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Abstract
Comb geometry, constituted of a backbone and fingers, is one of the most simple
paradigm of a two-dimensional structure, where anomalous diffusion can be rea-
lized in the framework of Markov processes. However, the intrinsic properties of
the structure can destroy this Markovian transport. These effects can be described
by the memory and spatial kernels. In particular, the fractal structure of the fingers,
which is controlled by the spatial kernel in both the real and the Fourier spaces,
leads to the Lévy processes (Lévy flights) and superdiffusion. This generalization
of the fractional diffusion is described by the Riesz space fractional derivative. In
the framework of this generalized fractal comb model, Lévy processes are con-
sidered, and exact solutions for the probability distribution functions are obtained
in terms of the Fox H-function for a variety of the memory kernels, and the rate of
the superdiffusive spreading is studied by calculating the fractional moments. For a
special form of the memory kernels, we also observed a competition between long
rests and long jumps. Finally, we considered the fractal structure of the fingers
controlled by a Weierstrass function, which leads to the power-law kernel in the
Fourier space. This is a special case, when the second moment exists for super-
diffusion in this competition between long rests and long jumps.

Keywords: fractal comb, anomalous diffusion, fractional derivatives, fractal
dimension, Lévy processes
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1. Introduction

A comb model is a particular example of a non-Markovian motion, which takes place due to
its specific geometry realization inside a two-dimensional structure. It consists of a backbone
along the structure x axis and fingers along the y direction, continuously spaced along the x
coordinate, as shown in figure 1. This special geometry has been introduced to investigate
anomalous diffusion in low-dimensional percolation clusters [2, 29, 47, 49]. In the last decade
the comb model has been extensively studied to understand different realizations of non-
Markovian random walks, both continuous [1, 4, 13] and discrete [10]. In particular, comb-
like models have been used to describe turbulent hyper-diffusion due subdiffusive traps
[4, 21], anomalous diffusion in spiny dendrites [22, 32], subdiffusion on a fractal comb [19],
and diffusion of light in Lévy glasses [3] as Lévy walks in quenched disordered media [8, 9],
and to model anomalous transport in low-dimensional composites [43].

The macroscopic model for the transport along a comb structure is presented by the
following two-dimensional heterogeneous diffusion equation [2, 29, 47, 49]
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where P x y t, ,( ) is the probability distribution function (PDF),  d yx ( ) and y are diffusion
coefficients in the x and y directions, respectively, with physical dimension  = -m sx

3 1[ ] ,
and  = -m sy

2 1[ ] . The d y( ) function (the Dirac d y( ) function) means that diffusion in the x
direction occurs only at y = 0. This form of equations describes diffusion in the backbone (at
y = 0), while the fingers play the role of traps. Diffusion in a continuous comb can be
described within the continuous time random walk (CTRW) theory [7]. For the continuous
comb with infinite fingers, the returning probability scales similarly to -t 1 2, and the waiting
time PDF behaves as -t 3 2 [34], resulting in the appearance of anomalous subdiffusion along
the backbone with the transport exponent 1/2. In another example of a fractal volume of an
infinite number of backbones, it has been shown that the transport exponent depends on the
fractal dimension of the backbone structure [41]. Natural phenomenological generalization of
the comb model (1) is the generalization of both the time processes, by introducing memory
kernels g t( ) and h t( ), and introducing space inhomogeneous (fractal) geometry, i.e., a power-
law density of fingers described by kernel r x( ) [19, 20, 22]. This modification of the comb
model (1) can be expressed in the form of a so-called fractal comb model

Figure 1. Comb-like structure.
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Here, the memory kernels g t( ) and h t( ) are, in the general case, decaying functions,
approaching zero in the long time limit (see [41] for details of the form of the memory kernels).
The physical dimensions of the diffusion coefficients  d yx ( ) and y depend now on the form
of the memory kernels g t( ) and h t( ). The memory kernels g t( ) and h t( ), and the kernel r x( )5
should be introduced in such a way that these functions do not change the physical meaning of
the diffusion coefficients d yx ( ) andy. Therefore, it is reasonable to introduce these functions
in the dimensionless form, by introducing the time scale τ and the coordinate scale l. This can,
for example, be done in the following way [21]:  t = x y

2 3 and  =l x y, where we use the
fact that the dimension of x is  t= lx

3[ ] , while the dimension of y is  t= ly
2[ ] . This

yields the corresponding change of the kernels g tt( ), h tt( ), and r x l( ), and this leads to the
rescaling of equation (2). To avoid this procedure and keep the diffusion parametersx and y

explicitly, we just state that the diffusion coefficients automatically absorb these scale
parameters, and this rescaling depends on the functional form of g t( ), h t( ) and r x( ). The
function g t( ) contributes to the memory effects in such a way that the particles moving along
the y-direction, i.e., along the fingers, can be trapped. It means that diffusion along the y
direction can be anomalous as well [32, 39]. The function h t( ) is a so-called generalized
compensation kernel [32]. The case g h d= =t t t( ) ( ) ( ) yields the diffusion equation of the
comb model (1). Corresponding CTRW models have been suggested, where the memory
kernels appear in the waiting time [32, 39, 41]. A mesoscopic mechanism of this CTRW
phenomenon has been suggested in [33], as well.

The spatial fractal geometry is taken into consideration by the fractal dimension of the
finger volume (mass) nx∣ ∣ , where n< <0 1 is the fractional dimension, and fingers are
continuously distributed by the power-law. This can be presented as a convolution integral
between the non-local density of fingers and the PDF P x y t, ,( ) in the form [19]

ò r¢ - ¢ ¢
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¥
x x x P x y td , ,( ) ( ), which also can be presented by the inverse Fourier transform

 k kk
n- - P y t, ,x x

1 1
x
[∣ ∣ ˆ ( )], where  r r k k= = n-xx x x

1[ ( )] ˜ ( ) ∣ ∣ 6. This integration also estab-
lishes a link between fractal geometry and fractional integro-differentiation [26, 36, 37] (see
also the discussion in the summary).

As an illustration, a fractal comb is given in figure 2. The fractal comb in figure 2 is a
random form of a middle third Cantor set construction, where a given segment with fingers is
randomly divided in three parts and we delete the middle part. Therefore, we obtain the first
generation which consists of two subsets of fingers. We repeat this middle third procedure for
each subset to obtain the second generation with four random subsets of continuously dis-
tributed fingers. Then, one obtains the third generation, and so on. One should recognize that
a random walk on this fractal comb (either random or regular) leads to correlations, related to
quenched structures [7]. Therefore, the random structure of the comb induces correlation
between successive trapping times in the fingers. In some cases of large scales, such random
walks, can be renormalized to a CTRW model, and the quenched aspect can be neglected by
using an effective trapping time PDF, as discussed in [7].

5 Note that the density of fingers is ò rx xd ( ).
6 The Fourier transform of f(x) is given by  òk = = k

-¥

¥
F f x x f xd ei x˜( ) [ ( )] ( ) . Consequently, the inverse Fourier

transform is defined by  òk k k= =
p

k-
-¥

¥ -f x F Fd e i x1 1

2
( ) [ ˜( )] ˜( ) .
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The Comb model (2) for n = 1 reduces to a generalization of continuous comb model for
anomalous and ultraslow diffusion. Furthermore, for g h d= =t t t( ) ( ) ( ) the ‘classical’ comb
model (1) is recovered, as well. The anomalous diffusion processes are characterized by
power-law dependence of the mean square displacement (MSD) on time ax t t2⟨ ( )⟩ , where
the anomalous diffusion exponent α is less than one for subdiffusive processes and greater
than one for superdiffusive processes, see e.g. [35]. The comb model (2) for
g h= =

mG -

m-
t t t

1
( ) ( )

( )
( m< <0 1) yields the fractional comb model considered in [22, 32],

where the fractional derivatives appear in the form of the Caputo time fractional derivative
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and the Riemman–Liouville fractional integral
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This paper is organized as follows. In section 2 we give analytical results for generalized
fractal comb model. Different memory kernels are used and anomalous superdiffusion is
observed. The connection between fractal structure of fingers and the Riesz fractional deri-
vative is presented in section 3. A summary is given in section 4. At the end of the paper an
additional material necessary for understanding of the main text is presented in the appen-
dices. These relate to definitions and properties of the Mittag–Leffler, Fox H and Weierstrass
functions. Calculations of the PDFs and fractional moments are also presented in appendix A.
Here we stress that we perform exact analytical analysis throughout the whole manuscript.

2. Model formulation and solution

At the first step of the present analysis let us understand the role of the d y( ) function in the
highly inhomogeneous diffusion coefficients in equations (1) and(2). One should recognize

Figure 2. Fourth generation of a random one-third Cantor set. This fractal comb is a
form of a middle third Cantor set construction [15], where each segment is randomly
divided in three parts. The second slice is the first generation of the smallest part of the
third generation of the Cantor set, shown in the upper slice.
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that the singularity of the x component of the diffusion coefficient results from the Liouville
equation; it is the intrinsic transport property of the comb models(1) and(2). Note that this
singularity of the diffusion coefficient relates to a non-zero flux along the x coordinates. Let
us consider the Liouville equation

¶
¶

+ =
t
P jdiv 0, 5( )

where the two-dimensional current d= = - -¶
¶

¶
¶

j j y P Pj , ,x y x y( )( ) ( ) describes the

Markov processes in equation (1). However, diffusion in both the backbone and fingers
can be in general non-Markovian processes, which is reflected in equation (2). Moreover the
fingers can be inhomogeneously distributed as occurs in dendritic spines, where the spines
are randomly (rather than uniformly) distributed [16]. In this case the two-dimensional
current reads

 òd h= - ¢ ¢ - ¢
¶
¶

¢j y t t t
x

P x y td , , , 6x x ( ) ( ) ( ) ( )

 ò g r= - ¢ ¢ ¢ - ¢ - ¢
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Equation (5) together with equations (6) and (7) can be regarded as the two-dimensional non-

Markovian master equation. Integrating equation (5) over y from - 2 to  2:



ò- yd ...

2

2
,

one obtains for the lhs of the equation, after application of the middle point theorem,
 =¶
¶

P x y t, 0,
t

( ), which is exact in the limit   0. This term can be neglected in the limit
  0. Considering integration of the rhs of the equation, we obtain that the term responsible
for the transport in the y direction reads from equation (7)
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This corresponds to the two outgoing fluxes from the backbone in the y directions:
= + + = -F y F y0 0y y( ) ( ). The transport along the x direction, after integration of

equation (6), is
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Here, we take a general diffusivity function in the x direction  y( ) (instead of  d yx ( ) in
equations (5) and(6)). It should be stressed that the second derivative over x, presented in the
form ⎡⎣ ⎤⎦  = + - -¶

¶
¶
¶

¶
¶

P P x P x2 2
x x x

2

2 ( ) ( ) as   0, ensures both incoming and

outgoing fluxes for Fx along the x direction at a point x. After integration over  Î - +y ,[ ],
the Liouville equation is a kind of the Kirchhoff’s law: + + - +F Fx x( ) ( )

+ + - =F F 0y y( ) ( ) for each point x and at y = 0. Since ¹j 0x , outgoing fluxes are not
zero, the flux º + + -F F Fx x x( ) ( ) has to be nonzero as well:  ¹F 0x ( ) . Therefore,
  ¹D y 0 0( ) . Taking the diffusion coefficient in the form  


=

p +
y

y

1 x
2 2( ) , one obtains in

the limit   0 a nonzero flux Fx with   d=y yx( ) ( ), which is the diffusion coefficient in
the x direction in equations (2),(5) and(6). The relations between kernels g t( ), h t( ) and
g¢ t( ), and h¢ t( ) in equations (2) and(5),(6) and(7) can be established in the Laplace space.
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Namely, performing the variable change in the Laplace space  g g= ¢t t[ ( )] [ ( )] and
  h h g= ¢ ¢t t t[ ( )] [ ( )] [ ( )] one arrives at equation (2).

Presenting the last term in equation (2) in the Fourier inversion form, equation (2) reads

⎡
⎣⎢

⎤
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where r ~ n-x x 2( ) ∣ ∣ is used. Therefore, equation (8) can be presented by means of the Riesz

space fractional derivative7 ¶
¶

n

n

-

-x

1

1∣ ∣
of order n< - <0 1 1 [39]. This fractional derivative

appears as a result of presenting the fingers density n-x 1∣ ∣ in the form of the Fourier
transform8. This natural generalization of equation (8) establishes a relation between the
fractal geometry of the medium and fractional integro-differentiation, where the reciprocal
fractional density k n-

x
1∣ ∣ leads to the fractional Riesz derivative of the order n< - <0 1 1.

We also admit here that for n = 1 (r d=x x( ) ( )) we call equations (2) and (8) a ‘continuous’
comb, while for n < 1 it is a ‘fractal’ comb model.

2.1. PDF and the q-th moment along the backbone

To understand the properties of anomalous diffusion, one calculates the MSD. However, the
MSD can diverge for Lévy processes. In this case one calculates a fractional q-th moment,
which is obtained here.

The Fourier–Laplace transforms of equation (8) yield





g k k k k k h k

k k k k

- = =- =

- n-

s sP s P t s P y s

P s

, , , , 0 , 0,

, , , 9

x y x y x x x

y x y x y

2

1 2

ˆ ( )[ ˆ̃( ) ˜( )] ˆ ( ) ˆ̃( )

∣ ∣ ˆ̃( ) ( )

where  k =P y s P x y t, , , ,x x
ˆ̃ ( ) [ [ ( )]] and k k k=P s P y s, , , ,x y y x

ˆ̃ ( ) [ ˆ̃( )]. Performing the
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ˆ̃ ( ), from where

k =P y s, 0,x
ˆ̃ ( ) reads

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ 


k

g
k

g h
g

k= = +n n- +
P y s

s

s s

s

s s s

s
, 0,

1

4
1

1

4
. 10x

y
x

y

x
x

1
2

3
2ˆ̃( ) ˆ ( ) ∣ ∣ ˆ ( ) ˆ ( )

ˆ ( )
∣ ∣ ( )

Here we use the initial condition k k = =P t, , 0 1x y˜( ) . Substituting equation (10) in
equation (9), one obtains
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7 The Riesz fractional derivative of order α ( a<0 2) is given as a pseudo-differential operator with the Fourier
symbol k- a∣ ∣ , k Î R [17, 38], i.e.,  k k= - a¶

¶
-
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a f x F x
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∣ ∣

.

8 Originally the finger term reads  n- ¶

¶
x P x y t, ,y y
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2∣ ∣ ( ), see [19].
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Taking k = 0y in equation (11), which eventually leads to the reduced PDF
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Equation (12) corresponds to the fractional diffusion equation for the reduced distribution
p x t,1 ( ), which describes both Lévy flights with traps and subdiffusion,
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Here the Riesz space fractional derivative is of order a = n+ 23

2
, while integro-

differentiation with respect to time is presented in the Caputo form.
Introducing a waiting times PDF y t( ), which in the Laplace space is given by

y x= + -s s s1 1ˆ ( ) ( ˆ ( )) [39], one obtains the relation x = y
y
-s s

s s
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. For example, in the

Markov case, when y =
t

t-t e t1( ) , the trap kernel is a δ function and the lhs of equation (14)

reduces to the standard time derivative ¶
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t+ bt
t

1

1
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,

yields [23] x = b- -s s
1 1ˆ ( ) . Then the lhs of equation (14) corresponds to the Caputo fractional

derivative of the order of β, defined in equation (3). Therefore, the power-law tail of the
kernel x t( ) determines the Caputo fractional derivative (3).

It is worth mentioning that the solution of equation (8) in the Fourier–Laplace space
k s,x( ) can be written as
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where f x t,( ) and g x t,( ) are functions standing for the derivation. We find that
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ˆ̃ ( ) is given by equation (10), from where the Fourier

transform in respect to y, gives the same expression for k kP s, ,x y
ˆ̃ ( ) as in equation (11).

The q-th fractional moments can be analyzed for various forms of the kernels g t( ) and
h t( )
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where a< < <q0 2. One considers the q-th fractional moments with a<q , since the
MSD for Lévy processes governed by equation (14) does not exist. Therefore, instead of the
MSD one can analyze its analogue related to the q-th moment, x t q q2⟨∣ ( )∣ ⟩ [35]. From relation
(12) one obtains

⎡
⎣⎢

⎤
⎦⎥

x
= a a

-x t C q
s s s

1
, 17q

q
1⟨∣ ( )∣ ⟩ ( )

( ˆ ( ))
( )

J. Phys. A: Math. Theor. 49 (2016) 355001 T Sandev et al

7



where

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

a
a a

=
G G + G -

G G -
a

a

C q
q q q

q q

4

2

1

2 2
. 18x

y

q

( ) ( ) ( ) ( )
( ) ( )

( )

The case with n = 1, i.e., a = 2 (continuous comb), yields
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from where for q = 2 we recover the result for the MSD [41]
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Now setting different functional behaviors of the kernels g t( ) and h t( ), one can observe
various diffusion regimes, along both the x and y directions.

2.2. Special case I: Lévy distribution
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t t
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, i.e., h = -s s 1 2ˆ ( ) , which means

x =s 1ˆ ( ) , we obtain the Markovian transport equation for superdiffusion along the backbone
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Taking the initial condition d+ =p x x, 01 ( ) ( ) and the boundary conditions
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is the Fox H-function [31] (see also a brief introduction in

appendix C).
Therefore, the q-th moment reads (see calculations in appendix A)

a
=

G +
a

a
x t C q

t

q1
, 23q

q
⟨∣ ( )∣ ⟩ ( )

( )
( )

where aC q( ) is defined in equation (18). From equation (23) one obtains
n+x t tq q2 4 3⟨∣ ( )∣ ⟩ ( ) which corresponds to superdiffusion (Lévy flights [48]) since

n< <0 1. The same superdiffusive behavior is observed when g h=-s s s1 2 ˆ ( ) ˆ ( ), which
means x =s 1ˆ ( ) . Note that equation (9) describes a typical competition between long rests and
long jumps [35]. Contrary to the case described in [19, 32], in the present analysis,
superdiffusion can be dominant not only due to the fractional (power-law) distribution of the
fingers with n< <0 1, but also due to the specific choice of the time kernels h t( ) and g t( ).
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2.3. Special case II: competition between long rests and Lévy flights

Now we consider the power-law memory kernels in the form g h= =
mG -

m-
t t t

1
( ) ( )

( )
,

m< <0 1. From equation (13) we find x = m-s s 2ˆ ( ) , which yields in the time domain that

x =
mG

m- -
t t

2

1 2

( )
( )

( )
. Therefore, the space–time fractional diffusion equation for the reduced PDF

p x t,1 ( ) is a non-Markovian trasport equation for superdiffusion along the backbone




=
¶
¶

m
a

a
-D p x t

x
p x t,

2
, , 24C t

x

y

1 2
1 1( )

∣ ∣
( ) ( )

where m-DC t
1 2 is the Caputo time fractional derivative (3) of order m< - <1 2 1 2 1, and

¶
¶

a

ax∣ ∣
is the Riesz space fractional derivative of order a = n+3

2
. The initial condition is

d+ =p x x, 01 ( ) ( ), and the boundary conditions are defined at infinities ¥ =p t,1 ( )
¥ =¶

¶
p t, 0

x 1 ( ) . Taking into account the initial and the boundary conditions, one obtains
the solution of equation (24) in terms of the Fox H-function (see appenfix A, equation (A.8))

⎜ ⎟

⎡

⎣

⎢⎢⎢⎢⎛
⎝

⎞
⎠

⎤

⎦

⎥⎥⎥⎥


a
=

m
a

a
m
a

a
-

-

p x t
x

H
x

t

,
1 1, , 1, , 1,

1, 1 , 1, , 1,
. 251 3,3

2,1

2
1 2

1

1 1 2 1
2

1 1
2

x

y

( )( ) ( )
( ) ( )

( )
∣ ∣

∣ ∣

( )
( )

Repeating the calculation of the fractional q-th moment in equation (A.9), one obtains

=
G +

a m
a
-

m
a
-

x t C q
t

q1
, 26q

q

2

2

2
2

( )⟨∣ ( )∣ ⟩ ( ) ( )

which also yields m a-x t tq q2 2⟨∣ ( )∣ ⟩ ( ) . One concludes here that superdiffusion appears for
m n+ <2 1, and subdiffusion takes place for m n+ >2 1. These effects result from the
combination of the memory kernels that eventually leads to the competition between long
rests and long jumps. Note that in the limit case of n = 1, there is subdiffusion with the
correct MSD m-x t t2 1 2⟨ ( )⟩ [35, 42].

2.4. Special case III: distributed order memory kernels

Note that there are many choices of the memory kernels that can lead to more specific
situations. For example, as is shown in [11, 27, 39], distributed order memory kernels can
lead to a strong anomaly in fractional kinetics such as ultra-slow diffusion, where for example
the Sinai diffusion [45] is one of the best-known realizations of anomalous kinetics.

Let us consider the distributed order memory kernel of the form [11, 12, 24, 27]

òg m
m

=
G -

m-
t

t
d

1
, 27

0

1
( )

( )
( )

which yields g = -s s

s s

1

log
( )

( )
[11, 27], and for h d=t t( ) ( ) one obtains x = -s

s

s

s

1 1

log
( ) . For the

calculation of the q-th moment, it is convenient to use here the Tauberian theorem [17], which
states that for a slowly varying function L(t) at infinity, i.e., =¥lim 1t

L at

L t

( )
( )

, >a 0, if

r-R s s L
s

1( )ˆ ( ) , s 0, r 0, then =
r

r-
G

-r t R s t L t1 1 1( ) [ ˆ ( )] ( )
( )

,  ¥t . Therefore,
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applying the Tauberian theorem, one obtains the behavior of the fractional q-th moments in
the long time limit

⎜ ⎟ ⎜ ⎟
⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥ =

-
a a a

- -
a a

a x t C q
s

s

s
C q

s s
C q t

1 log

1

1
log

1
log , 28q 1 1

q q

q2
2

2⟨∣ ( )∣ ⟩ ( ) ( ) ( ) ( )

which yields ax t tlogq q2 1⟨∣ ( )∣ ⟩ . This result also contains the correct limit of the continuous
comb with n = 1 (a = 2), when the MSD reads 


x t tlog2 1 2x

y
⟨ ( )⟩ [41]. It should be

stressed that ultra-slow diffusion takes place here even in the presence of the Lévy flights.
However the latter affects only the power of the logarithm, since ultra-slow diffusion is the
robust process with respect to the inhomogeneous distribution of the fingers.

For a more general distributed order memory kernel of the form [12]

òg m lm
m

=
G -

l
m

-
-

t
t

d
1

, 29
0

1
1( )

( )
( )

where l > 0, one obtains for the long time limit g lG +
l

s
s

1

log
s

1( ) ( ) , and for h d=t t( ) ( ) the q-th

moment reads

⎡

⎣
⎢⎢⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎤

⎦
⎥⎥⎥

⎛
⎝⎜

⎞
⎠⎟

l nG + G +
a

l

a

l
-

a
a

 x t C q
s

C q
t1 log

1

log

1
. 30q s1

1
q

q2
2

⟨∣ ( )∣ ⟩ ( )
( )

( )
( )

( )

This q-th moment behavior eventually yields
n

a

G +

l
x t q q t2 log

1

1( )⟨∣ ( )∣ ⟩
( )

, which also

contains the limiting case of the continuous comb with the MSD 
 lG +

l
x t t2 log

1
x

y

2

⟨ ( )⟩
( )

[41].

2.5. Diffusion along fingers

One easily finds that the solution (11) does not describe diffusion in the y direction. Indeed, it
follows from equation (11) that

k =p s
s

,
1

, 31y2ˆ̃ ( ) ( )

where ò=
-¥

¥
p y t x P x y t, d , ,2 ( ) ( ), which means that d=p y t y,2 ( ) ( ), from where one

obtains that the MSD along the y-direction is equal to zero. However diffusion in the y
direction does take place with the diffusivity y. To resolve this paradox, one should
understand that the MSD is obtained by averaging over the total volume, which yields zero
power of the set: ò ~ =n n

¥
-

¥
-x x Llim d lim 0L L

L
L

1

0
1 1 . To obtain a finite result, one has

to average over the fractal volume nL . Therefore, the Fourier inversion over the fractal
measure k kn- dx x

1∣ ∣ yields for the MSD
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⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡
⎣⎢

⎤
⎦⎥




 



   







k
k k k

g k k

g k k
g x

x k

g
x

x k g

= -
¶
¶

=
-

+ +

=
+

=

n

k k

n

n

k k

k

- -

= =

-
-

-

= =

-

=

-

n

n

+

+

y t P s

s s

s s

s s s

s s

s s

s s

s s s s

, ,

2 6

2
1

2
1

, 32

y
x y x

y y x y

y x y x

y
x

y

2 1
2

2
1

0, 0

1
2 1 2

1 2 3
2

0, 0

1
2

2
0

1
2

x y

x

y
x y

x

y
x

3
2

3
2

⟨ ( )⟩ ˆ̃( )∣ ∣

ˆ ( ) ∣ ∣
( ˆ ( ) ∣ ∣ )

· ˆ ( ) ˆ ( )
ˆ ( ) ∣ ∣

ˆ ( )
·

ˆ ( )
ˆ ( ) ∣ ∣ ˆ ( )

( )

where k kP s, ,x y
ˆ̃ ( ) is given by equation (11). This result is the same as the one obtained for

the generalized continuous comb model n = 1 [41], which follows from equation (11) for
n = 1. We finally note that for the various forms of the memory kernel g t( ) one can
find different diffusive regimes along the fingers, such as anomalous and ultraslow
diffusion.

3. Fractal structure of fingers and the Weierstrass function

3.1. General solution of the problem

Let us rewrite the last term in equation (2) in the form of the convolution with the Weierstrass
function in the Fourier kx space. This reads

 òp
k k k k

¶
¶

¢ Y - ¢ ¢
-¥

¥

y
P y t

1

2
d , , . 33y x x x x

2

2
( ) ˜( ) ( )

Here k kY - ¢x x( ) is the Weierstrass function [5, 40] with the scaling property

Y Yz l
l

b
z , 34( ) ( ) ( )

which, for example, can be defined by the procedure suggested in appendix C.
This scaling property leads to the power-law asymptotic behavior of the Weierstrass

function Y ~ n-z
z

1
1( ) ¯ , where n = b llog log¯ , with the fractal dimension n< <0 1¯ . There-

fore, the term in equation (33) can be presented in the form of the Riesz fractional integral in
the reciprocal Fourier space

 òp
k

k
k k

¶
¶

¢
¢

- ¢ n-¥

¥

-y

P y t1

2
d

, ,
. 35y x

x

x x

2

2 1

˜( )
∣ ∣

( )
¯

Applying the inverse Fourier transform in respect to kx , and changing the order of integration,
one obtains

⎡
⎣⎢

⎤
⎦⎥  òp

k k
k k

¶
¶

¢ ¢
- ¢

=
¶
¶k n n

n-

-¥

¥

-
-

y
P y t C x

y
P x y t

1

2
d , ,

1
, , , 36y x x

x x
y

2

2
1

1

2

2x
˜( )

∣ ∣
∣ ∣ ( ) ( )

¯
¯
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where n= Gn
npC cos
2

( ¯ )¯
¯ . Thus, equation (2) becomes





ò òg d h¢ - ¢
¶
¶ ¢

¢ = ¢ - ¢
¶
¶

¢

+
¶
¶

n
n-

t t t
t

P x y t y t t t
x

P x y t

C x
y

P x y t

d , , d , ,

, , . 37

t

x

t

y

0 0

2

2

2

2

( ) ( ) ( ) ( ) ( )

∣ ∣ ( ) ( )¯
¯

Note that in contrast to equation (2), here the continuous comb model corresponds to the limit
with n = 0¯ . In this mean n̄ is dual to ν with the relation n n+ = 1¯ . Performing the Laplace
transform, one obtains

 g d d d h- =
¶
¶

+
¶
¶

n
n-s sP x y s x y y s

x
P x y s C x

y
P x y s, , , , , , .

38

x y

2

2

2

2
ˆ ( )[ ˆ ( ) ( ) ( )] ( ) ˆ ( ) ˆ ( ) ∣ ∣ ˆ ( )

( )

¯
¯

By analogy with equation (15), the solution of equation (38) can be presented in the form

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

= -P x y s
sg x s

y f x s, , exp
,

, , 39
y

ˆ ( ) ˆ ( ) ∣ ∣ ˆ ( ) ( )

where g x s,ˆ ( ) is obtained from the condition that the second derivative of the exponential
compensates the first term in the lhs of equation (37). This reads

g=
n

ng x s
C

s x,
1

, 40ˆ ( ) ˆ ( )∣ ∣ ( )
¯

¯

and the solution P x y s, ,ˆ ( ) becomes

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

g
= -

n

nP x y s
C

s s
x y f x s, , exp

1
, . 41

y

2ˆ ( ) ˆ ( ) ∣ ∣ ∣ ∣ ˆ ( ) ( )
¯

¯

From here we find that


ò= =
-¥

¥
p x s y P x y s

sg x s
f x s, d , , 2

,
, , 42

y
1ˆ ( ) ˆ ( )

ˆ ( )
ˆ ( ) ( )

and

= =P x y s f x s, 0, , . 43ˆ ( ) ˆ ( ) ( )

Integrating equation (38) over y and taking into account equation (40), one obtains the
boundary value problem for the Green function f x s,ˆ ( ) with zero boundary conditions at
infinities




g
h
g

d-
¶
¶

=n
n-C

s

s
x f x s

s

s x
f x s x2 , , . 44

y
x

1 2 2
2

2ˆ ( )
∣ ∣ ˆ ( ) ˆ ( )

ˆ ( )
ˆ ( ) ( ) ( )¯

¯

Following the standard procedure, we consider the homogeneous part of the equation, which
reads




g

h
=

¶
¶n

n-C
s s

s
x G x s

x
G x s2 , , . 45

y
x

1 2 2
2

2

ˆ ( )
ˆ ( )

∣ ∣ ˆ ( ) ˆ ( ) ( )¯
¯
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3.2. Special case with γ ðt Þ ¼ ηðt Þ ¼ δ ðt Þ

To be specific, we consider first a special case with g h= =s s 1ˆ ( ) ˆ ( ) . Thus equation (45)
reads




=

¶
¶n

n-C s x G x s
x

G x s
2

, , . 46
y

x

1 2 1 2 2
2

2
∣ ∣ ˆ ( ) ˆ ( ) ( )¯

¯

It is symmetric with respect to  -x x and has a form of the Lommel differential equation
 - =z-u x c x u x 02 2 2( ) ( ) [18]. The solution is given in terms of the Bessel functions

=
z

z
z

u x x Z i xc
1

2 ( )( ) , where = +
z z z

Z x C J x C N x1 21
2

1
2

1
2

( ) ( ) ( ). Here
z

J x1
2

( ) is the Bessel

function of the first kind and
z

N x1
2

( ) is the Bessel function of the second kind (Neumann
function). Therefore, the solution of equation (46) reads

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟



n
=

-nn

n

-

-
G x s x Z i C s x,

4

4

2
. 47

y

x

1 4 1 42
4

4
4ˆ ( )

¯
( )¯¯

¯

Due to the zero boundary conditions, Green’s function (47) is given by the modified Bessel
function (of the third kind)

n-
K z2

4
( )

¯
, which can be expressed in terms of the Fox H-function as

well (see relation (B.9))

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥









n

n

=
-

=
- -

n

n

n n- -

n

n

n

-

-

-

G x s x K C s x

x
H

C
x s

,
4

4

2

2

4

4

2
, 1 , , 1 . 48

y

x

y

x

1 4 1 4

0,2
2,0

1 2

2
1 2 1

4
1

4

2
4

4
4

4
2 ( ) ( )

ˆ ( )
¯

( ¯ )
( )

¯

¯
¯ ¯

¯

¯

¯

Considering the inhomogeneous Lommel equation (44), we use the solution
 = =n nf x s s G x s s G y s, , ,ˆ (∣ ∣ ) ( ) ˆ (∣ ∣ ) ( ) ˆ ( )¯ ¯ obtained in equation (44), where =y x∣ ∣, and

n s( )¯ is a function which depends on s,

-
¶
¶

= =
y

f y s2 0, 1. 49x
ˆ ( ) ( )

Substituting equation (48) in equation (44), and using relations (49), and (B.9), one obtains

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟





n n
=

- G -
n n

n

n-
-

-

-
n

n

-

-s C s
2

4

1 4

4

2
, 50

x

y

x
2
4

1 2
2

1
4

1
2 4

( )( )
¯ ( ¯ )

( )¯ ¯
¯

¯

¯

( ¯ )

which yields the solution of equation (44)

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥











n n

n

=
- G -

´
- -

n
n

n

n

n n

-
-

-

-

- -

n

n

n

-

-

-

f x s C s x

H
C

x s

,
1

4

1 4

4

2

4

4

2
, 1 , , 1 . 51

x

y

x

y

x

2
4

1 2
2

1 2

0,2
2,0

1 2

2
1 2 1

4
1

4

1
4

1
2 4

4
2

( )
( ) ( )

ˆ ( )
¯ ( ¯ )

∣ ∣

( ¯ )
∣ ∣ ( )

¯
¯

¯

¯
¯ ¯

¯

( ¯ )

¯
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From relations (42) and (B.7), one finds the solution for the reduced PDF p x t,1 ( )9

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥













n n

n

=
- G -

´
- -

n
n
n

n

n

n
n

n n

-
-

-

-
-

- -

n n

n
n

n

- -

-
-

-

p x t
C

C
x

t

H
C x

t

,
4

1 2 4

4

2

4

4

2 , 1 2

, 1 , , 1
. 52

y

x

y

x

y

x

1

1 2

2
4

1 2
2

1,2
2,0

1 2

2 1 2

5
2 4

1
4

1
4

1
4 1

2

3
2 4

4
2 ( )

( )

( ) ( )

( )
¯ ( ¯ )

∣ ∣

( ¯ )
∣ ∣ ( )

¯
¯
¯

¯

¯
¯

( ¯ )

¯ ¯

¯ ¯

¯
( ¯ )

¯

Solution (52) describes a subdiffusive behavior with the MSD

ò=
¥

n-x t x x p x t t2 d , , 532

0

2
1

2
4⟨ ( )⟩ ( ) ( )¯

where the transport exponent changes in the range < <
n-

1

2

2

4

2

3¯
. Note that the limiting case

with n = 0¯ results in the continuous comb with the MSD x t t2 1 2⟨ ( )⟩ .

3.3. Special case with γ ðt Þ ¼ δ ðt Þ and ηðt Þ ¼ t �1=2=Γð1=2Þ

Next we consider the case with the kernels g =s 1ˆ ( ) and h = -s s 1 2ˆ ( ) 10, which yields
equation (45) in the form




=

¶
¶n

n-C s x G x s
x

G x s
2

, , . 54
y

x

1 2 2
2

2
∣ ∣ ˆ ( ) ˆ ( ) ( )¯

¯

Following the same procedure as above, we find the PDF p x t,1 ( ) in the form
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9 One can easily check from relations (B.3) and (B.5) that p x t,1 ( ) is normalized ò =
-¥

¥
x p x td , 11 ( ) .

10 For the continuous comb (21), these memory functions give superdiffusion for the case n< <0 1, and normal
diffusion for n = 1.
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which is normalized to one as well, and is of stretched exponential form. Here we used
relations (B.4) and (B.11). The MSD now reads

ò=
¥

n-x t x x p x t t2 d , . 562

0

2
1

4
4⟨ ( )⟩ ( ) ( )¯

This solution describes superdiffusion with the transport exponent ranging in the interval
< <

n-
1 4

4

4

3¯
, which is enhanced diffusion in comparison to the solution in equation (52).

This is a Levy-like process, where the CTRW with spatio-temporal coupling takes place. The
diffusion in the x direction is enhanced due to the generalized compensation memory kernel
h =

G

-
t t

1 2

1 2

( )
( )

11. The long jumps on the fractal comb are penalized by long waiting times.
This mechanism leads to the stretched exponential behavior in the last line of equation (55),
which eventually yields the finite MSD. The case with n = 0¯ recovers the result of the
continuous comb with x t t2⟨ ( )⟩ .

4. Summary

We considered Lévy processes in a generalized fractal comb model, which is derived from
general properties of the Liouville equation, and we presented an exact analytical analysis of
the solutions of equation (2) for the probability distribution function (PDF) for anomalous
diffusion of particles for various realizations of the generalized comb model. Comb geometry
is one of the most simple paradigms where anomalous diffusion can be realized in the
framework of Markovian processes as in equation (1). However, the intrinsic properties of the
structure can destroy this Markovian transport. These effects violate the Markov considera-
tion of equation (1) and lead to the introduction of the memory h t( ), g t( ), and spatial r x( )
kernels in equation (2). The fractal structure of fingers, which is controlled by the spatial
kernel r x( ) in the form of the power-law distributions in both real and Fourier spaces, leads to
the Lévy processes (Lévy flights) and superdiffusion. In the former case, when the spatial
kernel is defined in the real space, this effect is manifested by the Riesz fractional derivative
of the order of a n= + <3 2 2( ) , where ν is the fractal dimension of the fingers. This was
observed for the first time in [19], where a qualitative analytical analysis has been suggested.
In the present analysis, this problem is solved exactly and exact analytical solutions are
obtained in the form of the Fox H-functions. In some extend, here we demonstrated an
application of the Fox H-functions in solving anomalous diffusion equations. The interplay
between the spatial kernel and the memory kernels, controlled by the heavy tail exponent μ, is
reflected in the transport exponent of the anomalous diffusion m

a
-2 , such that when

m n+ <2 1 there is superdiffusion. In the opposite case when m n+ >2 1 subdiffusion takes
place. For the completeness of the analysis, cases with distributed order memory kernels are
also investigated by employing the Tauberian theorem. As a result, we obtained ultra-slow
diffusion. It is a robust slow process, which cannot be destroyed by the Lévy flights. Finally,
we considered the fractal structure of the fingers controlled by the Weierstrass function, which
leads to the power-law kernel in the Fourier space. A superdiffusive solution in equation (55)
is found as well. It is expressed in the form of a stretched exponential function (55). It is a
special case, when the second moment exists for superdiffusion, since the Lévy flights are
interrupted by fingers-traps with the power-law waiting time PDF. In this case, the super-
diffusive MSD is exactly calculated from the second moment = n-x t t2 4

4⟨ ( )⟩ .

11 The presence of this compensation memory kernel in the continuous comb model (2) yields normal diffusion in
the x direction in comparison to the subdiffusive behavior with the transport exponent equals to 1/2 in the classical
comb model (1).
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In conclusion, we discuss the question on the relation between fractal structures (such as
those shown in figure 2) and fractional Riesz derivative as a reflection of the Lévy dynamics.
This problem has been considered in many studies [6, 19, 25, 26, 36, 37, 44]. Here, we are
also concerned with the question of what kind of information is neglected when random walk
on quenched fractal structure is described by the Riesz fractional integral12. The answer is as
follows. The fractal structure, akin to that in figure 2, can be described for example by the
Weierstrass function, which depends on two parameters l and b, which lead to the scaling in
equation (C.6) and to the log periodicity, and as well as to the fractal volume with the fractal
dimension n = b llog log¯ ( ) ( ). However, the asymptotic approximation contains only the
fractal volume, while the self-similarity and log periodicity properties are already lost. This
expression is explicitly obtained in appendix C. In this case a regular fractal is considered as a
random fractal with the fractal volume nx∣ ∣ . It should be admitted that in section 2, our
construction of the Riesz space fractional integration by means of the power law kernel r x( )
is exact. In this sense, our analytical description of the Lévy process is exact, however, its
relation to the Cantor set of the fingers is just illustrative. A rigorous coarse-grained proce-
dure, which relates the fractal structure of the comb fingers to the Riesz fractional derivative
has been established in [19]. The situation changes dramatically in section 3, where the
Weierstrass function describes rigorously the fractal comb. However, in our analytical
treatment we use only its asymptotic approximation [6] to obtain fractional integro-differ-
entiation. As stated above, in this case all information on self-similarity and log periodicity
is lost.
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Appendix A. Solution of equations (21) and (24)

We note, first, that equation (21) is a particular case of equation (24), which is a general form
of a space–time fractional diffusion equation

=
¶
¶

> -¥ < < +¥l
l a

a

a
D p x t

x
p x t t x, , , 0, , A.1C t 1 , 1( )

∣ ∣
( ) ( )

where lDC t is the Caputo time fractional derivative (3) of order l< <0 1, ¶
¶

a

ax∣ ∣
is the Riesz

space fractional derivative of order a< <1 2, and l a, is the generalized diffusion
coefficient with physical dimension  =l a

a l-m s,[ ] . The boundary conditions at infinities are

¥ =
¶
¶

¥ = >p t
x

p t t, 0, , 0, 0, A.21 1( ) ( ) ( )

12 This relates to the link between fractal geometry and fractional integro-differentiation [36], which is constituted in
the procedure of averaging an extensive physical value that is expressed by means of a smooth function over a Cantor
set, which leads to fractional integration. However, as criticized in [37], the Cantor set ‘as a memory function allows
for no convolution’. In its eventual form, the link has been presented in [36] as an averaging procedure over the log
periodicity of the fractal.
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while the initial condition is

d= -¥ < < +¥p x x x, 0 , . A.31 ( ) ( ) ( )

Applying the Fourier–Laplace transform in equation (A.1), and accounting the initial
condition (A.3) and the boundary conditions (A.2), one finds


k

k
=

+

l

l
l a

a

-
p s

s

s
, . A.41

1

,
ˆ̃ ( )

∣ ∣
( )

Here we use the property of the Laplace transform for the Caputo derivative [38]

 = -l l l-D f t s f t s f 0 . A.5C t
1[ ( )] [ ( )] ( ) ( )

From the inverse Laplace transform, by employing formula [27]

  =b
a b

a
a b

a
-

-


t E at

s

s a
, A.61

,[ ( )] ( )

for R > as a 1( ) ∣ ∣ , where a bE z, ( ) is the two parameter Mittag–Leffler function (B.12), it
follows

k k= -l l a
l ap t E t, . A.71 ,˜ ( ) ( ∣ ∣ ) ( )

Here lE z( ) is the one parameter Mittag–Leffler function (B.12). From relations (B.13) and
(B.3), and the Fourier transform formula (B.6), one obtains the solution of equation (A.1) in
terms of the Fox H-function (B.1) [28, 46]:
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From the solution (A.8), by using relation (B.5), we obtain the fractional moments (16) [46]
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where we apply G - G = p
p

z z1
zsin

( ) ( )
( )

[14], and where, for the current example,

q
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Appendix B. Fox H-function and Mittag–Leffler functions

B.1. Fox H-function

A detailed description of the Fox H-function and its application can be found in [30, 31].
The Fox H-function is defined in terms of the Mellin–Barnes integral

⎡
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⎢⎢
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q
¼
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( ) ( )
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with  n p0 ,  m q1 , Îa b C,i j , Î +A B R,i j , = ¼i p1, , , and j = 1,K, q. The
contour Ω, starting at c−¥i and ending at c+ ¥i , separates the poles of the function
G +b B sj j( ), = ¼j m1, , from those of the function G - -a A s1 i i( ), i = 1,K, n.

The Fox H-function is symmetric in the pairs ¼a A a A, , , ,n n1 1( ) ( ), likewise
¼+ +a A a A, , , , ;n n p p1 1( ) ( ) in ¼b B b B, , , ,m m1 1( ) ( ) and ¼+ +b B B B, , , ,m m q q1 1( ) ( ).

The Fox H-function has the following properties
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where m 1, and >p n.
The Mellin transform of the Fox H-function is given by
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where q x( ) is defined in relation (B.1).
The Mellin-cosine transform of the Fox H-function is given by
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where
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The following Laplace transform formula is true for the Fox H−function
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The Bessel function of third kind nK z( ) is a special case of the Fox H-function
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Series representation of modified Bessel function of the second kind is given by
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For a special case of parameters of the Fox H-function, one obtains

⎡⎣ ⎤⎦ = --H z b B B z z, exp . B.10b B B
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B.2. Mittag–Leffler functions

The two parameter Mittag–Leffler function is defined by [27]

å a b
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The one parameter Mittag–Leffler function aE z( ) is a special case of the two parameter
Mittag–Leffler function if we set b = 1.

The two parameter Mittag–Leffler function (B.12) is a special case of the Fox H-function
[31]
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Appendix C. Weierstrass function

Here we will show that the discrete, fractal distribution of fingers, can be constructed by
means of the Weierstrass function. We will follow the approach recently used in [40], where it
is shown that the fractal structure of backbones corresponds to the Weierstrass function inside
the backbones. Let us consider equation (2), where the last term is given by
 då -¶

¶ =
¥ w x l P x y t, ,y y j j j1

2

2 ( ) ( ), i.e., we investigate the following equation
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The last term in this equation means that the diffusion along the y axis occurs on infinite
number of fingers located at =x lj, = ¼j 1, 2, ,  < < < <l l l0 ... ...N1 2 , at positions x
which belong to the fractal set nS with fractal dimension n< <0 1, and wj are structural
constants such that
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w 1. C.2
j

j
1

( )

The summation in the last term of equation (C.1), is a summation over a fractal set nS . In order
to obtain the Weierstrass function we follow the procedure given in [40, 44]. Therefore, we
use that = -wj

l b

b

b

l

j( ) , where >l b, 1, - l b b (l and b are dimensionless scale
parameters), from where we find
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as it should be for the structural constants (C.2). From (33) and (C.3) it follows
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where =l L lj
j, k k= - ¢z Lx x( ) , and = =l L 11 . From here one obtains [40]
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and by neglecting the last term ( - l b b), the following scaling is found
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This means that Y ~ n-z
z

1
1( ) ¯ , where n = b llog log¯ , n< <0 1¯ , is the fractal dimension.

From here, for the last term in (C.1) we have
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which is the Riesz fractional integral [38] in the reciprocal Fourier space.

J. Phys. A: Math. Theor. 49 (2016) 355001 T Sandev et al

20



References

[1] Arkhincheev V E 2007 Chaos 17 043102
[2] Arkhincheev V E and Baskin E M 1991 Sov. Phys. JETP 73 161
[3] Barthelemy P, Bertolotti J and Wiersma D S 2008 Nature 453 495
[4] Baskin E and Iomin A 2004 Phys. Rev. Lett. 93 120603
[5] Berry M V and Lewis Z V 1980 Proc. R. Soc. London Ser. A 370 459
[6] Pietronero L and Tosatti E 1985 in Fractals in Physics ed A Blumen, J Klafter and G Zumofen

(Amsterdam: North-Holland) p 399
[7] Bouchaud J-P and Georges A 1990 Phys. Rep. 195 127
[8] Burioni R, Caniparoli L and Vezzani A 2010 Phys. Rev. E 81 060101R
[9] Burioni R, Ubaldi E and Vezzani A 2014 Phys. Rev. E 89 022135
[10] Cassi D and Regina S 1996 Phys. Rev. Lett. 76 2914

Baldi G, Burioni R and Cassi D 2004 Phys. Rev. E 70 031111
[11] Chechkin A V, Gorenflo R and Sokolov I M 2002 Phys. Rev. E 66 046129
[12] Chechkin A V, Klafter J and Sokolov I M 2003 Europhys. Lett. 63 326
[13] da Silva L R, Tateishi A A, Lenzi M K, Lenzi E K and da Silva P C 2009 Brazilian J. Phys. 39 438
[14] Erdelyi A, Magnus W, Oberhettinger F and Tricomi F G 1955 Higher Transcedential Functions

vol 3 (New York: McGraw-Hill)
[15] Falconer K 1990 Fractal Geometry (New York: Wiley)
[16] Fedotov S and Mendez V 2008 Phys. Rev. Lett. 101 218102
[17] Feller W 1968 An Introduction to Probability Theory and Its Applications vol II (New York:

Wiley)
[18] Gradshteyn I S and Ryzhik I M 2007 Table of Integrals, Series, and Products (San Diego, CA:

Academic Press)
[19] Iomin A 2011 Phys. Rev. E 83 052106
[20] Iomin A 2012 Phys. Rev. E 86 032101
[21] Iomin A and Baskin E 2005 Phys. Rev. E 71 061101
[22] Iomin A and Mendez V 2013 Phys. Rev. E 88 012706
[23] Iomin A and Sokolov I M 2012 Phys. Rev. E 86 022101
[24] Kochubei A N 2011 Integr. Equ. Oper. Theory. 71 583
[25] Le Méhaute A 1990 Les Géometries Fractales (Paris: Hermes)
[26] Le Méhaute A, Nigmatullin R R and Nivanen L 1998 Fleches du Temps et Geometric Fractale,

Paris, Hermes (Paris: Hermes)
[27] Mainardi F 2010 Fractional Calculus and Waves in Linear Viscoelesticity: An Introduction to

Mathematical Models (London: Imperial College Press)
[28] Mainardi F, Pagnini G and Saxena R K 2005 J. Comput. Appl. Math. 178 321
[29] Matan O, Havlin S and Staufler D 1989 J. Phys. A: Math. Gen. 22 2867
[30] Mathai A M and Haubold H J 2008 Special Functions for Applied Scientists (New York: Springer)
[31] Mathai A M, Saxena R K and Haubold H J 2010 The H-function: Theory and Applications (New

York: Springer)
[32] Mendez V and Iomin A 2013 Chaos Solitons & Fractals 53 46
[33] Mendez V, Iomin A, Campos D and Horsthemke W 2015 Phys. Rev. E 92 062112
[34] Metzler R, Jeon J- H, Cherstvy A G and Barkai E 2014 Phys. Chem. Chem. Phys. 16 24128
[35] Metzler R and Klafter J 2000 Phys. Rep. 339 1

Metzler R and Klafter J 2004 J. Phys. A: Math. Gen. 37 R161
[36] Nigmatulin R R 1992 Theor. Math. Phys. 90 245
[37] Rutman R S 1994 Teoret. Mat. Fiz. 100 476
[38] Samko S G, Kilbas A A and Marichev O I 1993 Fractional Integrals and Derivatives: Theory and

Applications (Philadelphia, PA: Gordon and Breach Science Publishers)
[39] Sandev T, Chechkin A, Kantz H and Metzler R 2015 Fract. Calc. Appl. Anal. 18 1006
[40] Sandev T, Iomin A and Kantz H 2015 Phys. Rev. E 91 032108
[41] Sandev T, Iomin A, Kantz H, Metzler R and Chechkin A 2016 Math. Model. Nat. Phenom. 11 18
[42] Sandev T, Metzler R and Tomovski Z 2011 J. Phys. A: Math. Theor. 44 255203
[43] Shamiryan D, Baklanov M R, Lyons P, Beckx S, Boullart W and Maex K 2007 Colloids and

Surfaces A: Physicochem. Eng. Aspects 300 111
[44] Shlesinger M F 1974 J. Stat. Phys. 10 421
[45] Sinai Ya G 1982 Theory Probab. Appl. 27 256

J. Phys. A: Math. Theor. 49 (2016) 355001 T Sandev et al

21

http://dx.doi.org/10.1063/1.2772179
http://dx.doi.org/10.1038/nature06948
http://dx.doi.org/10.1103/PhysRevLett.93.120603
http://dx.doi.org/10.1098/rspa.1980.0044
http://dx.doi.org/10.1016/0370-1573(90)90099-N
http://dx.doi.org/10.1103/PhysRevE.81.060101
http://dx.doi.org/10.1103/PhysRevE.89.022135
http://dx.doi.org/10.1103/PhysRevLett.76.2914
http://dx.doi.org/10.1103/PhysRevE.70.031111
http://dx.doi.org/10.1103/PhysRevE.66.046129
http://dx.doi.org/10.1209/epl/i2003-00539-0
http://dx.doi.org/10.1590/S0103-97332009000400025
http://dx.doi.org/10.1103/PhysRevLett.101.218102
http://dx.doi.org/10.1103/PhysRevE.83.052106
http://dx.doi.org/10.1103/PhysRevE.86.032101
http://dx.doi.org/10.1103/PhysRevE.71.061101
http://dx.doi.org/10.1103/PhysRevE.88.012706
http://dx.doi.org/10.1103/PhysRevE.86.022101
http://dx.doi.org/10.1007/s00020-011-1918-8
http://dx.doi.org/10.1016/j.cam.2004.08.006
http://dx.doi.org/10.1088/0305-4470/22/14/033
http://dx.doi.org/10.1016/j.chaos.2013.05.002
http://dx.doi.org/10.1103/PhysRevE.92.062112
http://dx.doi.org/10.1039/C4CP03465A
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://dx.doi.org/10.1088/0305-4470/37/31/R01
http://dx.doi.org/10.1007/BF01036529
http://dx.doi.org/10.1515/fca-2015-0059
http://dx.doi.org/10.1103/PhysRevE.91.032108
http://dx.doi.org/10.1051/mmnp/201611302
http://dx.doi.org/10.1088/1751-8113/44/25/255203
http://dx.doi.org/10.1016/j.colsurfa.2006.10.055
http://dx.doi.org/10.1007/BF01008803
http://dx.doi.org/10.1137/1127028


[46] Tomovski Z, Sandev T, Metzler R and Dubbeldam J 2012 Physica A 391 2527
[47] Weiss G H and Havlin S 1986 Physica A 134 474
[48] West B J, Grigolini P, Metzler R and Nonnenmacher T F 1997 Phys. Rev. E 55 99

Jespersen S, Metzler R and Fogedby H C 1999 Phys. Rev. E 59 2736
[49] White S R and Barma M 1984 J. Phys. A: Math. Gen. 17 2995

J. Phys. A: Math. Theor. 49 (2016) 355001 T Sandev et al

22

http://dx.doi.org/10.1016/j.physa.2011.12.035
http://dx.doi.org/10.1016/0378-4371(86)90060-9
http://dx.doi.org/10.1103/PhysRevE.55.99
http://dx.doi.org/10.1103/PhysRevE.59.2736
http://dx.doi.org/10.1088/0305-4470/17/15/017

	1. Introduction
	2. Model formulation and solution
	2.1. PDF and the q-th moment along the backbone
	2.2. Special case I: Lévy distribution
	2.3. Special case II: competition between long rests and Lévy flights
	2.4. Special case III: distributed order memory kernels
	2.5. Diffusion along fingers

	3. Fractal structure of fingers and the Weierstrass function
	3.1. General solution of the problem
	3.2. Special case with γ(t)=η(t)=δ(t)
	3.3. Special case with γ(t)=δ(t) and η(t)=t&minus;1/2/Γ(1/2)

	4. Summary
	Acknowledgments
	Appendix A.
	Appendix B.
	B.1. Fox H-function
	B.2. Mittag-Leffler functions

	Appendix C.
	References



