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Improvement in processor speed and memory capacity

Transistor count

Microprocessor Transistor Counts 1971-2011 & Moore’s Law
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A combinatorial problem: Distances in a grid

@ nx n Grid

@ Two points randomly
Selected L ] L] L] L] L] L ] L] L] L] L ]

@ Euclidean distance e s e e e
between the two points e+ s e e e e s e

@ Which is its expected e e e e e e e e e
value?

@ Combinatorial problem: e
solve numerically as a L
function of n s s s s s s e s s
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A combinatorial problem: Distances in a grid

((3,5),(9.6))=y(3- 9)%+ (5-6)*=6.08

@ n x n Grid

@ Two points randomly
Selected L ] L] L] L] L] L ] L] L] L] L ]

@ Euclidean distance e s e e e
between the two points . s .

@ Which is its expected . . .
value?

@ Combinatorial problem: e
solve numerically as a A
function of n e s s s e e s e e
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A combinatorial problem: Distances in a grid

O{(2,10),(8,3))=y(2- 8%+ (10-3)F=9.22

n x n Grid

(]

Two points randomly
selected

Euclidean distance .
between the two points .

Which is its expected
value?

@ Combinatorial problem:

solve numerically as a ’ ’
function of n e s e e e e e e e
L ] L] L] L] L] L ] L] L] L] L ]
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A combinatorial problem: Distances in a grid

(]

n x n Grid

Two points randomly
selected

Euclidean distance .
between the two points .
Which is its expected
value?

Combinatorial problem:
solve numerically as a ’
function of n .
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d((2,3),(5,2))=(2- )%+ (3-2)=3.16
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Distances in a grid

For each (x1,y1), (x2,y2) € {1:n} x {1:n}
calculate d((x1,y1), (x2,y2)) = /(31 — x2)2 + (y1 — y2)?
average all those quantities

Analytical Solution:

P =1 D=1 D=1 2y V(0 = 0)? + (11 — y0)?

n

E(d) =
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Programming with R

First approach with R

Four loops and dynamic memory growth

f1 = function(n) {
d = NULL # No elements in d
for (x1 in 1:n) {
for (y1 in 1:n) {
for (x2 in 1:n) {
for (y2 in 1:n) { # Adding a value each step
d = c(d, sqrt((x1 - x2)°2 + (y1 - y2)°2))
}
}
}
}
return(mean(d))

}

Very slow, mainly because of the memory management
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Programming with R

Second approach with R

Four loops and static memory management

f2 = function(n) {
d = rep(0, n"4) # Initialize d with zeroes
k=0

for (x1 in 1:n) {
for (y1 in 1:n) {
for (x2 in 1:n) {
for (y2 in 1:n) { #Assign value to position k
d[k <- k + 1] = sqrt((xl - x2)°2 + (y1 - y2)°2)
}
}
}
}
return(mean(d))

}
Faster, less memory fragmentation
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Programming with R

Performance of £1 and £2

> system.time(print (£1(10)))

[1] 5.186872
user system elapsed
0.24 0.00 0.23

> system.time(print (£2(10)))

[1] 5.186872
user system elapsed
0.08 0.00 0.08

@ user: time for user instructions of the calling process
@ system: time for execution by the system

@ elapsed: Total R process time (seconds)
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Programming with R

formance of £1 and f2

Elapsed time: f1 vs f2
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It's better to reserve
memory in advance!



Programming with R

Third approach with R

Avoiding loops by using vectorization

f3 = function(n){
# making all combinations!
combi = expand.grid(l:n,1:n,1:n,1:n)

# operations by columns
d = sqrt((combil,1]-combil,3]) 2+(combil,2]-combil,4])"2)

return(mean(d))

}

Even faster, no loops!
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Programming with R

Performance of £2 and £3

Elapsed time: f2 vs f3
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Programming with R

Fourth approach with R

Using specialized functions

f4=function(n){
# Outer product of arrays with subtract function
# and square
val=outer(1:n,1:n,"-")"2
val2=outer(1:n,1:n,"-")"2

# Outer product of resulting arrays with add function
# and square root
d=sqrt (outer(val,val2,"+"))

return(mean(d))

}
The fastest with efficient primitives (apply-like functions)!
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Programming with R

formance of £3 and f4

Elapsed time: f3 vs f4
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Programming with R

Comparing all variations

replications per second

40 60 80 100 120 140

20

Comparaison of four apporaches

f1-dynamic

f2—static+loops
f3-vectorization
f4—-outer product

[,

n
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There are options in R
to do things faster in
an easy way!




Programming with R

Im vs. Im. fit

Computer intensive methods

@ Monte Carlo simulation
Bootstrap
Cross-validation
MCMC

@ Unnecessary instructions penalize computing time.

@ 1m function has an interface from a formula and generate the
model matrix to solve the normal equations by calling 1m.fit
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Programming with R

Parametric Bootstrap: Im vs. Im fit

n=100; p=5; beta=1:(p+1); s=3
X=cbind(rep(1,n) ,matrix(runif (p*n) ,nc=p))

# linear model fit with formula interface
Iml = function(k){

Y = X\%*\%betat+rnorm(n,sd=s)

coef (Im(Y"X-1))

}
system.time(resl<-apply(matrix(seq(2000)),1,1m1))

# linear model fit on matrices
1m2 = function(k){
Y = X\V%x*\%betatrnorm(n,sd=s)
coef (Im.fit (X,Y))
}
system.time (res2<-apply(matrix(seq(2000)),1,1m2))
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Programming with R

Parametric Bootstrap: Im vs. Im fit

Elapsed time: Im vs Im.fit
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Adding Compiled Code

Compiled Code in R

Beyond smarter code the most direct speed gain comes from
switching to compiled code.

@ compiler: Transform into byte code

@ inline: Automated wrapping of single expression

@ Rcpp: Interface between R and C++

e External Fortran/C/C++: Dynamic linking
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Adding Compiled Code

Package compiler

compiler(Luke Tierney): byte code compiler for R
library(compiler)
f2 = function(n) {
d = rep(0, n"4) # Initialize d with zeroes
k=0
for (x1 in 1:n) {
for (y1 in 1:n) {
for (x2 in 1:n) {
for (y2 in 1:n) { #Assign value to position k
dlk <- k + 1] = sqrt((xl - x2)°2 + (y1 - y2)~2)
}
}
}
}
return(mean(d))
}
f2c=cmpfun(£2)
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Adding Compiled Code

Performance of £2 and f2c

Elapsed time: 2 vs f2c
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Adding Compiled Code

Package inline

inline(Oleg Sklyar et al): can wrap Fortran, C or C++ code

library(inline)
code <- "SEXP m;
float s = 0;
int nt=*INTEGER(n)+1;
for (int a = 1; a < nt; a++)
for (int b = 1; b < nt; b++)
for (int ¢ = 1; ¢ < nt; c++)
for (int d = 1; d < nt; d++)
s += sqrt((a-c)*(a-c)+(b-d)*(b-d));
*REAL(m)=s/(n"4) ;
return(m) ;"

f2i <- cfunction(sig=signature(n="integer"), body= code)
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Adding Compiled Code

Rcpp / External Code

@ Exposing C++ functionality to R is facilitated by the Rcpp
package (Eddelbuettel and Frangois)
o Explicit constructor/destructor lifecycle of objects
e Rcpp classes to avoid managing memory directly

o Data interchange R/C++ is managed by powerful yet simple
mechanisms

@ With external code, it is important to coerce all the
arguments to the correct R storage

e .Cand .Fortran: older and simpler
e .Call and .External: less restrictive
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Taking Full Advantage of Hardware

Parallelization of processes

By default...

@ ...R use only one core
@ ...R reads data into memory

Parallelism: running several computations at the same time, taking
advantage of multiple cores or CPUs

| registevsl | stack |

[regsirs | egotes | reoses |

thread — g g g ? *—— fthread

single-threaded multithreaded
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Taking Full Advantage of Hardware

Types of parallelization

Implicit parallelism
@ Set up and distributing data is done by the system.

@ It is simpler but there is lack of control in the parallel features

Explicit parallelism

@ User controls the cluster settings.

@ It requires the user to know the specificities of the
implementation
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Taking Full Advantage of Hardware

Implicit parallelization: some R Packages

@ multicore: locally running parallel computations in R on
machines with multiple cores or CPU

o pnmath and pnmathO: parallel implementation of math
functions

o fork: wrappers around the Unix process management API
calls

Only Unix versions. Not working properly on Window
platforms
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Taking Full Advantage of Hardware

Explicit parallelization: Package snow

snow (Simple Network Of Workstations)

Provides an interface to several parallelization packages:

MPI: Message Passing Interface, via Rmpi
o NWS: NetWork Spaces via nws

o PVM: Parallel Virtual Machine
°

Sockets via the operating system

They allow intrasystem communication (multiple CPUs), or
intersystem communication (cluster)
snowfall: Wrapper for snow with an easier interface
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Taking Full Advantage of Hardware

Package snow. Main functions

@ makeCluster sets up the cluster and initializes its use

@ clusterCall calls a specified function with identical
arguments on each node in the cluster

o clusterApply takes a cluster, arguments and a function and
calls it with the first element of the list on first node, second
element on second node...

@ clusterApplyLB same as above, with load balancing

@ parCapply, parRapply, parLapply, parSapply parallel
versions of column apply, row apply and the other apply
variants
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Taking Full Advantage of Hardware

Parallelization: Example

Iterating the mean grid distance problem
@ Repeat 20 times calculation of the mean distance in a 10 x 10
grid
@ Record time for each iteration and total time for the whole
process

# One thread: by default

(tl <- system.time(pl <- unlist(lapply(rep(10,20),
function(el) system.time(f2(el)) ["elapsed"]))))
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Taking Full Advantage of Hardware

Package snow and snowfall

# Two Threads: create a cluster with 2 sockets
library (snow)
cl<-makeCluster (2, "SOCK")
clusterExport(cl,"f2")
(t2<- system.time(p2<- parSapply(cl, rep(10,20),
FUN=function(el) system.time(f2(el)) ["elapsed"])))
stopCluster(cl)

library(snowfall)

sfInit(parallel=TRUE, cpus=2, type="SOCK")

sfExport ("£2")

(t3<- system.time(p3 <- sfLapply(rep(10,20),
function(el) system.time(f2(el)) ["elapsed"])))

sfStop()
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Taking Full Advantage of Hardware

Performance one vs. two threads

Parcial times for each of the 20 iterations and total time

1 2 3 4 5 6 7
One thread 0.13 0.13 0.13 0.11 0.10 0.11 0.13
Two threads 0.11 0.11 0.11 0.11 0.11 0.11 0.12

8 9 10 11 12 13 14
One thread 0.11 0.11 0.11 0.11 0.11 0.11 0.13
Two threads 0.12 0.11 0.12 0.11 0.12 0.12 0.12

15 16 17 18 19 20 | TOTAL
One thread 0.11 0.10 0.11 0.13 0.11 0.11 2.72
Two threads 0.12 0.12 0.11 0.11 0.12 0.11 1.44
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Taking Full Advantage of Hardware

Explicit parallelization

@ Sometimes, parallelization of a process can be slower than a
serial approach...

@ Setting up slaves, copying data and code can be very costly

General Rule

"Only parallelize with a certain method if the cost of computation
is (much) greater than the cost of setting up the framework.”
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Taking Full Advantage of Hardware

Computing on GPUs (Graphics Programming Units): hardware
acceleration
@ GPUs are hardware that is optimised for I/O and floating
point operations
@ Much faster code execution than standard CPUs on
floating-point operations
@ Development environments:
o Nvidia CUDA (Compute Unified Device Architecture)
Provides C-like programming

e OpenCL (Open Computing Language)provides a
vendor-independent interface to GPU hardware
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Conclusions

Conclusions

@ Many statistical analysis tasks are computationally very
intensive

@ R has enhanced its efficiency by including vectorization or
specific primitives

@ With computer intensive methods it is important to avoid
unnecessary instructions

@ It is possible to work faster with compiled code

@ Even parallelization and hardware capabilities can speed up
processes
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Conclusions

Questions?

Thank you!
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