Abstract

We consider a matter-wave bright soliton interferometer composed of a harmonic potential trap with a Rosen-Morse barrier at its center on which an incident soliton collides and splits into two solitons. These two solitons recombine after a dipole oscillation in the trap at the position of the barrier. We focus on the characterization of the splitting process in the case in which the reflected and transmitted solitons have the same number of atoms. We obtain that the velocity of the split solitons strongly depends on the nonlinearity and on the width of the barrier and that the reflected soliton is in general slower than the transmitted one. Also, we study the phase difference acquired between the two solitons during the splitting and we fit semianalytically the main dependences with the velocity of the incident soliton, the nonlinearity, and the width of the barrier. The implementation of the full interferometer sequence is tested by means of the phase imprinting method.

Authors
J. Polo i V. Ahufinger
Citation Key
PhysRevA.88.053628
COinS Data

Date Published
2015-04-10 11:06
DOI
10.1103/PhysRevA.88.053628
Pagination
053628
Publisher
American Physical Society
Reprint Edition
http://arxiv.org/abs/1309.3081
Journal
Phys. Rev. A
URL
http://link.aps.org/doi/10.1103/PhysRevA.88.053628
Volume
88
Year of Publication
2013