### 8th Live Subtitling and Accessibility Symposium Barcelona, 19 April 2023

# Measuring the quality of interlingual live subtitles via respeaking: insights from the SMART project

Elena Davitti, University of Surrey, UK

Annalisa Sandrelli, Università degli Studi Internazionali di Roma(Italy)



Economic and Social **Research Council** 











Shaping Multilingual Access through Respeaking Technology ESRC UK, 2020-2023, ES/T002530/1

#### **Research team**

Elena Davitti, PI (University of Surrey, CTS) Simon Evans, CI (University of Surrey, School of Psychology) Lucile Desblache, CI (University of Roehampton) Pablo Romero-Fresco, CI International (University of Vigo, Spain) Annalisa Sandrelli, CI International (UNINT Rome, Italy) Tomasz Korybski, Research Fellow (University of Surrey, CTS) Zoe Moores, Research Fellow (University of Surrey, CTS) Anna-Stiina Wallinheimo, Research Fellow (University of Surrey, CTS)

#### **Advisory Board**

Academic members

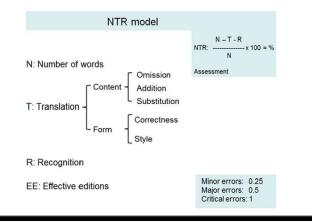
Jan-Louis Kruger (Macquarie University) Franz Pöchhacker (University of Vienna) Aline Remael (University of Antwerp) Industry members Ai-Media Sky SUB-TI and FRED FILM RADIO

Website: https://smartproject.surrey.ac.uk/ Twitter: @SMARTatSurrey

## Quality in SMART

Quality as a multidimensional, elusive and relative concept

Our focus is on ACCURACY in interlingual respeaking


To refine our understanding of what contributes to output accuracy

- what accuracy benchmark can language professionals achieve after 25h of upskilling
- which variables are predictors of accuracy
- how do different conditions impact on performance

### Approach to measuring accuracy

#### Accuracy operationalised as informativeness + intelligibility

Accuracy measured via NTR model (Romero-Fresco and Pöchhacker 2017) applied to 153 performances under different scenarios.



#### **Intelligibility** scale (based on Tiselius 2009) to determine high and low performers, which was validated in the results obtained.

[4] Completely intelligible: the rendition is clear and intelligible, requiring no or minimal *effort* to be understood. There may be some grammatical or stylistic peculiarities/infelicities, but nothing that hampers understanding.

[3] Generally intelligible: the rendition is overall clear but full comprehension requires some *effort* because of, for example, incorrect or unusual word choice or grammar, poor stylistic choices, lack of linking words, etc.

[2] Partially intelligible: only some of the ideas in the rendition are intelligible, but word choices, syntactic arrangements, and expressions may be unusual and/or words crucial to understanding may have been left out. Substantial *effort* is required for the message to be understood.

[1] Unintelligible: the rendition is totally unintelligible.

### Participants

51 language professionals selected out of 250+ applicants

**Professional backgrounds**: 2,000h+ work experience in translation, interpreting and/or pre-recorded/live subtitling; majority with 3+ professions (composite profiles)

**Languages**: 17 participants between EN and each romance language (French/Italian/Spanish); 32 EN>Romance; 19 Romance>EN

**Demographics**: 8 males, 43 females (*Mage* = 40.12 years, *SD* = 10.97 years); from 11 countries (UK, Spain, Italy, France, Germany, Belgium, Australia, Argentina, New Zealand, USA, Peru)

### Materials

- Intra and interlingual tests INTERLINGUAL results analysed
- 12 speeches
  - 4 languages: English, Spanish, French, Italian
  - 3 different source input conditions

I really loved that, it [...] enabled demonstration of practical skills with as little interference from an unfamiliar topic as possible.

| SPEED           | PLANNED/UNPLANNED | MULTIPLE SPEAKERS     |
|-----------------|-------------------|-----------------------|
| M duration 15'+ | M duration 12'    | <i>M</i> duration 12' |
| 140 wpm         | 110 wpm           | 120 wpm               |

Testing materials [...] could correspond to the difficulty level to everyday demanding tasks

- Controlled variables: topic (respeaking-themes), vocabulary (brief), numbers
- Randomisation of testing (ABC-CBA)

## Accuracy after 25h of upskilling

#### Average NTR score across <u>all participants and conditions</u>: 95.37%

#### Average NTR scores per language pair

| Language pairs | NTR    | Score range     |
|----------------|--------|-----------------|
| EN-SP          | 95.92% | 89.95% - 98.31% |
| EN-IT          | 94.80% | 90.9%- 97.75%   |
| EN-FR          | 95.38% | 89.29% - 97.89% |

#### Average NTR scores per language directionality

| Language directionality | NTR    | Score per language pair directions    |
|-------------------------|--------|---------------------------------------|
| English > Romance       | 94.89% | EN>SP 95.24, EN>IT 94.66, EN>FR 95.01 |
| Romance > English       | 96.16% | SP>EN 95.52, IT>EN 97.01, FR>EN 95.71 |

## Language professionals

#### **SUBGROUPS**

#### **HIGH/LOW PERFORMERS**

- High performers: 27/51
- Low performers 24/51

\* Informativeness threshold: 96%
\* Intelligibility threshold: 16 TOT: 45/153 performances

#### PROFESSIONAL CLUSTERS

- Spoken-to-Spoken: 17/51
- Spoken-to-written: 16/51
- Mixed: 16/51
- \* 2 outliers

## Accuracy after 25h of upskilling

#### **HIGH vs LOW performers**

Significant difference in accuracy performance across all scenarios, p < .001

*M* = 96.3% (high) and *M* = 94.4% (low)

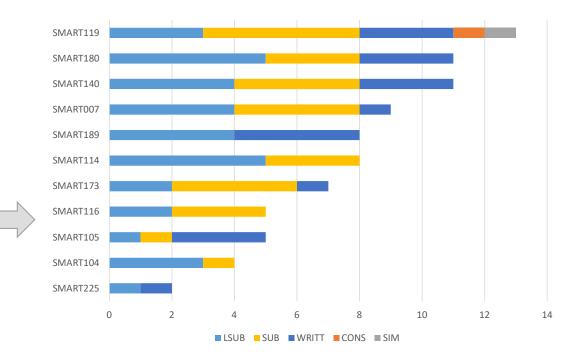
*M* = 97.1% (top 12) and *M* = 94.8% (other 39)

#### **PROFESSIONAL CLUSTERS**

No statistical differences between clusters, p > .05

- Spoken to spoken: *M* = 95.4%
- Spoken to written: M = 95.3%
- Mixed: M = 95.3%

### Accuracy predictors: errors


# Accuracy predictors: professional background

#### Professional background – ALL

No statistical differences (p > .05) between professional clusters (spoken-to-spoken; spoken-to-written; mixed) pointing to no cluster providing an advantage over another, but...

Linear Regression

Live subtitling as a positive predictor
 *F*(1, 49) = 2.38, *p* = .02, β = .32.



## Impact of source input on performance

Average NTR scores source input condition

Significant difference as p = .008

SPEED: 94.8%

PLANNED/UNPLANNED: 95.8%

**MULTIPLE SPEAKERS: 95.5%** 

- Spanish 95.3%
- French 95.1%
- Italian 95.9%

- Spanish 95.6%
- French 96%
- Italian 94.9%

- **Spanish 95.9%**
- French 95.13%
- Italian 95.5%

### Impact of source input on performance

#### HIGH (27) vs LOW (24) performers:

significant difference in accuracy performance across all scenarios, p < .001

- Speed: *M* = 95.5% (high) and *M* = 93.9% (low)
- PU: *M* = 96.8% (high) and *M* = 94.8% (low)
- MS: *M* = 96.5% (high) and *M* = 94.4% (low)

TOP (12) vs OTHERS (39) performers:

significant difference in accuracy performance across all scenarios, p < .001

- Speed: *M* = 96.8% (top) and *M* = 94.1% (others)
- PU: M = 97.2% (high) and M = 95.4% (low)
- MS: *M* = 97.2% (high) and *M* = 95.0% (low)

# A qualitative approach: TAP data analysis

TAP comments produced by the 27 HIGH performers

- Speed: 8 subjects
- Multiple speakers: 15 subjects
- Planned/unplanned: 22 subjects

The TAP comments were analysed and grouped by **thematic category** to identify the root cause of the reported problem and the strategy adopted to tackle it (if any)

- Source-input related
- Technique-related
- Technology-related
- Person-related

# Key findings from TAP data analysis

- Most TAP comments focused on **TECHNIQUE** rather than on the characteristics of the source materials.
- Most frequently mentioned challenges:
  - décalage (keeping up the pace)
  - live error correction
  - (audiovisual) monitoring
  - **software-adapted delivery (SAD):** clear pronunciation (dictionary form) + neutral intonation + clear articulation + strategic pausing behaviour for chunking
- Comprehension issues mentioned in some TAPs, but often related to other challenges (i.e., missed part of a sentence because of time lag, voice overlap, typing a correction, etc.)
- Low number of comments on technology *per se*. Some comments on human-machine interaction (i.e., insufficient vocabulary training, inefficient macros, etc.)

### SPEED task

On average, more TAP comments on the SPEED task > the longest and hardest test (lowest NTR scores)

- Most of the comments focus on
  - comprehension problems
  - the effect of speed on the respeaker's SAD
  - output monitoring
  - performing live corrections at speed
- All the challenges encountered in the other tasks are magnified by speed
- Suggested coping strategies:
  - increasing décalage to gain more context and then compressing
  - anticipating potential recognition problems and avoiding certain words or typing them
  - strategic omissions of secondary information

### MULTIPLE SPEAKERS task

- The majority of TAP comments are focused on technique:
  - comprehension problems often related to décalage
  - SAD often mentioned in conjunction with output monitoring or translation difficulties
  - issues with sound and volume management
  - overlapping talk/cross over between speakers (question-answer)
- Coping strategies:
  - omission of less important items (e.g. hesitations, interjections, conversation markers...)
  - pausing to improve recognition (better chunking)
  - live correction: pause, wait for the text to be displayed, correction

# PLANNED/UNPLANNED task

- Again, the most common comments are on technique:
  - SAD issues
  - Output monitoring (multiple visual input, in relation to the questions that were displayed in a written form)
- Technology: software preparation and working set-up
- A higher number of TAPS on the source material, i.e., audio quality, technical topic and complex structures
   > comprehension problems

Coping strategies:

- longer décalage for better comprehension and better TL reformulation
- omitting items that have not been understood
- prioritising meaning over error correction
- anticipating recognition problems and using macros or typing

# Implications of TAP analysis

- When reporting problems, subjects were often able to indicate solutions
- Given the short duration of the course, the fact that subjects have been able to automate some behaviours and develop coping strategies is encouraging
- Examples:
  - dictating has become second nature;
  - SAD still poses challenges but overall has become more of a habit
  - being able to anticipate recognition problems and using either synonym, macro or typing;
  - pausing frequently to enable *Dragon* to display the output faster;
  - chunking to avoid using too much punctuation;
  - strategic omissions (of less important items or items that have not been fully understood)

# Conclusions/I

- Large-scale validation of NTR model (intertextual dimension)
- Significance of NTR data enhanced by integration of an intelligibility scale (intratextual dimension)
- Other aspects of the live subtitling service (such as delay) to be added for a more holistic view (instrumental dimension)
- Need to review and validate the accuracy benchmark for interlingual respeaking?

# Conclusions/II

- Integration of statistical methods allowed for focus from macro (all participants) to micro (specific subgroups) to build evidence-base – requires expertise
- Implications for upskilling:
  - **Evidence** that experience in live (intralingual) subtitling provides a clear advantage: automated processes (interaction with technology) that make it easier to add language transfer component
  - **Evidence** that other profiles (spoken-to-spoken, mixed...) may also acquire interlingual respeaking skills, but may need to focus more on the human-machine interaction component
- Modular approach to upskilling ("pick and choose")

8th Live Subtitling and Accessibility Symposium Barcelona, 19 April 2023

### Thank you for your attention!

### e.davitti@surrey.ac.uk annalisa.sandrelli@unint.eu



Economic and Social **Research Council** 







**Centre for Translation Studies**