
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 132.68.239.10

This content was downloaded on 29/06/2017 at 13:41

Please note that terms and conditions apply.

Langevin dynamics for ramified structures

View the table of contents for this issue, or go to the journal homepage for more

J. Stat. Mech. (2017) 063205

(http://iopscience.iop.org/1742-5468/2017/6/063205)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

Feynman–Kac equation for anomalous processes with space- and time-dependent forces

Andrea Cairoli and Adrian Baule

Ergodic and non-ergodic anomalous diffusion in coupled stochastic processes

Golan Bel and Ilya Nemenman

Mean exit time and escape probability for the anomalous processes with the tempered power-law

waiting times

Weihua Deng, Xiaochao Wu and Wanli Wang

Anomalous diffusion and response in branched systems: a simple analysis

Giuseppe Forte, Raffaella Burioni, Fabio Cecconi et al.

Chaos and transport properties of adatoms on solidsurfaces

J L Vega, R Guantes and S Miret-Artés

A continuous time random walk model with multiple characteristic times

Kwok Sau Fa and R S Mendes

Lévy processes on a generalized fractal comb

Trifce Sandev, Alexander Iomin and Vicenç Méndez

Anomalous transport in the crowded world of biological cells

Felix Höfling and Thomas Franosch

Stochastic tools hidden behind the empirical dielectric relaxation laws

Aleksander Stanislavsky and Karina Weron

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-5468/2017/6
http://iopscience.iop.org/1742-5468
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/1751-8121/aa5a97
http://iopscience.iop.org/article/10.1088/1367-2630/11/8/083009
http://iopscience.iop.org/article/10.1209/0295-5075/117/10009
http://iopscience.iop.org/article/10.1209/0295-5075/117/10009
http://iopscience.iop.org/article/10.1088/0953-8984/25/46/465106
http://iopscience.iop.org/article/10.1088/0953-8984/14/24/316
http://iopscience.iop.org/article/10.1088/1742-5468/2010/04/P04001
http://iopscience.iop.org/article/10.1088/1751-8113/49/35/355001
http://iopscience.iop.org/article/10.1088/0034-4885/76/4/046602
http://iopscience.iop.org/article/10.1088/1361-6633/aa5283


J. S
tat. M

ech. (2017) 063205

Langevin dynamics for ramified 
structures

Vicenç Méndez1, Alexander Iomin2, Werner Horsthemke3 
and Daniel Campos1

1 Grup de Física Estadística. Departament de Física. Facultat de Ciències. 
Edifici Cc. Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) 
Spain

2 Department of Physics, Technion, Haifa, 32000, Israel
3 Department of Chemistry, Southern Methodist University, Dallas, TX 

75275-0314, United States of America
E-mail: vicenc.mendez@uab.cat

Received 2 February 2017, revised 22 March 2017
Accepted for publication 5 April 2017
Published 28 June 2017

Online at stacks.iop.org/JSTAT/2017/063205
https://doi.org/10.1088/1742-5468/aa6bc6

Abstract.  We propose a generalized Langevin formalism to describe transport 
in combs and similar ramified structures. Our approach consists of a Langevin 
equation without drift for the motion along the backbone. The motion along 
the secondary branches may be described either by a Langevin equation or 
by other types of random processes. The mean square displacement (MSD) 
along the backbone characterizes the transport through the ramified structure. 
We derive a general analytical expression for this observable in terms of the 
probability distribution function of the motion along the secondary branches. 
We apply our result to various types of motion along the secondary branches 
of finite or infinite length, such as subdiusion, superdiusion, and Langevin 
dynamics with colored Gaussian noise and with non-Gaussian white noise. 
Monte Carlo simulations show excellent agreement with the analytical results. 
The MSD for the case of Gaussian noise is shown to be independent of the noise 
color. We conclude by generalizing our analytical expression for the MSD to the 
case where each secondary branch is n dimensional.

Keywords: Brownian motion, fluctuation phenomena, stochastic particle 
dynamics, stochastic processes
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1. Introduction

Various phenomena in physics, biology, geology, and other fields involve the transport 
or motion of particles, microorganisms, and fluids in ramified structures. Examples 
range from fluid flow through porous media to oil recovery, respiration, and blood 
circulation. Ramified structures like river networks [1] represent examples of ecologi-
cal corridors, which have significant implications in epidemics [2] or diversity patterns 
[3], among other. Ramified structures have also attracted the attention of physicists 
because the transport of particles across them displays anomalous diusion [4].

The simplest models of these various types of natural structures, which belong 
to the category of loopless graphs, are the comb model and the Peano network, two 
ramified structures that have been applied, for example, to explain biological inva-
sion through river networks [5]. Comb structures consist of a principal branch, the 
backbone, which is a one-dimensional lattice with spacing a, and identical secondary 
branches, the teeth, that cross the backbone perpendicularly. We identify the direction 
of the backbone with the x-axis, while the secondary branches lie parallel to the y-axis. 
Nodes on the backbone have the coordinates (ia, 0), with i = 0,±1,±2, . . ., while nodes 
on the teeth have coordinates (ia, ja), with j = 0,±1,±2, . . . and i fixed.
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The comb model was originally introduced to understand anomalous diusion in 
percolating clusters [6, 7, 8]. If particles undergo a simple random walk on the comb 
structure, the secondary branches act like traps in which the particle stays for some 
random time before continuing its random motion along the backbone. This results in 
a mean square displacement (MSD) 〈x2(t)〉 ∼

√
t, i.e. subdiusive behavior along the 

backbone. Nowadays, comb-like models are widely used to describe dierent exper-
imental applications, such as anomalous transport along spiny dendrites [9, 10, 11] and 
dendritic polymers [12], to mention just a few.

In the continuum limit, transport on a comb can be described by an anisotropic 
diusion equation,

∂P (x, y, t)

∂t
= [C(y)]2Dx

∂2P (x, y, t)

∂x2
+Dy

∂2P (x, y, t)

∂y2
. (1)

This diusion equation is equivalent to the system of Langevin equations

dX

dt
= C(Y )ξx(t), (2a)

dY

dt
= ξy(t), (2b)

where ξx(t) and ξy(t) are two uncorrelated Gaussian white noises with

〈ξx(t)〉 = 〈ξy(t)〉 = 0, (3a)

〈ξx(t)ξx(t′)〉 = 2Dxδ(t− t′), (3b)

〈ξy(t)ξy(t′)〉 = 2Dyδ(t− t′), (3c)

〈ξx(t)ξy(t′)〉 = 0. (3d)
Here 〈·〉 denotes averaging over the noises. Equation (1) can be obtained assuming 
both Ito and Stratonovich interpretations since the specific form of the Langevin equa-
tions (2) yields to the same Wong–Zakai terms.

The coecient C (y ) in equation (1) introduces a heterogeneity that couples the 
motion in both directions. In most works about transport on combs [8, 13, 14] this 

coecient is taken to be [C(y)]2 = δ(y), a Dirac delta function, which means that the 

teeth cross the backbone only at y  =  0. The system of equations (2) has also been 

applied to certain problems in biochemical kinetics [15, 16].
Our goal is to apply the Langevin equations (2) to situations where the motion of 

particles does not correspond to simple Brownian motion. In particular we will focus on 
the case where the driving noises along the teeth, i.e. in the y-direction are no longer 
Gaussian white noises. In other words, we consider combs where the transport process 
along the teeth can dier fundamentally from the transport process along the backbone.

The paper is organized as follows. In section 2 we introduce our generalized Langevin 
description. An exact analytical expression for the MSD along the backbone is derived in 
section 3. We use that result to investigate the eect of subdiusive and superdiusive 

https://doi.org/10.1088/1742-5468/aa6bc6
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motion along the teeth, motion driven by various types of noises, as well as the eect 
of the geometry of the teeth in sections 4–6. We discuss our results in section 7.

2. Langevin equations

Consider first a ramified structure where the particle dynamics is governed by the gen-
eral Langevin equations

dX

dt
= βxC(Y )ξx(t), (4a)

dY

dt
= ξy(t). (4b)

Here (X (t ),Y (t )) is a random process describing the position of the particle in a two-
dimensional space, and βx is a positive parameter. The random driving forces ξx and ξy 
are two external noises that drive the motion of the particle along the x-direction, back-
bone or main direction, and the y-direction, branches or secondary direction, respec-
tively. The motion along the y-direction is then independent of the x coordinate. The 
coupling of the motions along the x and y directions is described by C (Y ). In fact, we 
will consider a more general system than equations (4). The random process Y (t ) does 
not have to be given by the Langevin equation (4b); it can be any suitable random 
process describing the motion in the y-direction, as long as it is independent of X (t ). 
In the following, 〈·〉 denotes averaging over one random variable, e.g. X, and 〈〈·〉〉 over 
all random variables involved, e.g. X and Y. To determine the MSD we rewrite equa-
tion (4a) in the form

d

dt
(X2) = 2βxC[Y (t)]ξx(t)X(t). (5)

We integrate equation (4a) with the initial condition X (0)  =  0, substitute the result 
into equation (5), and average over the noise ξx(t) to find

d

dt

〈
X2(t)

〉
= 2β2

xC[Y (t)]

∫ t

0

C[Y (t′)] 〈ξx(t)ξx(t′)〉 dt′. (6)

In the following we assume in all cases that the noise ξx(t) driving the motion along 
the backbone is white, i.e. 〈ξx(t)ξx(t′)〉 = 2Dxδ(t− t′), and we adopt the Stratonovich 
interpretation. We also consider for simplicity that both noises ξx and ξy are uncorre-
lated. Then equation (6) turns into

d

dt

〈
X2(t)

〉
= 2Dxβ

2
x (C[Y (t)])2 . (7)

Let D be the range of Y (t ). Then averaging equation (7) over Y, we obtain

d

dt

〈〈
X2(t)

〉〉
= 2Dxβ

2
x

∫

D
(C[y])2PY (y, t)dy, (8)

https://doi.org/10.1088/1742-5468/aa6bc6
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where PY (y, t) = 〈δ(Y (t)− y)〉. Consequently, the MSD for transport through the 
ramified structure is given by

〈〈
X2(t)

〉〉
= 2Dxβ

2
x

∫ t

0

dt′
∫

D
(C[y])2PY (y, t

′)dy. (9)

3. The mean square displacement

We use the result (9) to assess the influence of various types of motion in the y-direction 
on the transport through the structure. The simplest case occurs if the structure is 
actually not ramified at all, i.e. the particles move in the x-y-plane. The dynamics of 
X (t ) and Y (t ) are independent, i.e. C [Y (t )]  =  C  =  const. We obtain from equation (9)

〈〈
X2(t)

〉〉
= 2Dxβ

2
xC

2t. (10)

In other words, the motion projected into the x-axis corresponds to normal diusive 
behavior. This is the expected result, since X (t ) does not depend on Y (t ) and is driven 
by white noise.

More interesting behavior occurs for a comb-like structure. To account for this case 
we consider that the coupling function can be written as

C[y] =

√
�

π(y2 + �2)
. (11)

Note that C2[y] is a regularization, or representation, of the Dirac delta function for 
� → 0. So, invoking the fact that C2[y] → δ(y) for � → 0, equation (9) reads

〈〈
X2(t)

〉〉
= 2β2

xDx

∫ t

0

dt′
∫ ∞

−∞
PY (y, t

′)δ(y)dy

= 2β2
xDx

∫ t

0

dt′PY (y = 0, t′)
 (12)

or in Laplace space

〈〈
X̂2(s)

〉〉
= 2β2

xDx
P̂Y (y = 0, s)

s
, (13)

where the hat symbol denotes the Laplace transform and s is the Laplace variable.

Taking into account the inverse Fourier transform PY (y, t) = (1/2π)
∫∞
−∞ dk exp(−iky) 

PY (k, t), it is easy to see that P̂Y (y = 0, s) = (1/2π)
∫∞
−∞ dkP̂Y (k, s). Substituting this 

result into (13), we find that the MSD reads
〈〈

X̂2(s)
〉〉

=
β2
xDx

πs

∫ ∞

−∞
dkP̂Y (k, s), (14)

https://doi.org/10.1088/1742-5468/aa6bc6
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i.e. we can determine the MSD in Laplace space if we know the propagator, in Fourier–
Laplace space, along the teeth.

4. Secondary branches with infinite length

Note that our results for the MSD, equations (12)–(14), are valid as long as the move-
ment along the backbone follows the Langevin dynamics given by equation (4a). The 
motion of the particles along the teeth need not be governed by the Langevin dynamics 
equation (4b); it can be any suitable random process. In this section we explore trans-
port through the comb when the movement of particles along the teeth is anomalous, 
i.e. non-standard diusion.

4.1. Continuous-time random walk

We consider here the case where the motion along the teeth can be described by 
a continuous-time random walk (CTRW). The propagator in Fourier–Laplace space 

P̂Y (k, s) is given, in general, by the Montroll–Weiss equation [17], and we obtain from 

equation (14)
〈〈

X̂2(s)
〉〉

=
β2
xDx[1− φ̂(s)]

πs2

∫ ∞

−∞

dk

1− λ(k)φ̂(s)
, (15)

where λ(y) and φ(t) are the jump length and waiting time PDFs of the random motion 
along the branches, respectively.

Subdiusive motion along the teeth occurs for a waiting time PDF φ(t) ∼ (t/τ)−1−α 

or φ̂(s) ∼ 1− (τs)α, where 0 < α < 1. In the diusion limit, the jump length PDF is 

given by λ(k) ∼ 1− σ2k2/2, where σ2 is the second moment of the jump length PDF. 
In this case equation (15) yields for t → ∞

〈〈
X2(t)

〉〉
=

β2
xDx√

KαΓ(2− α/2)
t1−α/2, (16)

where Kα = σ2/(2τα) is a generalized diusion coecient. In other words, subdiusion in 
the y-direction with anomalous exponent α gives rise to subdiusive transport through 
the ramified structure along the backbone with exponent 1− α/2. This result agrees 
with the result obtained considering a two-dimensional fractional diusion equation to 
describe anomalous diusion in the teeth and normal diusion along the backbone (see 
[9] for details). Note that the transport process along the backbone and the teeth are 
very dierent. The transport along the backbone is always diusive because the driv-
ing noise ξx(t) is assumed white and Gaussian. However, the movement of particles 
along the teeth is governed by a waiting time PDF at a given point in the teeth. The 
anomalous exponent is α and for very long waiting time, that is α very small, the par-
ticles have a small probability of entering the teeth; it is far more likely that they get 
swept along the backbone. Then, as α → 0, the probability of entering the teeth goes 
to zero and the transport along the comb is basically described by the transport along 
the backbone, i.e. it approaches normal diusion. On the other hand, as the motion 

https://doi.org/10.1088/1742-5468/aa6bc6
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in the teeth approaches normal diusive behavior, α → 1, the MSD approaches the 
well-known behavior 〈〈X2(t)〉〉 ∼

√
t of simple random walks on combs [6, 18, 19]. If α 

governs both the motion along the backbone and the teeth as in [20], then the MSD 
scales as tα/2.

Analogously, to account for superdiusion along the teeth we consider an exponen-

tial waiting-time PDF φ(t) = exp(−t/τ)/τ, i.e. φ̂(s) ∼ 1− τs, and a heavy-tailed jump 

length PDF, λ(y) ∼ σµ |y|−1−µ, i.e. λ(k) ∼ 1− σµ |k|µ, where 1 < µ < 2. In other words, 
the motion along the teeth, Y(t), is a Lévy flight. In this case, equation (15) yields

〈〈
X2(t)

〉〉
=

2β2
xDx

µK
1/µ
µ sin(π/µ)

t1−1/µ

Γ(2− 1/µ)
, (17)

where Kµ = σµ/τ  is a generalized diusion coecient. Interestingly, superdiusive 
motion in the y-direction also gives rise to subdiusive transport through the ramified 
structure, i.e. along the backbone, with the anomalous exponent 1− 1/µ < 1/2.

For diusive transport along the teeth, λ(k) � 1− σ2k2/2, with a general waiting-
time PDF φ(t), we find after some algebra that equation (15) reads

〈〈
X̂2(s)

〉〉
=

√
2β2

xDx

σs2

√
φ̂(s)−1 − 1. (18)

If φ(t) has finite moments, we expand the PDF for small s to obtain φ̂(s)−1 � 1 + 〈t〉s+ · · ·. 
From equation (18) we recover the result 〈〈X2(t)〉〉 ∼ t1/2, regardless of the specific form 

of the waiting-time PDF. Finally, if we consider heavy-tailed PDFs for both the wait-

ing times and the jumps lengths, i.e. φ̂(s) = 1− (τs)α and λ(k) ∼ 1− σµ|k|µ, we find 

from (15) after some calculations 〈〈X2(t)〉〉 ∼ t1−α/µ, which predicts subdiusive trans-
port along the backbone.

4.2. Fractional Brownian motion and fractal time process

Interesting and well known non-standard random walks are the fractional Brownian 
motion (FBM) and the fractal time process (FTP). If the particles perform a FBM 
along the teeth, the diusion equation reads

∂PY (y, t)

∂t
= αDαt

α−1∂
2PY (y, t)

∂y2
, (19)

where 0 < α < 1 and Dα is a generalized diusion coecient. The solution of equa-
tion (19) is given by [21]

PY (y, t) = (4πDtα)−1/2 exp(−y2/4Dtα). (20)

Substituting this expression into equation (12) yields the following expression for the 
MSD along the backbone,

〈〈
X2(t)

〉〉
=

β2
xDx√

πDα(1− α/2)
t1−α/2. (21)

In other words, the transport along the backbone is subdiusive with exponent 1− α/2, 
as in the case of a subdiusive CTRW, see equation (16).

https://doi.org/10.1088/1742-5468/aa6bc6
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If the motion of the particles along the teeth corresponds to the FTP, the diusion 
equation reads

∂PY (y, t)

∂t
=

Dα

Γ(α− 1)

∫ t

0

dt′

(t− t′)2−α

∂2PY (y, t
′)

∂y2
. (22)

The solution of equation (22) in Laplace space is given by [21]

P̂Y (y, s) =
[
2
√

Dαs
1−α/2

]−1

exp
(
− |y| sα/2/

√
Dα

)
. (23)

Substituting this expression into equation (13) and taking the inverse Laplace trans-
form, we find

〈〈
X2(t)

〉〉
=

β2
xDx√

DαΓ(2− α/2)
t1−α/2. (24)

In both cases, FBM and FTP the MSD scales with time as for the case of a subdiusive 
CTRW, see equation (16).

4.3. Fractal teeth

We next consider ramified structures where the teeth consist of branches with a spatial 
dimension dierent from one. In this section we consider the case of particles undergoing 
a random walk on secondary branches with fractal structure. The case of n-dimensional 
teeth will be studied in section 5.3. Equation (12) implies that we only need to know the 
value of PY  (y  =  0,t). Mosco [22] (see also equation (6.2) in [5]) obtained the following 
expression for the propagator through a fractal in terms of the Euclidean distance r,

PY (r, t) ∼ t−df/dw exp

[
−c

( r

t1/dw

) dwdmin
dw−dmin

]
, (25)

where d f and dw are the fractal and random walk dimensions, respectively, and dmin 
corresponds to the fractal dimension of the shortest path between two given points in 
the fractal. Substituting PY (r = 0, t) ∼ t−df/dw into equation (12), we find for t → ∞,

〈〈X2(t)〉〉 ∼



ln(t), df = dw,

t1−df/dw , df < dw,

O(1), df > dw.
 (26)

These results coincide with the scaling results predicted in [4]. If df > dw, the MSD 
approaches a constant value as time goes to infinity. This corresponds to stochastic 
localization, i.e. transport failure [23].

5. Dynamics in the teeth driven by external noise

We next consider that the motion in the y-direction is given by the Langevin equa-
tion (4b). With the initial condition Y (0)  =  0, equation (4b) yields:

https://doi.org/10.1088/1742-5468/aa6bc6


Langevin dynamics for ramified structures

9https://doi.org/10.1088/1742-5468/aa6bc6

J. S
tat. M

ech. (2017) 063205

Y (t) =

∫ t

0

ξy(t
′)dt′. (27)

Consequently, we can express the PDF PY (k,t) in terms of the characteristic functional 
of the noise ξy(t),

Φ(k, t) =

〈
exp

(
ik

∫ t

0

ξy(t
′)dt′

)〉
. (28)

Substituting equation (28) into equation (12), we find

〈〈
X2(t)

〉〉
=

Dxβ
2
x

π

∫ t

0

dt′
∫ ∞

−∞
Φ(k, t′)dk. (29)

We have obtained a general expression for the MSD of the transport through a ramified 
structure for a given Langevin particle dynamics.

5.1. Colored Gaussian external noise

We assume that the particles move along the teeth driven by a Gaussian colored noise 
ξy(t) with arbitrary autocorrelation 〈ξy(t)ξy(t′)〉 = γ(t, t′). White noise corresponds 
to the limiting case γ(t, t′) = δ(t− t′). The characteristic functional of a zero-mean 
Gaussian random process is given by, see e.g. [24],

Φ(k, t) = exp

[
−k2

∫ t

0

dt′
∫ t′

0

γ(t′, t′′)dt′′

]
. (30)

We assume that the noise is stationary, i.e. γ(t, t′) = γ(t− t′). We change the order of 
integration and obtain

Φ(k, t) = exp

[
−k2

∫ t

0

dt′γ(t′)(t− t′)

]
. (31)

Since

Lt

[∫ t

0

dt′γ(t′)(t− t′)

]
=

γ̂(s)

s2
, (32)

we can write the characteristic functional in the form

Φ(k, t) = exp

[
−k2L−1

t

(
γ̂(s)

s2

)]
, (33)

where L−1
t  denotes the inverse Laplace transform. Substituting this result into equa-

tion (29) and performing the integral over k, we find

〈〈
X2(t)

〉〉
= β2

x

Dx√
π

∫ t

0

dt′
{
L−1

t′

[
γ̂(s)

s2

]}−1/2

. (34)

Equation (34) is a concise relation between the MSD of the transport along the back-
bone and the statistical characteristics of the stationary Gaussian noise driving the 
motion along the teeth in term of its autocorrelation function γ(t− t′). We define the 
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noise intensity as Dy = (1/2)
∫∞
0

γ(t)dt = γ̂(s = 0)/2, according to [25]. If Dy is finite 

and nonzero, the function γ̂(s) can be expanded in a power series expansion for small s. 

Up to the leading order we find γ̂(s)/s2 � 2Dy/s
2, and L−1

t′ [γ̂(s)/s2] � 2Dyt
′. Therefore 

we obtain from equation (34),
〈〈
X2(t)

〉〉
=

Dxβ
2
x

2
√

2Dyπ
t1/2 t → ∞, (35)

i.e. the transport through the ramified structure is subdiusive with anomalous expo-
nent 1/2.

Figure 1 confirms the result provided by equation (35), which implies that the MSD 
grows like 

√
t for long times for any Gaussian noise, regardless of its correlation func-

tion. We have shown that subdiusive transport with anomalous exponent 1/2 emerges 
under more general circumstances, namely if the motion in the x-direction, i.e. along 
the backbone, is driven by any white noise and the motion along the teeth is driven by 
any colored Gaussian noise with nonzero intensity.

5.2. Non-Gaussian white external noise

We assume now that the particles move along the teeth driven by non-Gaussian noise, 
so-called Lévy noise. This noise is white in time, i.e. the autocorrelation function is 
〈ξy(t)ξy(t′)〉 = δ(t− t′). Then ξy(t) is the time derivative of a generalized Wiener process 

Y (t ), i.e. Y (t) =
∫ t

0
ξy(t

′)dt′, see equation (27). The random process Y (t ) has stationary 

independent increments on non-overlapping intervals [26, 27]. It belongs to the class 

of Lévy processes, and its PDF belongs to the class of infinitely divisible distributions. 
The characteristic functional of Y(t) can be written in the form [26]

Φ(k, t) = exp

[
t

∫ ∞

−∞
dzρ(z)

eikz − 1− ik sin(z)

z2

]
. (36)

Gaussian white noise corresponds to the kernel ρ(z) = 2δ(z). Symmetric Lévy-stable 

noise with index θ corresponds to the power-law kernel ρ(z) ∼ |z|1−θ with 0 < θ < 2, 

which yields

Φ(k, t) = exp
(
−tDθ |k|θ

)
, (37)

where Dθ is a generalized diusion coecient. Substituting this expression for Φ(k, t) 
into equation (29) we obtain

〈〈X2(t)〉〉 ∼



ln(t), θ = 1,

t1−1/θ, 1 < θ � 2,

O(1), 0 < θ < 1,
 (38)

as t → ∞. If θ = 2, the characteristic functional (37) corresponds to the Gaussian one, 
and from (38) the MSD grows like t1/2, as expected. For 1 < θ < 2, the MSD displays 
subdiusive behavior, and the anomalous exponent decreases as θ decreases from 2 to 
1. When it reaches the value θ = 1, Cauchy functional, the MSD grows ultraslowly. 
This behavior has been observed before [4, 28], but it appears here as a result of 
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specific values of the characteristic parameters of the noise that drives the motion along 
the teeth. Finally, if 0 < θ < 1, the exponent is negative and the MSD approaches a 
constant value as time goes to infinity, i.e. stochastic localization or transport failure 
occurs.

In figure 2 we compare the analytical results provided by equation (38) with Monte 
Carlo simulations. Numerical and theoretical predictions show very good agreement for 
large t, where the results given by equation (38) hold.

5.3. Gaussian white noise along n-dimensional teeth

Finally we consider a ramified structure consisting of a unidimensional backbone inter-
sected by n-dimensional secondary branches at the same point (x = ia, yl = 0), where 
l  =  1,...,n. To deal with the stochastic dynamics, we consider equation (4a) together 
with the set of Langevin equations

Figure 1. MSD for dierent cases where the coupling functions have been taken as in 
equation (11) with � = 5× 10−4. Panel (a) Gaussian Ornstein–Uhlembeck noise, i.e. 
exponential correlation function γ(t) = σ2e−t/τ/2τ and intensity Dy = σ2/4τ 2. The 
symbols represent numerical simulations for dierent values of the noise intensity; 
circles: Dy  =  1, triangles: Dy  =  0.25, and inverted triangles: Dy  =  1/16. Panel (b) 
Gaussian white noise with Dy  =  1 (circles), Dy  =  0.5 (triangles), and Dy  =  1/4 
(inverted triangles). In both panels, βx = 0.5 and Dx  =  1. The straight solid lines 
correspond to the theoretical predictions given by equation (35).
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dYl

dt
= ξyl(t). (39)

Proceeding similarly as for the case l  =  1 and taking into account 〈ξx(t)ξx(t′)〉 = 
2Dxδ(t− t′), we find

dX2

dt
= 2Dxβ

2
x

n∏
l=1

[Cl(Yl)]
2. (40)

Averaging over Y1, . . . , Yn yields

d

dt

〈〈
X2(t)

〉〉
= 2Dxβ

2
x

n∏
l=1

∫ ∞

−∞
(Cl[yl])

2PYl
(yl, t)dyl. (41)

We assume again that the dynamics of X (t ) and Yl (t ) are coupled within a narrow 
strip of width � around the backbone, i.e. the coupling function Cl[yl] has the form 
given by equation (11).

Integration of equation (41) yields, in the limit � → 0,

〈〈
X2(t)

〉〉
= 2Dxβ

2
x

∫ t

0

n∏
l=1

PYl
(0, t′)dt′. (42)

As in equation (28), PYl
(kl, t) = 〈exp[iklYl(t)]〉. Integrating equation (39), we find the 

characteristic functional for each ξyl,

Φ(kl, t) =

〈
exp

(
ikl

∫ t

0

ξyl(t
′)dt′

)〉
, (43)

and equation (29) now reads

〈〈
X2(t)

〉〉
=

2Dxβ
2
x

(2π)n

∫ t

0

dt′
n∏

l=1

∫ ∞

−∞
dklΦ(kl, t

′). (44)

Figure 2. MSD for three dierent values of the exponent θ. Monte Carlo simulations 
correspond to θ = 1 (circles), θ = 1.5 (triangles), and θ = 0.5 (inverted triangles). 
Solid lines correspond to the theoretical predictions given by equation (38).
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We consider the case that the ξyl(t) are uncorrelated Gaussian white noises, i.e. 
〈ξxm(t)ξxl

(t′)〉 = 2Dymδmlδ(t− t′), where m, l = 1, . . . , n. Their characteristic functional 
is Φ(kl, t) = exp(−tDylk

2
l ). Substituting this result into equation (44), we find

〈〈
X2(t)

〉〉
∼




t1/2, n = 1,

ln(t), n = 2,

O(1), n > 2.
 (45)

Note that the transport shows behavior similar to that of a comb with fractal teeth, 
see section 4.3.

6. Secondary branches with finite length

If the range D of Y (t ) corresponds to a finite interval, it is convenient to work directly 
with equation (12), particularly if the dynamics on the secondary branches is described 
by a diusion equation. As an example consider the case of normal diusion described 
by the equation ∂tPY = Dy∂yyPY  along one-dimensional branches in the y-direction of 
length 2L with reflecting boundary conditions, (∂yPY )y=±L = 0, and initial condition 
PY (y, 0) = δ(y). The solution PY (y, t ) is given by the Fourier series expansion

PY (y, t) =
1

2L
+

1

L

∞∑
n=1

exp

(
−n2π2Dy

L2
t

)
cos

(nπy
L

)
. (46)

By inserting (46) into (12) we find after some algebra

〈〈X2(t)〉〉 = β2
xDx

L
t+

β2
xDxL

3Dy

− 2β2
xDxL

π2Dy

∞∑
n=1

n−2 exp

(
−n2π2Dy

L2
t

)
 (47)

Consequently in the limit t → ∞

〈〈X2(t)〉〉 � β2
xDx

L
t, (48)

i.e. transport through the comb is normal diusion as expected.
We compare this result with the case where the diusion along the teeth is anoma-

lous. The equation for subdiusion along one-dimensional branches in the y-direction 

of length 2L is given by the fractional diusion equation ∂tPY = 0D1−α
t Kα∂

2
yPY , where 

0D−α
t  is the Riemann–Liouville fractional derivative with 0 < α < 1 [29] and Kα is a 

generalized diusion coecient. The solution PY (y, t ) is given by

PY (y, t) =
1

2L
+

1

L

∞∑
n=1

Eα

(
−n2π2Kα

L2
tα
)
cos

(nπy
L

)
, (49)

where Eα(z) is the Mittag–Leer function. Using equations (12) and (49), Eα(z) = Eα,1(z), 
and the integration formula [30]

∫ t

0

dτEα,β (λτ
α) τβ−1 = tβEα,β+1 (λt

α) , (50)

https://doi.org/10.1088/1742-5468/aa6bc6


Langevin dynamics for ramified structures

14https://doi.org/10.1088/1742-5468/aa6bc6

J. S
tat. M

ech. (2017) 063205

we obtain the MSD

〈〈X2(t)〉〉 = β2
xDxt

L
+

2β2
xDxt

L

∞∑
n=1

Eα,2

(
−n2π2Kαt

α

L2

)
, (51)

where Eα,β(z) is the generalized Mittag–Leer function. The long-time behavior of the 
Mittag–Leer function is given by [31]

Eα,2

(
−n2π2Kαt

α

L2

)
∼ L2

Γ(2− α)n2π2Kαtα
, (52)

and the MSD reads

〈〈X2(t)〉〉 = β2
xDx

L
t+

β2
xDxL

3Γ(2− α)Kα

t1−α, (53)

where we have used 
∑∞

n=1 1/n
2 = π2/6. It is clear that for t → ∞ the first term of the 

right hand side of (53) is dominant and the MSD displays normal diusive behavior.
Having studied the eect of subdiusion in finite-length teeth, we now consider 

the case where particles perform superdiusive motion in the teeth. The equation for  
PY (y, t ) is given by ∂tPY = Dµ∂

µ
yPY  with 1 < µ < 2 and with the same boundary and 

initial conditions as in the previous cases. Superdiusion is described by the fractional 
derivative ∂µ

y , which corresponds to a heavy-tailed jump length PDF, and Dµ is a 

generalized transport coecient. The eigenvalue problem ∂µ
yψn(y) = enψn(y) has been 

considered in [32]. The Lévy operator in a box of size 2L reads

∂µ
y f(y) =

∫ L

−L

[
1

2π

∫ ∞

−∞
(− |k|µ)e−ik(y−y′)dk

]
f(y′)dy′. (54)

As follows from [32], the eigenfunctions are ψn(y) = cos(nπy/L), where n = 0, 1, 2, . . ., 
with corresponding eigenvalues en = −(πn/L)µ. The PDF in the teeth reads now

PY (y, t) =
1

2L
+

1

L

∞∑
n=1

exp

(
−nµπµDµ

Lµ
t

)
cos

(nπy
L

)
. (55)

Following the same steps to obtain (48) from (46) we find here the asymptotic result

〈〈X2(t)〉〉 = β2
xDx

L
t as t → ∞. (56)

We have shown that the transport along the backbone is diusive for finite-length teeth, 
if the transport regime of the particles in the teeth is normal diusion, subdiusion, 
and superdiusion.

The robustness of the diusive behavior of the MSD along the backbone can be 
understood as follows. If the random motion of the particles along the finite teeth with 
reflecting boundary conditions is homogeneous and unbiased, then PY (y, t) → 1/(2L) as 
t → ∞. The function system

1√
2L

,
1√
L
cos

(nπy
L

)
, n = 1, 2, . . . , (57)
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is a complete orthonormal system on [−L, L]. Consequently, the PDF of the particle 
motion along the teeth, with initial condition PY (y, 0) = δ(y), can be written as

PY (y, t) =
1

2L
+

1

L

∞∑
n=1

Tn(t) cos
(nπy

L

)
, (58)

with Tn (0)  =  1 and Tn(t) → 0 as t → ∞. If T (t) ≡
∑∞

n=1 Tn(t) is well-defined, i.e. the 
series converges, for t suciently large and if there exists a constant C with 0 � C < ∞, 

such that (1/t)
∫ t

0
dt′T (t′) → C as t → ∞, then the MSD displays again normal diusive 

behavior. These conditions are satisfied for the three cases analyzed above. In other 
words, if the teeth are finite, then the reflecting boundary conditions will give rise to a 
uniform distribution along the teeth for all types of transport. That is, the nature of the 
transport, anomalous or not, plays no role. This is due to a balance reached between 
particles within the teeth and those in the backbone. Although subdiusive transport 
in the teeth means that mean residence times within the teeth can diverge, this is 
balanced by the fact that typical times of departure from the backbone also diverge 
asymptotically with the same anomalous exponent. So, both eects compensate to keep 
PY (y  =  0, t ) constant asymptotically for large times, so the MSD will grow linearly in 
time according to equation (12). In the Appendix we provide a more formal justification 
of this idea by studying the asymptotic behavior of PY (y  =  0, t ) as a function of the 
backbone-teeth time dynamics. Therefore, since the transport along the backbone itself 
is diusive, being driven by white noise, we expect to obtain a diusive scaling for the 
MSD.

7. Conclusions

We have adopted a general Langevin formalism to explore transport through ramified 
comb-like structures. The transport through the structure is characterized by the 
behavior of the MSD along the backbone. We have derived an exact analytical expres-
sion, given in equations (12)–(14), that allows us to determine the MSD explicitly from 
the PDF of the motion along the secondary branches, PY (y,t), i.e. the probability of a 
particle to be at point y of a secondary branch at time t.

If the secondary branches have finite length and reflecting boundary conditions, 
then under some mild conditions the transport regime along the teeth does not mat-
ter and the MSD is proportional to t, indicating standard diusion. We have shown 
this explicitly for diusive, subdiusive, and superdiusive motion along the second-
ary branches. If the secondary branches have infinite length, then both subdiusion 
and superdiusion along the teeth generate a subdiusive MSD along the backbone. 
Therefore, the finite or infinite length of the secondary branches plays a crucial role for 
the transport along the overall structure.

Another interesting situation arises if the dynamics of the particles along the sec-
ondary branches are described directly by a Langevin equation. For this case we have 
obtained an exact analytical formula, see equation (29), that relates the MSD along the 
backbone to the characteristic functional of the noise ξy(t) driving the motion along the 
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secondary branches. This expression is completely general and holds for any noise ξy(t). 
We have considered several dierent situations. For Gaussian colored noise ξy(t), we 
have shown that if the noise intensity is finite and nonzero, then the MSD grows like 
t1/2 along the backbone. We have checked this result with Monte Carlo simulations, 
performed for the case of Gaussian white noise and exponentially correlated Gaussian 
noise, i.e. Ornstein–Uhlenbeck noise. In addition, we have also considered that ξy(t) is 
white but non-Gaussian noise. In this case our interest has been focused on symmetric 
Lévy-stable noise with exponent θ. We have found that the MSD along the backbone 
grows ultraslowly like ln(t), if the PDF of the white noise ξy(t) is a Cauchy distribu-
tion, θ = 1. For 0 < θ < 1, the MSD exhibits stochastic localization, i.e. it approaches 
asymptotically a constant value, while for 1 < θ < 2 the MSD exhibits subdiusion. 
Excellent agreement is found with Monte Carlo simulations. We have also considered 
multidimensional and fractal secondary branches. We have obtained dierent behav-
iors like ultraslow motion, subdiusion, and stochastic localization in terms of the 
dimension of the secondary branches.

In summary, we have shown in this work how particles moving through a simple 
regular structure, namely a comb, are able to display a variety of macroscopic transport 
regimes, namely transport failure (stochastic localization), subdiusion, or ultraslow 
diusion, depending on whether the secondary branches have finite or infinite length 
but also on the statistical properties of the noise that drives the motion along them. We 
expect our results to find applications to the description of the movement of organisms 
and animals through ramified structures like river networks, ecological corridors, etc.
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Appendix

In section 6 we have seen that diusive properties in the backbone do not change 
qualitatively by introducing dierent modes of transport (superdiusive, subdiusive) 
within the teeth. Intuitively, one expects that the transport properties in the backbone 
are mainly determined by the dynamics of entrance into the teeth and return from 
them (since only particles at y  =  0 contribute to the transport in the backbone).

To clarify this connection, we here derive the dependence of PY (y  =  0, t ) (which 
determines the mean square displacement through equation (12)) on the typical times 
the particle stays in the teeth. We introduce ψ1(t) as the probability distribution of 
times a particle stays in the backbone before entering into the teeth, and ψ2(t) as the 
corresponding distribution of times the particle spends within the teeth before return-
ing to the backbone. So, the mean value of ψ2(t) determines the mean residence time 
within the teeth. The probability that a particle is at y  =  0 at an arbitrary time t will 
be then given by
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PY (y = 0, t) = Ψ1(t) + ψ1(t) ∗ ψ2(t) ∗Ψ1(t) + ψ1(t) ∗ ψ2(t) ∗ ψ1(t) ∗ ψ2(t) ∗Ψ1(t) + . . .
 (A.1)

where Ψ1(t) is the survival probability of ψ1(t), i.e. Ψ1(t) =
∫∞
t

ψ1(t
′)dt′, and the aster-

isk denotes time convolution; also, we have here implicitly assumed that at t  =  0 all the 
particles are located in the backbone, PY (y  =  0, 0)  =  1. In the previous expression, the 
first term on the rhs represents those particles which have not yet left the backbone at 
time t, the second term corresponds to those that are currently at the backbone after a 
previous excursion within the teeth, the third term represents those particles that have 
performed two previous excursions within the teeth, and so on.

Using Laplace transform to deal easily with the time convolution operators, we find

P̂Y (y = 0, s) =
Ψ̂1(s)

1− ψ̂1(s)ψ̂2(s)
 (A.2)

where the hat denotes the Laplace transform, and s is the Laplace argument.
Now that we have reached a generic expression connecting the backbone-teeth 

time dynamics to P̂Y (y = 0, s), we can study how this expression behaves in the long-

time (or equivalently, small s) regime. For this, we assume that the distributions of 
times within the backbone and within the teeth follow generic anomalous scaling in 
the asymptotic regime through ψ1(t) ∼ t−1−α1 and ψ2(t) ∼ t−1−α2, for t → ∞. With the 
help of Tauberian theorems we can translate this to Laplace space and obtain finally 
from (A.2)

lim
s→0

P̂Y (y = 0, s) ∼ sα1−1−min(α1,α2)
 (A.3)

This expression confirms our results above in section 6. If the anomalous exponent 
determining the entrance within the teeth and the return from it satisfies α1 � α2 then 

we get lims→0 P̂Y (y = 0, s) ∼ s−1, or equivalently limt→∞ PY (y = 0, t) ∼ const, and then 

the transport in the backbone is always diusive independent of αi with i  =  1, 2. This 
will be the case for normal diusion within the teeth, and also for anomalous transport 
within the teeth determined by power-law asymptotic decay of waiting times (see, e.g. 
[33], for details and a deeper discussion on this point). Additionally, we observe from 
(A.3) that only in the case of an imbalance in the backbone-teeth dynamics (so α1 > α2) 
would be obtain a dierent (non-diusive) result.
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