
 on January 9, 2017http://rsif.royalsocietypublishing.org/Downloaded from 
rsif.royalsocietypublishing.org
Research
Cite this article: Campos D, Bartumeus F,

Méndez V, Andrade JS Jr, Espadaler X. 2016

Variability in individual activity bursts improves

ant foraging success. J. R. Soc. Interface 13:

20160856.

http://dx.doi.org/10.1098/rsif.2016.0856
Received: 25 October 2016

Accepted: 22 November 2016
Subject Category:
Life Sciences – Physics interface

Subject Areas:
biocomplexity, biomathematics, computational

biology

Keywords:
search theory, random walk, agent-based

models
Author for correspondence:
Daniel Campos

e-mail: daniel.campos@uab.es
Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.fig-

share.c.3587060.
& 2016 The Author(s) Published by the Royal Society. All rights reserved.
Variability in individual activity bursts
improves ant foraging success

Daniel Campos1, Frederic Bartumeus2,3,4, Vicenç Méndez1, José S. Andrade Jr5
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Using experimental and computational methods, we study the role of behav-

ioural variability in activity bursts (or temporal activity patterns) for

individual and collective regulation of foraging in A. senilis ants. First, foraging

experiments were carried out under special conditions (low densities of ants

and food and absence of external cues or stimuli) where individual-based

strategies are most prevalent. By using marked individuals and recording all

foraging trajectories, we were then able to precisely quantify behavioural

variability among individuals. Our main conclusions are that (i) variability

of ant trajectories (turning angles, speed, etc.) is low compared with variability

of temporal activity profiles, and (ii) this variability seems to be driven by

plasticity of individual behaviour through time, rather than the presence of

fixed behavioural stereotypes or specialists within the group. The statistical

measures obtained from these experimental foraging patterns are then used

to build a general agent-based model (ABM) which includes the most relevant

properties of ant foraging under natural conditions, including recruitment

through pheromone communication. Using the ABM, we are able to provide

computational evidence that the characteristics of individual variability

observed in our experiments can provide a functional advantage (in terms

of foraging success) to the group; thus, we propose the biological basis under-

pinning our observations. Altogether, our study reveals the potential utility of

experiments under simplified (laboratory) conditions for understanding

information-gathering in biological systems.
1. Introduction
Understanding how informational inputs received by living organisms from

external stimuli (the landscape, interindividual interactions, etc.) are combined

with prior experience or (internal) motivational states to generate dynamic

motor responses is one of the main occupations of the cognitive sciences.

Within this context, animal foraging is an appealing topic for study. So far,

efforts in this direction have considered a wide variety of model organisms,

from bacteria to humans [1]. The typical procedure has been to explore how

organisms modify their foraging strategies or performance in response to a vari-

able external stimuli (e.g. food density, the presence of obstacles or landmarks,

etc.). Such approaches mainly emphasize the stimuli (or the environment in a

more general sense) and assign the organism a more reactive role in which it

adapts to the external conditions by choosing a more or less standardized

response. By contrast, when animals forage under conditions of minimal infor-

mation and high uncertainty (low or null external stimuli), such standard or

automatized responses are no longer applicable or convenient, and instead it

is expected that new, active strategies will be promoted. Understanding the

mechanisms generating this active component is the main goal of the recently
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proposed ecological paradigm of foraging under uncertainty
[2], which over the past few years has received systematic

study [3–6].

Making a clear distinction between informed and unin-

formed scenarios is, however, often complex and delicate

due to the large variety and number of informational sources

that organisms are able to sense and process. Even if external

stimuli can be largely suppressed in laboratory conditions,

it is relevant to assess, for instance, how social species may

integrate individual and collective information for foraging

under uncertainty. Understanding the details of social fora-

ging is still a challenging problem for ecologists despite the

large efforts that have been made. For instance, collective

mechanisms for information transfer and regulation have

been extensively explored for social insects within the con-

texts of labour and specialization [7–12], group activation/

recruitment [13–17], synchronization between individuals

[18], activity bursting [19] or behavioural syndromes at differ-

ent scales [20,21]. In addition to the classical exploration/

exploitation trade-off [2,3,22,23], social foragers are known

to face a dilemma between the exploitation of individual

information or the use of signals obtained through inter-

individual communication [23–25]. Information processing

involves social recruitment (e.g. through pheromone trails)

and individual retrieving, including all of the potential

sampling strategies associated with individual information-

gathering. These distinctions are important because relying

only on the information shared by the group can result in a

poor exploration of new sources of information, thus

reducing flexibility and adaptability [26,27].

Ants are very appropriate organisms for exploring all

these ideas because it has been proven that they are capable

of switching between individual-based and collective-based

foraging strategies as a function of environmental conditions;

when studying this organism, the prevalence of group

recruitment and trail formation can be used as criteria for dif-

ferentiating ‘individual’ versus ‘collective’ effects. In this

article, we aim to demonstrate how experimental approaches

under simplified (minimal stimuli) laboratory conditions

combined with other tools (computational models) can be a

powerful set-up for addressing biologically relevant ques-

tions in social insect systems. We illustrate this by exploring

the question of how behavioural variability between foragers

modifies the overall performance of the group. Other authors

have already explored the relationship between individual

variability and foraging efficiency in ants and other social

insects beginning with seminal works in the 1980s which

have examined variability in movement patterns [28,29],

information spreading [30] and space use [31,32] of individ-

uals, leading up to more recent references (see [7,9,10,33–

35] for a short compilation). As a continuation of this line

of work, in this study we have addressed variability at the

level of activity bursts in order to characterize temporal

activity profiles exhibited by the different ants, a topic that

to our knowledge has never been considered directly. The

specific steps we have followed are:

(i) First, we experimentally studied the foraging properties

of Aphaenogaster senilis ants under conditions that are

known to promote individual-based foraging strategies

[14,36]. This represents a continuation of our previous

work in [36] where similar experiments were done with-

out marking the individuals. In this article, we present
new results with marked individuals, allowing us to

identify individual activity and motion patterns to quan-

tify behavioural variability in great detail. The data

obtained reveal that, at least in the case of A. senilis, it is

the dynamics of activity bursts, rather than the trajectory

details, which capture most of the behavioural variability

among foragers.

(ii) We then use the properties of the foraging trajectories

obtained experimentally as an input to feed an agent-

based model (ABM) which includes three spatially explicit

foraging mechanisms: random search, site fidelity (as a

paradigm of memory-wise behaviour) and communi-

cation through pheromone trails (collective behaviour).

The weight of any mechanism in the model can be tuned

by varying some probabilities, which are conditioned to

the local presence of pheromones and/or to the prior

experience of the individual. This general ABM is used to

determine how the individual variability in activity

bursts observed experimentally affects foraging perform-

ance of the group. While some level of variability is

generally expected to enhance foraging success, here we

go one step further and try to discriminate between two

possible sources of this variability: (i) variability originat-

ing from the existence of specific individuals behaving

systematically in a different manner (we denote this

option as the behavioural stereotypes hypothesis), or (ii)

variability occurring because individuals dynamically

change their behaviour through time (the behavioural plas-
ticity hypothesis). Concordant with the experimental

results, our ABM shows that the behavioural plasticity
hypothesis leads to higher levels of foraging success than

the behavioural stereotypes hypothesis, so it is expected

that the former will be favoured evolutionarily.

2. Experimental material and methods
2.1. Experimental setting
A detailed description of the experimental setting is provided

in [36]. We employed a white, wooden, circular arena

(radius¼ 1 m) with a small hole in the centre which is con-

nected to the ant nest below by a plastic tube (internal

diameter¼ 1 cm) (figure 1). The arena is enveloped by a

wooden structure covered with a homogeneous dark cloth,

making it so that the arena is completely symmetric if seen

from its centre and avoiding directional biases to the greatest

extent possible. Individual trajectories of foraging ants were

tracked using a two-camera system (figure 1). A small wireless

camera was put just over the nest entry hole to obtain close-up

images of the ants when leaving or returning to the nest, while

a wide-angle lens camera mounted on the top of the structure

was used to capture the trajectories using a single device.

2.2. Experiments
A group of 70 workers of A. senilis was separated from their

colony (previously collected on the Campus of the Universitat

Autònoma de Barcelona) and put in a plastic nest together

with several eggs and larvae to keep them stimulated for

working. The eggs and larvae were not renovated but they

were left to grow and become adult during the duration of

the experiments; while this introduced some non-stationarity

in experimental conditions, we note that the duration of the

experiment (one month) was relatively short compared with

http://rsif.royalsocietypublishing.org/
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Figure 1. Schematic picture of the experimental setting used, where the nest (A) is connected to the center of a circular arena (B) of radius ¼ 1 m which is
continuously monitored through two video cameras (D and E) while ants look for food (C). Inset: snapshot of ants used in the experiment, where the two-
colour codes used for labelling can be seen. (Online version in colour.)
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the time required for the ants to mature to the adult stage, so

we expect that this bias had minimum effects on our results.

All of the workers were marked with labels containing a

two-colour code (figure 1, inset) glued to their thorax.

Though we consulted the methods of previous studies (e.g.

[10,37–39]), A.senilis ants turned out to be particularly diffi-

cult to mark without affecting their behavioural responses

(they exhibited high levels of social grooming and were

very sensitive to glues and other chemical products), which

prevented us from attempting to reproduce our experiments

with additional, or maybe larger, groups of workers. The

experiment was conducted during July 2014 in a dark room

under conditions of constant temperature and humidity

(around 238C and 50% RH). The experiment consisted of

daily trials or replicates. For 50 min each day, ants were

allowed to explore the circular arena where they searched

for a single small Petri dish containing several food items

deposited randomly within the arena. Once the time elapsed,

all ants outside the nest were picked up and returned, and the

arena was carefully washed with ethanol to remove all traces

of chemicals. The trials carried out during the first week were

considered as an acclimation period, while the next 24 days

were used to collect results. Food items offered to the forager

ants consisted of fresh mealworms (one whole mealworm of

medium size, ranging between 100 and 150 mg of weight, per

day) in order to keep the colony stimulated for foraging at

normal levels. By using this controlled set-up—consisting of

low group sizes with low resource density in a setting lacking

landmarks—we try to reduce social interaction and prevent

the formation of pheromone trails.

2.3. Experimental data analysis
All videos recorded were analysed with open source software

(Scilab Image and Video Processing Toolbox). Out of the 70

workers initially marked, 48 remained alive and marked at

the end of the experimental period (10 died and 12 lost

their tags). From these, a total set of 874 excursions and
1038 trajectories were computed and used to calculate

population-averaged results. These excursions and trajectories

were compared with the individual results obtained from the

14 most active workers, which were responsible for 76% of all

excursions. Note that we define an excursion as starting when

an ant leaves the nest and enters the arena and finishing when

it returns to the nest, while a trajectory (as in [36]) starts when

an ant moves at least 5 cm from the nest entry and finishes

when it returns to the same 5 cm distance; therefore, a single

excursion can involve 0,1,2,. . . trajectories.

We used the trajectories of the ants to characterize the

motion patterns of the individuals. For this, we identified

the centre of mass of the ants in each frame, and we com-

pared this centre of mass between consecutive frames

(separated by 0.2 s) in order to compute the local displace-

ment and direction of motion, just as described in [36].

The excursions dataset was used to quantify activity levels

of individuals throughout time. Individual workers of

A. senilis show significant levels of burstiness as they combine

periods of high foraging activity (one or several days) with

periods of inactivity in which presumably they become

engaged in other tasks within the nest. We used standard

techniques to quantify burstiness based on the statistics of

the activity/inactivity periods. It has been previously

shown [40,41] that time burstiness can be appropriately

characterized through a (B,M) phase diagram, with B as the

burstiness parameter and M the memory coefficient. If

t1, t2,. . .,tj represents the series of random times between con-

secutive excursions of an individual (with mean �t and

variance s2
t) then these two parameters are defined as

B ;
st � �t

st þ �t
M ; Corrðti, tiþ1Þ, ð2:1Þ

so B is a relative ratio between the fluctuations and the

mean value of the series t1, t2,. . ., tj, and Corr(ti, tiþ1)

represents the correlation coefficient between consecutive

interexcursion times.

http://rsif.royalsocietypublishing.org/
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Figure 2. Frequency distribution of the mean distance of each single trajectory
to the centre of the arena. Full circles correspond to the experiments from this
study, while empty circles correspond to data in [36]. A bimodal decay clearly
emerges (separated by a vertical dotted line to facilitate visualization), such that
the left and right regions of the plot correspond to risk-averse and risk-prone
trajectories, respectively.
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To carry out the analysis of burstiness, some prior treat-

ment of the data series of excursions was necessary. First,

because the trials lasted only 50 min per day we did not con-

sider the pauses or periods of inactivity. Instead, we use a

timeline in which consecutive trials are embedded one after

the other (each trial is initiated immediately after the previous

one). Although this may introduce some biases in our sub-

sequent analyses, we note that some kind of time

redefinition is necessary in most analyses of burstiness in

animal and human activity [42]. Second, our experiment

has the additional complication that foraging activity was

not constant during each (daily) trial. In general, activity

(the number of excursions) was very low during the first min-

utes of the trial (because most ants in the nest may not be

aware yet that the arena is accessible) and increased gradually

until reaching a relatively constant level for the rest of the

trial. As a consequence, it was necessary to homogenize fora-

ging intensity, removing any possible trends produced by

this inhomogeneity. This was done using the de-seasoning
technique described in [43]. This technique basically allows

the definition of a new experimental timeline as a function

of activity level, such that periods with real-time, systematic

observation of low activity are shrunk, and periods of high

activity are dilated. To proceed, we denote by n(t) the activity

(number of excursions) initiated by ants up to time t. Because

the data consists of N ¼ 25 consecutive trials of duration T ¼
50 min, the relative activity rate for a given point in time of

the trial is given by

rðtÞ ¼ T
PN

k¼0 nðtþ kTÞ
PN�T

t¼0 nðtÞ
: ð2:2Þ

From this, we can then introduce the de-seasoned (or hom-

ogenized) timeline t* as a function of the original t in the form

t�ðtÞ ¼
Xt

t0¼0

rðt0Þ: ð2:3Þ

So, in practice we use n(t*) instead of n(t) to quantify

activity (the reader can go to the original reference [43] for

a more detailed discussion and interpretation of the rescaling

t*). In any case, though we consider this de-seasoning as a

reasonable and necessary step for removing any trends

from the data, a posteriori we compared the results with

those obtained using the original data series in order to con-

firm that our general conclusions exposed in the Results

section remained the same.
3. Experimental results
First, we averaged several properties (mean turning angles,

mean speed, etc.) over all the trajectories of all individuals.

Then, we compared these results (see electronic supplemen-

tary material, file S1) with those obtained from previous

experiments [36] in which ants were not marked but very

similar experimental conditions were used. This demon-

strates the reproducibility of our results and verifies that

marking the ants did not significantly alter their foraging be-

haviour. Particularly important is the existence of two well-

differentiated types of excursions, which in [36] we termed

risk-prone and risk-averse excursions. The former are those tra-

jectories that considerably depart from the nest and last a

significant amount of time, while the latter are shorter
trajectories that tend to stay relatively close to the nest. The

distinction between these is easy to capture visually by plot-

ting the frequency distribution of the mean distance to the

nest ð�dnÞ for each excursion (distance is averaged over the

entire excursion time); this is shown in figure 2, where a

clear bimodal pattern (separated by the vertical dotted line)

can be seen.

These two different patterns clearly show the existence of

some behavioural variability whose origin will be explored

here with the help of individualized tagging. First, we

studied the motion patterns of individuals compared with

average (population) behaviour. The distribution of turn

angles for ants between consecutive frames is plotted in

figure 3a, from which an average turn angle of 0.50+0.39

radians is obtained. We also include the results obtained for

the 14 most active individuals. Differences between individ-

uals are rather small, so reorientation patterns show a

reduced individual variability (see below and electronic sup-

plementary material, file S2 for further details). Regarding

speed distributions (figure 3b), although most individuals

show a clear peak in the distribution for values between 20

and 30 mm s21, here larger variability between individuals

is observed. However, we think that speed variability can

be hardly interpreted as an adaptive trait for foraging

because search efficiency is in general positively correlated

with walking speed.

Notably, when foraging activity patterns were studied in

detail we obtained much more significant differences

between individuals. The mean values of the first, second,

third and fourth interexcursion times for each single trial

are plotted in figure 4a, showing the comparison between

individual and population-averaged values. It is remarkable

that variability does not necessarily lead to the existence of

some individuals doing longer or shorter excursions than

the average systematically; instead, every forager combines

both long and short excursions but using different activity

cycles. For instance, some individuals use a more cautious

strategy based initially on short excursions (possibly used

to scan the area surrounding the nest and/or look for infor-

mation through antennal contact) whose durations

gradually increase or saturate. Other individuals, instead,

http://rsif.royalsocietypublishing.org/
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carry out long excursions from the very beginning, which

may then be followed by shorter excursions. Also, intermedi-

ate or mixed strategies between these two extremes are

observed. This variability cannot be explained in terms of

the success of previous excursions/individuals because

food items present in the arena were scarce and successful

excursions represented a small fraction (less than 2%) of the

total. Therefore, we interpret that foraging success was not

a significant driving force of individual strategies (or at

least we were not able to detect such a relation).

The (B, M ) diagram (figure 4b) reflects that intermediate

levels of burstiness, combined with very low levels of

memory, are characteristic of foraging activity patterns of

most individuals. There were, however, a few individuals

who showed significant levels of memory (understood as

behavioural time correlation), which were usually negative

but with one positive case (marked with ellipses in

figure 4b). The specific meaning of those memory effects

in these cases is not completely clear from our data, but

we suspect that it reflects the strategies of individuals

using rather deterministic patterns alternating between

short and long excursions. As M measures correlations

between consecutive excursion lengths, if the alternation is

of type short–long–short then M should be negative, but

for patterns including several short or long consecutive

excursions a positive M holds.

Finally, to summarize our findings about individual

variability we computed the statistical distance D between

the population-averaged and individual turn angles, speeds

and times between excursions using a Kolmogorov–Smirnov

test. These results are provided in figure 5, where it is

seen that the statistical distance between individual and

population-averaged patterns of excursion lengths—as

might be intuitively expected from our previous comments

and results—is quite large (average of kDl ¼ 0.244+ 0.120

for the 14 individuals studied). By contrast, D is rather

small for turn angles (kDl ¼ 0.068+0.040), while speed

shows intermediate values (kDl ¼ 0.134+0.065). All this

indicates that variability between A. senilis foragers is

mainly attributable to their activity patterns rather than the

characteristics of their individual movement trajectories.
4. Agent-based model for ant foraging
The next question posed by our study concerns whether the

experimentally observed individual variability in temporal pat-

terns of excursions represents a functional advantage in a more

biologically relevant scenario including social interaction and

communication. If this were true, we can affirm that experiments

(like ours) conducted under simplified and controlled conditions

actually provide (at least implicitly) relevant information

about these processes. With this in mind, we implement an

ABM to simulate ant foraging in which the motion rules govern-

ing the ants’ trajectories are adjusted to fit our experimental

results here. For the sake of realism, in the ABM we also explici-

tly include memory effects and communication between

individuals through pheromone deposition.
4.1. General rules of the agent-based model algorithm
The main structure of our ABM is largely inspired by recent

numerical works on ant foraging [44,45]. In our model, each

individual can be in five possible states (grey boxes in

figure 6): one for INACTIVE (in-nest) individuals, three

different FORAGING states (or strategies), and one for

HOMING once the individual decides to return to the nest

(with or without food). The spatial domain is continuous,

with the nest located at the origin, and it is large enough so

that in practice ants will never reach its boundaries. We con-

sider that food is homogeneously distributed with an overall

density of 0.015 items/L2 (where L represents the arbitrary

unit of length in the ABM). Food is grouped in stacks made

of S items (e.g. seeds) as a convenient and simplified way

to reproduce the properties of a patchy environment. So,

whenever an individual detects one of these stacks, it collects

a single item from it causing the stack size to decrease (e.g.

from S to S21) and immediately returns to the nest, thereby

assuming a HOMING state. Regarding the detection of food

within the framework of the model, we assume that food is

found when the ants come within a distance of R ¼ 0.5L, so

the parameter R represents their effective detection radius.

Finally, communication between individuals is controlled

through pheromone deposition once large stacks are found;

http://rsif.royalsocietypublishing.org/


0

200

400

600

800

1000

(a)

(b)

in
te

re
ve

nt
 ti

m
e

excursion number
1 2 3 4

–1.0

–0.5

0

0.5

1.0

–1.0 –0.5 0 0.5 1.0

B

M

Figure 4. Temporal activity patterns of individuals in the foraging experiments.
(a) Comparison between the durations of excursions of the 14 most active indi-
viduals (thin lines) versus population-averaged behaviour (thick line). Values
plotted correspond to the average duration of the first, second, third and
fourth excursions of individuals over the 25 experimental trials performed.
(b) (B 2 M ) diagram characterizing the essential properties of burstiness in
the activity patterns observed. Full circles correspond to the 14 most active indi-
viduals (those represented in figure 2) and empty circles correspond to all others.
Dashed ellipses indicate those cases showing significant levels of memory, in
contrast with the memoryless patterns exhibited by most individuals.

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

D

turn angle speed burstiness

Figure 5. Statistical distance D between the dataset of turn angles, speed
and excursion durations computed for the most active individuals in the
colony (crosses). The distance has been computed by carrying out a
Kolmogorov – Smirnov test between the data series for these individuals and
the complete data series comprising the whole colony. The average of all indi-
viduals is also provided for completeness (full circles and horizontal lines).

rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20160856

6

 on January 9, 2017http://rsif.royalsocietypublishing.org/Downloaded from 
if the size of the stack detected by the ant is above a certain

threshold k, the individual will leave a constant concentration

of pheromone on its way back to the nest. The pheromone

concentration, however, will also vanish with time at the

rate v, and cannot be detected by the ants once below a

certain threshold.

Preference between foraging states will be determined by

the past history of the system and by the parameters a, b, g

and l, as shown in figure 6 (see also electronic supplementary

material, file S3 for further details). First, at each time step the

ants are allowed to leave the nest and begin foraging with

probability g. Whenever a pheromone trail is present around

the nest, the individual is allowed to follow it with probability

a. Otherwise, the individual can assume a site fidelity strategy

in which it returns to the last site where it found food; pro-

vided such a site exists, the site fidelity strategy will be

selected with probability b. If none of these strategies are

selected, then by default a random-search strategy is initiated.

To determine the motion rules followed by the ants while

in each of the FORAGING and HOMING states we used
several fits obtained from the experimental trajectories of

our experiments with A. senilis (see electronic supplementary

material, file S3 for details).

In the case that food is not reached while in any of the three

FORAGING states, the ant proceeds as follows: (i) for follow
trail the ant continues searching as long as a pheromone trail

is available; otherwise, the ant switches to the HOMING

state; (ii) for site fidelity the strategy will terminate once the

ant reaches the site where food was found previously, and in

the case that food is no longer there, the individual switches

to a random-search state; and (iii) an ant engaged in the

random-search state will maintain this strategy at each time

step with probability 1 2 l or will abandon it with probability

l, in which case it will then switch to the HOMING state.

4.2. Computational results
Next, we compare results obtained from the ABM when

stacks of food are given different sizes S ¼ 1, 5, 20, 100

(because food density is kept constant, a larger S implies

that stacks are further from each other).

Our main interest is to understand if variability in activity

patterns (i.e. excursion durations) provides some functional

advantage for foraging. Accordingly, we considered that the

parameter l (measuring the rate at which foragers engaged in

random search abandon that state; see figure 6) varied among

individuals, and we computed the number of food items col-

lected by the colony after a relatively long time of 104 time

steps; this number was used as a measure of foraging success.

For simplicity we divided individuals into two groups:

using the behavioral stereotypes hypothesis, we assigned

values of l1 ¼ 0.001 to a fraction p of the individuals (assign-

ing them as risk-prone ants) and l2 ¼ 0.1 to the others (risk-
averse ants). Figure 7a,c shows the corresponding foraging

success as a function of p. Figure 7a corresponds to the case

b ¼ 0.1 so patch fidelity is almost absent, and this case basi-

cally represents competition between the uninformed

individual (random search) and collective ( follow trail) strat-

egies. In Figure 7c, instead, we use b ¼ 0.5 to evaluate the

additional effect of patch fidelity. A remarkable result is

obtained in this case, which is the emergence of optimal p

http://rsif.royalsocietypublishing.org/
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values when stack sizes S are large enough to cause the for-

mation of pheromone trails (note that we use k ¼ 5 so

pheromone deposition is possible only if S . 5). For small

values of S, collective information is not flowing so a larger

fraction of risk-prone ants (that is, larger values of p) leads

to exploration of a greater area, effectively increasing the
number of items found by the group. On the other hand,

for large values of S a balance between long-range explora-

tion and the constant presence of workers near the nest

(facilitating recruitment when necessary) must be reached,

so the optimal value of p found by the model reflects a com-

promise between individual exploration and collective
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exploitation. This picture does not change much qualitatively

for b ¼ 0.5 (figure 7c); the only difference is that small values

of S lead to higher foraging efficiencies because the site fidelity
strategy can be used once stacks are found.

Our experimental data has revealed that a behavioural plas-
ticity hypothesis (in which the same individual alternates

between both long and short excursions) rather than a behav-
ioural stereotypes hypothesis seems to be a much better fit of

the real dynamics of foraging in groups of ant workers. In

figure 7b,d, we show the results obtained when excursions

(not individuals) are assigned different values of l. Whenever

a new excursion starts, we assign it l1 ¼ 0.001 with prob-

ability p, and in all other cases l ¼ 0.1 ( p now represents

the fraction of risk-prone excursions). In this case, we observe

that (i) search efficiencies are always higher than for behav-
ioural stereotypes of figure 7a,c and (ii) the optimum value of

p decreases, especially for small values of S. Altogether,

this illustrates the notable benefits that behavioural plasticity
may convey for the maximization of foraging success.
0856
5. Discussion
Although the foraging success of ant groups and colonies

under natural conditions is strongly conditioned by an effec-

tive flow of information and social communication between

individuals, here we have tried to assess the potential role

that other elements (behavioural variability in activity

patterns, in this case) can play within this process. The classi-

cal ecological approach to this question would consist of

experimentally altering behavioural variability by introdu-

cing some external stimuli or varying the environmental

conditions of the system and examining the resulting

response. Instead, here we have tried to illustrate how a com-

bination of toy experiments under simplistic conditions with

additional computational analysis can also yield relevant

results and conclusions. Foraging experiments under con-

ditions of low information or uncertain scenarios have been

sometimes criticized as simplistic or irrelevant because they

obviate essential (typically landscape-driven) components

[46]. In contrast with that point of view, we believe that

reduced systems such as those proposed under the foraging
under uncertainty paradigm [2] provide the proper grounds

for understanding particular aspects of foraging (e.g.

behavioural stochasticity or noise generation, which are

indispensable for living beings as they offer them the necess-

ary flexibility for dealing with new or unexpected situations).

We have also been able to detect several properties

governing behavioural variability between A. senilis foragers:

(i) bursting in the individual activity pattern of the ants can

change dynamically between individuals and through

time. It is remarkable that previous studies in fruit flies

[47,48], rats [49], or even in humans [47] reported similar
bursting properties. This intriguing result suggests the

possible existence of some universal (neuronal) principles

driving regulation of motor properties in living beings,

though at the moment this is still speculative;

(ii) the variability of individuals’ behaviour in foraging trajec-

tories is rather small compared with the variability

observed in their activity patterns (interexcursion lengths).

This finding can be used to infer that the motion mode of

ants is more or less standardized, and possibly driven

only through physiological constraints. Likewise, the

study of activity patterns might be more than adequate

in order to disentangle questions about ant personality

and idiosyncrasy; and

(iii) because ants are capable of combining short and long excur-

sions in very different ways, we conclude that a behavioural
plasticity hypothesis is much more compatible with our

observations than a behavioural stereotypes hypothesis. As

shown by the results of the ABM, such behaviour would

provide the group a functional advantage for foraging.

This conclusion is valid even for groups in which long excur-

sions represent a small fraction (this would correspond to

small values of p in figure 7), as could be the case in natural

environments with a high risk of predation. Indeed,

additional elements could be introduced in our ABM

scheme in order to assess this and other questions of interest.

The study of generator mechanisms of behavioural variabil-

ity in living beings is also a topic of major interest, which is

implicitly connected to our work here. It involves several

unsolved questions such as: is variability between individuals

a manifestation of intrinsic stochasticity in the internal function-

ing of organisms, or can it rather be attributed to particular traits

of the organism (e.g. its past history, physiological properties,

etc.)? Can its effects be modulated, and how? Has natural selec-

tion shaped generators of variability through history? Further

studies as well as carefully designed experiments (possibly ben-

efiting from the joint experimental/computational approach

used here) will be needed to address such questions and others.
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