primitives

With computer intensive methods it is important to avoid
unnecessary instructions

It is possible to work faster with compiled code

Even parallelization and hardware capabilities can speed up
processes

J.A.Sánchez-Espigares Efficient R

Programming with R
Adding Compiled Code

Taking Full Advantage of Hardware
Conclusions

Questions?

Thank you!

J.A.Sánchez-Espigares Efficient R

	Programming with R
	Adding Compiled Code
	Taking Full Advantage of Hardware
	Conclusions

