Life and Earth Sciences: Molecular Genetics and Genetic Engineering

1) Translate the following sequence to protein

ATGGATAAAGAATTTTGGGATATT							
2) Find a mutation res sequences):	s ulting in (give in each c	ase the resulting DNA, a	nd the RNA and protein				
a) Generation of a trunc	cated protein (Stop codoi	۱)					
b) Substitution of an an	ninoacid						
c) Change in the readin	ng frame						
d) Generation of a restr changes in the protein s	riction site for one of the o	enzimes described (see	the Data sheet), with no				
3) From the sequence to isolate the gene (und	below, identify the res lerlined).	triction sites and decid	le which would you use				
GGGATCC CCATC <u>GAAGGTTTCCAGAATTCCGGGCCCCTGATCGAA</u> CGTGAGGTCGACTAG							
4) Construct DNA palyndromic sequences from this sequence fragments:							
ATT	GAA	ATC	TGA				

4) In the following table, you have represented the amount of nucleotides appearing in samples of nucleic acids. **Determine if it belongs to DNA, RNA, and if it's more likely to be single stranded (ss) or double stranded (ds).** Mark it by selecting the correct cells on the right.

	Α	G	С	U	Т	RNA	DNA	SS	ds
Sample 1	30	10	30	30					
Sample 2	20	30	30		20				
Sample 3	40	10	20		30				
Sample 4	22	28	28	22					
Sample 5	15	35	35		15				

5) The inverse exercise: **propose results for the content of A, C, T, G, U**, expectable from the types of nucleic acid showed next.

	Α	G	С	U	Т	RNA	DNA	SS	ds
Sample 1	25	20	20			$\sqrt{}$		1	
Sample 2	18	32					$\sqrt{}$		1
Sample 3		30			20		$\sqrt{}$	V	
Sample 4									V
Sample 5									$\sqrt{}$

- 6) Associate the exercises of your exam to concepts of the topic. Put each letter to its number.
- a) The first exercise relies on the translation of information contained in the DNA to RNA, and after to a protein. This process is described by the central Dogma of Molecular Biology.
- b) Exercise 2 asks you to perform a procedure of genetic engineering.
- c) The tables in exercises 4 and 5 reproduces a famous experiment from the researcher Erwin Chargaff. Select from the following elements which discoverings and researchers are related to this experiment.
 - 1) Techniques of Gene Therapy
 - 2) Niremberg and Khorana
 - 3) Discovering of restriction enzymes
 - 4) Frederick Sanger

- 5) Heterologous synthesis and transgenics
- 6) Description of the structure of DNA
- 7) Discovering of the genetic code
- 8) Watson, Crick, and Wilkins

