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In this work we construct individual-based models that give rise to the generalized logistic model at the
mean-field deterministic level and that allow us to interpret the parameters of these models in terms of individual
interactions. We also study the effect of internal fluctuations on the long-time dynamics for the different models
that have been widely used in the literature, such as the theta-logistic and Savageau models. In particular, we
determine the conditions for population extinction and calculate the mean time to extinction. If the population does
not become extinct, we obtain analytical expressions for the population abundance distribution. Our theoretical
results are based on WKB theory and the probability generating function formalism and are verified by numerical
simulations.
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I. INTRODUCTION

The main goal of population dynamics is to determine
how the size of the population n changes with time. It has
been observed that the size n(t) depends on the way the
population grows when the size is small and declines when
the size is large. In the small size limit, the simplest model
predicts that the size increases exponentially with time. This is
equivalent to the assumption that the per capita growth rate is
constant, n−1dn/dt = r , where r is the intrinsic per capita
growth rate. This model yields an exponentially unlimited
population growth, n(t) = n(0)ert . Although initial exponen-
tial growth occurs in many populations, it cannot extend
to the whole population growth period. As the population
grows, competition for resources among its individuals and
the presence of predators, parasites, or competitors cause
a reduction in the population growth rate. The relation
between the per capita growth rate and the population size
is one of the central issues in ecology. The classical model
of population dynamics, the logistic equation, incorporates
a density-dependent regulation that considers the simplest
situation where the per capita growth rate declines linearly
with population size, n−1dn/dt = r[1 − (n/K)]. Here K is
the carrying capacity of the population, i.e., it is the maximum
sustainable population. The concept of carrying capacity
in human populations has evolved to accommodate many
resource limitations, such as available water, energy, and other
ecosystem goods and services [1,2].

The theta-logistic equation has been proposed as a gener-
alization of the logistic growth [3]. The per capita growth
rate is n−1dn/dt = r[1 − (n/K)θ ], where it is argued in
Ref. [4] that the exponent θ depends on the ways that animals
interact at different densities. This model has been fitted
to 1780 populations of birds, mammals, bony fishes, and
insects [4], and both positive and negative values for θ were
found. The negative values, however, have generated some
controversy [5,6]. In fact, this parameter is very sensitive to
measurement errors and environmental fluctuations [7]. It has
been given a phenomenological interpretation to understand
what ecological factors influence its value [8]. The basic

Savageau model, where the per capita growth rate reads

n−1dn/dt = rnθ1 [1 − (n/K)θ2 ], (1)

represents a more general model. It provides a more
realistic framework in which to study density-dependent
regulation, by allowing for simultaneous nonlinear effects
of population size in birth and death rates [6,9–11]. A
particular case of this model is von Bertalanffy’s equa-
tion [12,13], which has been applied as an ontogenetic
growth model [14,15] and in the context of the growth of
cities [16].

All these models are deterministic and ignore fluctua-
tions. Some studies have considered the effect of external
fluctuations on the theta-logistic equation by assuming ad
hoc Gaussian white noise [17]. Yet internal or demographic
fluctuations, caused by the discreteness of individuals and
the stochastic nature of their interactions, are known to
be very important in the case of small population sizes
[18,19].

Some authors have investigated demographic noise in
those models, by considering single-step birth-death pro-
cesses that give rise to linear [20,21] and nonlinear density-
regulation growth in the mean-field limit [22,23]. However,
they introduce the density-dependent birth-and-death rates in
an ad hoc manner. Furthermore, while the quasistationary
distribution (QSD) has been analytically [22] or numerically
[24] calculated in some particular cases, the mean time to
extinction has not been obtained for these models.

We investigate the dynamics of a single species population
influenced by demographic fluctuations in the most general
case. To this end, we adopt a general multistep reaction
scheme. This framework allows us to define the ecological
system in terms of the events that govern the dynamics
of the system at the individual level. In particular, instead
of postulating it phenomenologically, as in Refs. [22,23],
we derive the generalized growth equation analytically as
the mean-field limit of these individual-based models. Our
goal is twofold: (1) to provide a clear physical meaning
for the parameters of the mean-field deterministic growth
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equations in terms of the rates of the processes occurring in an
individual-based description and (2) to go beyond the mean-
field description and to elucidate the effects of demographic
noise on the population dynamics. Specifically, we determine
the conditions for extinction or persistence. For the former, we
employ WKB theory [25] to obtain analytical expressions for
the QSD and the mean time to extinction (MTE). For the latter,
we employ the probability generating function formalism to
obtain analytical expressions for the stationary population
abundance. Our theoretical results are verified with numerical
simulations.

The paper is organized as follows. We introduce the
individual-based description in Sec. II, derive the correspond-
ing mean-field equation, and establish the connection between
the rates of the microscopic processes and the parameters of
the deterministic growth equation, achieving our first goal.
In the following sections, we focus on our second goal. In
Sec. III A, we determine the conditions for extinction due to
demographic noise and obtain analytical expressions for the
QSD and MTE for the generalized logistic model. For the case
of population persistence, we derive the analytical expression
for the population abundance distribution in Sec. III B. We
extend our individual-based description in Sec. IV to include
a natural death process and investigate its effect on the MTE.
In Sec. V we provide results for doomsday scenarios, i.e.,
runaway systems. We discuss our results and their implications
in Sec. VI.

II. STOCHASTIC DESCRIPTION OF NONLINEAR
DENSITY-REGULATION MODELS

We start from the general birth-and-death processes

bA
λ−→ (b + a)A, (2a)

cA
μ−→ (c − d)A, (2b)

where a, b, c, and d are positive integers and c � d. These
interactions imply that b individuals are necessary to produce
a new individuals at rate λ, and c individuals fight or compete
to remove d individuals at rate μ. We make the standard
assumption that the reaction scheme (2) defines a Markovian
birth-and-death process and employ the Master equation, also
known as the forward Kolmogorov equation, to describe the
temporal evolution of P (n,t), the probability of having n

individuals at time t [24]:

∂P (n,t)

∂t
=

∑
r

[W (n − r,r)P (n − r,t) − W (n,r)P (n,t)].

(3)

Here W (n,r) are the transition rates between the states with
n and n + r individuals, and r = {r1,r2} = {a, − d} are the
transition increments. The transition rates corresponding to
each reaction, W (n,r), are obtained from the reaction kinetics
and for (2) read

W (n,a) = λ

b!

n!

(n − b)!
, W (n,−d) = μ

c!

n!

(n − c)!
. (4)

Substituting (4) into (3), we find

∂P (n,t)

∂t
= λ

b!

(n − a)!

(n − a − b)!
P (n − a,t)

+ μ

c!

(n + d)!

(n + d − c)!
P (n + d,t)

−
[

λ

b!

n!

(n − b)!
+ μ

c!

n!

(n − c)!

]
P (n,t), (5)

where it is understood that P (n < 0,t) = 0. For P (0,t), the
master equation is

∂P (0,t)

∂t
=

∑
r<0

W (n = −r,r)P (−r,t). (6)

A population that undergoes the birth-and-death processes
described by (2) can either become extinct, when c = d, or
reach a nontrivial stationary distribution, when d < c. In the
former case, we assume that prior to extinction the system first
reaches a long-lived metastable state, whose shape is given
by the QSD centered about the nontrivial steady state of the
deterministic mean-field equation; see below. (The concept of
the QSD was introduced in Ref. [26].) After an exponentially
long waiting time, the population reaches the absorbing state
at n = 0 and becomes extinct. Importantly, once the system
has settled into the long-lived metastable state, the dynamics
is governed by a single time exponent. The time-dependent
probability distribution function (PDF) satisfies P (n > 0,t) =
P (n) e−t/τ , while the extinction probability satisfies P (0,t) =
1 − e−t/τ , where τ is the MTE [25,27–33]. As a result, the
MTE τ generally satisfies [32]

τ−1 =
∑
r<0

W (n = −r,r)P (−r), (7)

where P (−r) has to be determined by matching the QSD, valid
for large n, with a recursive solution valid for small values of
n [32]. The inverse of τ represents the population’s extinction
risk, the rate at which extinction may occur within a given
period of time.

To address our first goal, we derive the mean-field dynamics
from the master equation. Multiplying (5) by n and summing
over n, we obtain the equation for the mean number of
individuals. Applying the mean-field approximation 〈nk〉 �
〈n〉k , which holds if the typical population size is large, we
arrive at the mean-field equation for the population growth,

dn

dt
= λa

b!
nb − μd

c!
nc, (8)

known in the ecological literature as the basic Savageau model
[10]. This achieves our first goal. Comparing the equation
for the Savageau model (1) with the mean-field limit of the
individual based description (8) allows us to interpret the
parameters θ1, θ2, and K in terms of the basic parameters
of the individual interactions, a, b, c, d, λ, and μ. Explicit
expressions are provided below.

III. STOCHASTIC DYNAMICS OF THE THETA-LOGISTIC
EQUATION, TWO-REACTIONS MODEL

We now consider a specific example of the reaction
scheme given by Eq. (2), namely, the so-called theta-logistic
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equation,

A
λ−→ 2A, (9a)

cA
μ−→ (c − d)A, (9b)

where d � c, and we have set a = b = 1 in Eq. (2). Here the
birth process consists of an individual that produces a new
offspring with constant rate λ. The death process destroys
d individuals as a consequence of competition among c

individuals. As stated above, extinction of the population can
occur only when d = c, in which case the death process, given
by (9), reads cA

μ−→ ∅.

The transition probabilities follow from (4),

W (n,1) = λn, W (n,−d) = μ

c!

n!

(n − c)!
. (10)

The master equation corresponding to the individual interac-
tions (9) reads

∂P (n,t)

∂t
= λ(n − 1)P (n − 1,t)

+ μ

c!

(n + d)!

(n + d − c)!
P (n + d,t)

−
[
λn + μ

c!

n!

(n − c)!

]
P (n,t). (11)

As stated above, the mean-field dynamics can be found by
multiplying the master equation (11) by n and summing over
n. This yields the theta-logistic equation [3] as a mean-field
description of the system (9),

dn

dt
= rn

(
1 − nc−1

Kc−1

)
. (12)

The intrinsic growth rate and carrying capacity are defined in
terms of the parameters related to the individual interactions,

r = λ, K =
(

c!λ

μd

) 1
c−1

. (13)

This result contributes to our first goal. We have provided
a clear meaning of the exponent θ = c − 1 of the nonlinear
regulation term in the theta-logistic equation. It corresponds to
the number of individuals involved in the competition or death
process minus one. In addition, we have obtained an expression
for the carrying capacity K in terms of the parameters of the
individual-based model (9).

The deterministic behavior of the population is given by the
mean-field theta-logistic equation (12). The state n = 0 is an
unstable state, while the state n∗ = K is a stable state. Further,
(12) can be solved exactly,

n(t) = K{
1 − [

1 − (
K

n(0)

)c−1]
e−r(c−1)t

}1/(c−1) . (14)

The mean-field dynamics ignores demographic fluctuations
originating in the discreteness of individuals and the stochas-
ticity of the birth-and-death processes. Fluctuations cause
extinction of the population when d = c and give rise to a
stationary probability distribution function for d < c.

To address our second goal, we determine the QSD of the
long-lived metastable state and the MTE for the case of d =

c (extinction) and the population abundance distribution for
d < c (persistence). Note that these two, qualitatively very
different, regimes of the underlying microscopic dynamics
are both described by the same mean-field equation, namely,
Eq. (12).

A. Quasistationary distribution and mean time to extinction

In this subsection we consider the case of c = d and
calculate the QSD and MTE employing WKB theory [25]. It is
convenient to rescale time t → λt and introduce the rescaled
population number density q = n/N , where

N =
(

λ

μ

) 1
c−1

(15)

denotes the typical population size in the long-lived
(meta)stable state. Henceforth we will assume that N � 1.

To determine the QSD and MTE, we follow the general
formalism outlined in the papers by Escudero and Kamenev
[31] and Assaf and Meerson [32], and write the transition rates,
for N � 1, as

W (Nq,r) = Nwr (q) + ur (q) + O(N−1). (16)

In the case of the theta-logistic model we have

wa = q, ua = 0, (17)

w−d = qc

c!
, u−d = − qc−1

2(c − 2)!
. (18)

Here wr and ur are O(1). A necessary condition for extinction
is that wr (0) = ur (0) = 0, for any r , which indicates that the
extinction state is an absorbing state. Note that the system can
reach this state only when d = c as shown below.

1. Quasistationary distribution

The WKB approach employs the assumption that for N �
1 the probability for rare events, such as extinction, to occur
lies in the tail of the distribution and falls away steeply from
the steady state. Substituting the WKB ansatz for the QSD,
P (n) ≡ P (Nq) [25,27–33],

PWKB(q) ≡ Ae−NS(q)−S1(q), (19)

into the master equation (11), the functions S(q) and S1(q) can
be calculated order by order for N � 1; see the Appendix for
the detailed calculations. Doing so, we obtain

PWKB(q) =
√

S ′′(q∗)

2πN

q∗
q

eN[S(q∗)−S(q)]eφ(q∗)−φ(q), (20)

where the action, S(q), is given by Eq. (A2), φ(q) is given by
Eqs. (A8) and (A9), and q∗ = n∗/N = [(c − 1)!]1/(c−1).

The WKB solution (20) is valid as long as n � 1 or q �
N−1. In order to find the MTE, see below, we have to match
the WKB solution (20) to a recursive solution for the QSD
valid for small n [32].

The recursive solution, which is the left tail of the QSD
for n � N , i.e., sufficiently far from the mean-field stable
fixed point, can be found by setting ∂tP (n,t) � 0 in the
master equation (11). To solve the resulting difference equation
recursively, we note that the QSD is rapidly growing for small
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n. As a result, and since λ � μ, we can neglect the λ term
proportional to P (n − 1) compared to P (n) and the μ term
proportional to P (n) compared to P (n + d) [29]. Denoting
� = λ/μ � 1, we obtain for n � N ,

P (n + d) = �c! n(n + d − c)!

(n + d)!
P (n)

= �c! nP (n)

(n + d)(n + d − 1) · · · (n + d − c + 1)
. (21)

Finally, as we are dealing with the case of extinction, d = c,
the solution of this recursion equation is given by

P (n) = [c c!�]n/c 	(1 + n/c)

�n2	(n)
P (c). (22)

It can be shown that the applicability of this solution requires
n � N [29]. Equations (20) and (22) constitute the complete
QSD for n > 0.

2. Mean time to extinction

To find the MTE, we set c = d and use Eqs. (7) and
(10). This yields τ−1 = W (n = d, − d)P (c) = μP (c). To find
P (c), one needs to match the WKB, Eq. (20), and recursive,
Eq. (22), solutions of the QSD [32]. To match these solutions
in their joint region of validity, 1 � n � N , we need to find
the n � N or q � 1 asymptote of the WKB solution (20).

We begin by calculating the q � 1 asymptote of S(q). In
the case of the theta-logistic model, Eqs. (9), the Hamiltonian
Eq. (A3) becomes

H (q,p) = q(ep − 1) + qc

c!
(e−dp − 1). (23)

To find the action, one needs to find the nontrivial zero-energy
trajectory of H , the optimal path to extinction, see Appendix.
Here, the optimal path reads

qa(p) =
[
c!

edp(ep − 1)

edp − 1

] 1
c−1

. (24)

The action can be calculated by integrating over this trajectory,
S(q) = ∫

pa(q) dq, where pa(q) can be found from (24) by
solving qa(p) = q. In the limit q → 0, we have p → −∞.
Defining ε = ep � 1, we have q � (c!)1/(c−1)εd/(c−1) in the
leading order in ε. Therefore, for q � 1, the action function
satisfies

S(q) � c − 1

d
q

{
ln

[
q

(c!)1/(c−1)

]
− 1

}
+ O(q2). (25)

As a result, the q � 1 asymptote of the WKB solution reads

PWKB(n) �
√

S ′′(q∗)

2πN

Nq∗
n

e−N�S−�φ

× e(c−1) n
c
−(c−1) n

c
ln[n/(Nc−1c!)1/(c−1)]. (26)

Here, using Eq. (A2),

�S = S(q = 0) − S(q∗) =
∫ 0

q∗
pa(q) dq =

∫ 0

−∞
qa(p) dp

= (c!)
1

c−1

∫ 1

0

(
z

1 − z

1 − zc

) 1
c−1

dz (27)

is the entropic barrier to extinction, where we have introduced
the new variable z = ep, and from Eq. (A8),

�φ =
∫ −∞

0

dqa(p)

dp
�(q = qa(p),p) dp = ln

( √
2c√

c + 1

)
.

(28)

Note that the result given in (28) holds only for d = c. For
d < c, a general calculation shows that �φ diverges, indicating
that the extinction rate vanishes.

On the other hand, to calculate the n � 1 or q � N−1

asymptote of the recursive solution (22), we use the Stirling
approximation 	(1 + n) � √

2πn(n/e)n in Eq. (22), which
now becomes

P (n) � P (c)
e

n
c

[ln(c!�)−(c−1)(ln n−1)]

√
cn�

, (29)

valid for 1 � n � N .
Matching the asymptotes (26) and (29) in their joint region

of validity, 1 � n � N , we find

τ =
√

2πc

c − 1

eN�S

μNc−1/2[(c − 1)!]1/[2(c−1)]
, (30)

where �S is given by Eq. (27).
This analytical formula is one of our main results. It displays

explicitly how the parameters characterizing the individual
interactions affect the MTE. It generalizes previous results
obtained for specific values of c [28,34]. For example, for
c = 2, using Eq. (30) we find

τc=2 = 2
√

π

μN3/2
e2N(1−ln 2). (31)

For c = 3 we find

τc=3 =
√

3π

μ 21/4N5/2
e1.183N, (32)

and for c = 4,

τc=4 = 24/3√π

μ 32/3N7/2
e1.699N . (33)

The results for c = 2,3 are in agreement with previous
calculations [28,34]. The number of individuals involved in
the competition or death process, c, strongly affects the value
of the MTE; see Fig. 1. When the birth rate λ increases, the
MTE also increases. This means that, as expected, the risk
of extinction decreases when the birth rate increases. On the
other hand, for a given birth rate, increasing the number of
individuals participating in the competition or death process
decreases the MTE and increases the extinction risk of the
population; see Fig. 1. Note that the dependence of the MTE
on c is very strong.

One can also plot the MTE as a function of the carrying
capacity K keeping λ fixed. As expected, the MTE increases
with the carrying capacity K because the typical population
size in the QSD increases, which naturally increases the
entropic barrier to extinction. In Fig. 2 we illustrate this and
present our results for different values of c.
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FIG. 1. MTE vs λ for the processes given by A
λ−→ 2A and cA

μ−→
∅, for μ = 3. The value of N is given by (15). Symbols correspond
to numerical simulations performed up to time 108 and averaging
over 104 realizations. Solid curves for c = 3,4,5 are, respectively,
obtained from Eqs. (32), (33), and Eq. (30) with c = 5.

B. Population abundance

In the previous subsection we have calculated the MTE for
the case of c = d. If d < c, the extinction rate vanishes and the
population survives. Biologically speaking, extinction occurs
only if the competition or death process is strong enough,
resulting in the death of all individuals that participate in the
competition. Otherwise, the population persists with a given
abundance that will depend on the parameters related to the
individual interactions.

The deterministic dynamics of Eq. (12) is simple. Starting
from a nonzero initial number of individuals, the population
tends to the stable stationary state where the number of
individuals equals K , the carrying capacity of the medium.
However, when intrinsic fluctuations are taken into account, a
stationary PDF of population sizes is reached as t → ∞. This
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FIG. 2. MTE for the processes given by A
λ−→ 2A and cA

μ−→ ∅

vs K , for λ = 100 and varying μ. Symbols correspond to numerical
simulations performed up to time 108 and averaging over 1.5 × 104

realizations. Solid curves for c = 2,3,4 are respectively obtained from
Eqs. (31), (32), and (33).

PDF is called the abundance, and its mean approximately
equals K for K � 1. We remind the reader that for d < c, the
absorbing state at n = 0 can never be reached when starting
from n > 0 individuals.

We illustrate how to determine the stationary PDF, P (n),
for several prototypical examples with d < c. If the reaction
rates are polynomials in n, it is sometimes more convenient to
employ the probability generating function defined by [24]

G(p,t) =
∞∑

n=0

pnP (n,t), (34)

instead of using the WKB method, when dealing with the
stationary solution of the master equation. Here p is an
auxiliary variable, which is conjugate to the number of
particles [35], and normalization of P (n,t) implies that G(p =
1,t) = 1. Once G(p,t) is known, the PDF is given by the Taylor
coefficients

P (n,t) = 1

n!

[
∂nG(p,t)

∂pn

]
p=0

. (35)

Multiplying the master equation (5) by pn, summing over
n, and renaming the index of summation, we find after some
algebra the evolution equation for the probability generating
function,

∂G(p,t)

∂t
= λ

b!
pb(pa − 1)

∂bG

∂pb
+ μ

c!
pc−d (1 − pd )

∂cG

∂pc
.

(36)

The solution of this evolution equation allows us to find the
PDF for the general model described by Eqs. (2).

We focus on the case of a = b = 1, corresponding to
the theta-logistic model described by Eqs. (9). Then for the
stationary solution, ∂tG = 0, Eq. (36) reads

dcG(p)

dpc
= λc!

μ
p1−c+d 1 − p

1 − pd

dG(p)

dp
, (37)

where we assume that d < c. This is an ordinary differential
equation of order c, which can be exactly solved for specific
values of c.

1. c = 2,d = 1

For c = 2 and d = 1, the corresponding individual inter-

actions are given by A
λ−→ 2A, 2A

μ−→ A. This is the simplest
case, and Eq. (37) turns into

d2G(p)

dp2
= 2λ

μ

dG(p)

dp
. (38)

The boundary conditions for this equation are G(p = 1) = 1
and G(p = 0) = 0. The latter implies that the extinction
probability vanishes, P (n = 0) = G(p = 0) = 0, provided
that we start from n > 0 individuals. The solution of Eq. (38)
with these boundary conditions reads

G(p) = e2λp/μ − 1

e2λ/μ − 1
. (39)
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Expanding the term e2λp/μ around p = 0 and comparing the
result with Eq. (34), we finally find

P (n) = Kn

n!(eK − 1)
, (40)

where, from Eq. (13), K = 2λ/μ. The mean value of the
population in the steady state can be found using Eq. (40),

〈n〉 =
∞∑

n=1

nP (n) = K
eK

eK − 1
, (41)

which approaches K when K � 1.

2. c = 3

When c = 3, the condition 0 < d < c provides two possi-
bilities, d = 2 or d = 1.

We consider first the case c = 3,d = 2 which corresponds

to A
λ−→ 2A, 3A

μ−→ A. Then Eq. (37) becomes

(1 + p)
d3G(p)

dp3
= 6λ

μ

dG(p)

dp
, (42)

which can be solved using the boundary conditions as in
the previous case G(0) = 0,G(1) = 1 and an additional self-
generated boundary condition that arises from the fact that
Eq. (42) is singular at p = −1 [27,28,34]. Since G(p) must be
analytic everywhere, we require from (42) that G′(p = −1) =
0, where the prime denotes differentiation with respect to p.
The solution of Eq. (42) with these boundary conditions is

G(p) = (1 + p)I2[2
√

2(1 + p)K] − I2(2
√

2K)

2I2(4K) − I2(2
√

2K)
, (43)

where Iα(·) are the modified Bessel functions of order α, and
from Eq. (13), K = √

3λ/μ. Expanding this solution in the
vicinity of p = 0 and comparing with Eq. (34), we arrive after
some algebra at the solution

P (n) =
1
n! (

√
2K)nI2−n(2

√
2K)

2I2(4K) − I2(2
√

2K)
. (44)

The mean value follows immediately,

〈n〉 =
∞∑

n=1

nP (n) = K
2I1(4K)

2I2(4K) − I2(2
√

2K)
, (45)

which again converges to K as K → ∞.
Finally we consider the second possibility where c = 3 and

d = 1, which corresponds to A
λ−→ 2A, 3A

μ−→ 2A. Equation
(37) reduces to

p
d3G(p)

dp3
= K2 dG(p)

dp
, (46)

where, from Eq. (13), K = √
6λ/μ. This equation can be

solved with the boundary conditions G(0) = 0,G(1) = 1, and
the self-generated boundary condition, G′(p = 0) = 0, which
cures the singularity of Eq. (46) at p = 0. The solution of (46)
with these boundary conditions reads

G(p) = pI2(2K
√

p)

I2(2K)
. (47)

10 4

10 3

10 2

10 1

70 80 90 100 110 120 130

P
(n

)

n

c 2, d 1
c 3, d 1
c 3, d 2

FIG. 3. Population abundance P (n) as a function of n for K =
100. Theoretical results (lines) from Eqs. (40), (44), and (48) are
compared with numerical simulations (symbols), where we have
performed 104 realizations from an initial population equal to K

up to 107 time steps.

Expanding the numerator in the vicinity of p = 0 and
comparing with (34) we obtain for n > 1

P (n) = K2n−2

n!(n − 2)!I2(2K)
. (48)

The mean population in this case is

〈n〉 =
∞∑

n=1

nP (n) = K
I1(2K)

I2(2K)
. (49)

In Fig. 3 we plot the population abundance obtained in the three
cases described above, Eqs. (40), (44), and (48), and compare
our analytical predictions with numerical simulations.

Finally, in Fig. 4 we plot the mean population value for dif-
ferent values of K obtained from Eqs. (41), (45), and (49). As
expected, the mean population value tends to the deterministic
value as the carrying capacity K increases. The mean value

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 1.5 2 2.5 3 3.5 4 4.5 5

n
K

K

c 2, d 1
c 3, d 1
c 3, d 2

FIG. 4. Mean population abundance 〈n〉 divided by K . Shown are
theoretical results from Eqs. (41), (45), and (49). The mean population
abundance approaches K as K → ∞.
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of the PDF deviates noticeably from the deterministic steady
state for K = O(1), when relative fluctuations are large. In
summary, we find that the microscopic details of individual
interactions strongly affect the population abundance in the
steady state and its mean value.

IV. STOCHASTIC DYNAMICS OF THE THETA-LOGISTIC
EQUATION, THREE-REACTIONS MODEL

In this section we add a linear death reaction, A
γ−→ ∅, which

describes a natural death process with rate γ , to the previous
model, Eqs. (9). The presence of this linear death process
ensures that the population always becomes extinct, regardless
of the value of d. Considering the new transition probability,
W (n, − 1) = γ n, in addition to the transitions (10), the master
equation takes the form

∂P (n,t)

∂t
= λ(n − 1)P (n − 1,t) + γ (n + 1)P (n + 1,t)

+ μ

c!

(n + d)!

(n + d − c)!
P (n + d,t)

−
[
λn + μ

c!

n!

(n − c)!
+ γ n

]
P (n,t). (50)

Rescaling the time t → γ t , the dimensionless transition prob-
abilities now become w1 = R0q, u1 = 0, w−1 = q,u−1 =
0, w−d = R0q

c/c!, and u−d = −R0q
c−1/(2(c − 2)!), where

R0 = λ

γ
, N = (λ/μ)

1
c−1 . (51)

The Hamiltonian in this case can be calculated from Eq. (A3),

H (q,p) = R0q(ep − 1) + R0
qc

c!
(e−dp − 1) + q(e−p − 1).

(52)

The mean-field equation can be found from the Hamilton’s
equation q̇ = ∂pH evaluated at p = 0. By setting n = qN ,
we recover the theta-logistic equation (12). However, here
the intrinsic growth rate and the carrying capacity, which are
defined in terms of the parameters characterizing the individual
interactions, are different from Eq. (13) and are given by

r = λ − γ, K =
[
c!(λ − γ )

dμ

] 1
c−1

. (53)

Since the intrinsic growth rate must be positive, we must have
λ > γ , such that the basic reproductive rate R0 is greater than
1. Here, the population density in the steady state is given by
q∗ = K/N = [c!(R0 − 1)/(dR0)]

1
c−1 .

To find the MTE for this model, we need to determine
the nontrivial zero-energy trajectory, the optimal path to
extinction, of the Hamiltonian (52), which reads

qa(p) =
{

c![R0q(ep − 1) − 1 + e−p]

R0(1 − e−dp)

} 1
c−1

, (54)

where pf = p(q = 0) = − ln R0.
As before, we have to determine the WKB solution for

the QSD and match it with a recursive solution in their joint
region of validity N−1 � q � 1 to find the MTE. In the

limit of q � 1, the action function S(q) can be calculated by
expanding qa(p) in the vicinity of pf . Defining ε = p − pf �
1, substituting it into Eq. (54), and expanding in a power series
to the lowest order of ε, we find pa(q) � − ln R0 + O(q). As
a result, using Eq. (A2), we have S(q) � − ln(R0q) + O(q2).
Consequently, the q � 1 asymptote of the WKB solution for
the QSD, given by Eq. (26), becomes

PWKB(n) �
√

S ′′(q∗)

2πN

Nq∗
n

e−N�S−�φRn
0 , (55)

where the quantities �S and �φ are given by

�S =
∫ 0

−∞
qa(p) dp =

∫ 1

1/R0

[
c!

(1 − z)(z − R−1
0 )

(1 − zd )zc−d

] 1
c−1

dz

(56)

and

�φ = 1

2
ln

{
2dRc

0(R0 − 1)(
Rd

0 − 1
)
[R0(d + 1) − d + 1]

}
. (57)

Now all that is left is to calculate the recursive solution
for the QSD for small values of n and match it to the
above solution. Here, however, we take a different approach,
because of the presence of the linear death rate, and linearize
the transition rates in the vicinity of n = 0, in the spirit of
Ref. [32]: W (n,1) � λn, W (n,−d) � 0, and W (n,−1) � γ n.
As a result, for n � N , the quasistationary master equation
becomes

P (n + 1) � (R0 + 1)
n

n + 1
P (n) − R0

n − 1

n + 1
P (n − 1). (58)

Defining f (n) = nP (n), the stationary solution of Eq. (58)
reads f (n) � C0 + C1R

n
0 [32]. To obtain the unknown con-

stants C0 and C1, we need to specify two boundary conditions.
One boundary condition is that f (0) = 0, which allows us to
express both C0 and C1 in terms of f (1). As a result we find

P (n) � Rn
0 − 1

n(R0 − 1)
f (1). (59)

We now relate f (1) to the MTE. Equation (7) implies that
τ−1 = W (d,−d)P (d) + W (1,−1)P (1). For small n, one has
W (d,−d) � 0, and thus τ−1 � γf (1). As a result, Eq. (59)
becomes

P (n) � Rn
0 − 1

n(R0 − 1)γ τ
. (60)

Matching the n � 1 asymptote of this recursive solution to
the WKB asymptote, Eq. (55), in their joint region of validity,
1 � n � N , we obtain the MTE

τ =
√

2π

N (c − 1)

R
c/2
0 eN�S

γ

√
(R0 − 1)

(
Rd

0 − 1
)
[

R0d
c

c!(R0 − 1)c

] 1
2(c−1)

,

(61)

where �S is given by (56) and we have made use of
S ′′(q∗) = [dqa(p)/dp]−1

p=0. The behavior of τ in terms of the
basic reproductive rate R0 for different values of d is shown
in Fig. 5.
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FIG. 5. Plot of the MTE for three different reaction schemes with
different values of d . The parameters are r = 600 [see Eq. (53)],
c = 3, and K = 20. Symbols correspond to numerical simulations
performed up to time 109 and averaging over 104 realizations. Solid
curves are obtained from Eq. (61) for d = 1,2,3.

The MTE increases with R0, and it decreases with d for
fixed R0, as expected. The figure illustrates that the MTE
is highly sensitive to the details of the microscopic reaction
scheme.

V. STOCHASTIC DYNAMICS OF VON
BERTALANFFY’S EQUATION

A. Mean-field dynamics

As a final example, we consider a special case of Eq. (2)
with c = d = a = 1 and b > 1. The reaction scheme reduces
to

bA
λ−→ (b + 1)A, (62a)

A
μ−→ ∅. (62b)

Equation (8) implies that in this case the mean-field
equation reduces to

dn

dt
= λ

b!
nb − μn, (63)

which is known as the von Bertalanffy’s equation in population
dynamics [12,13]. It has two steady states: n = 0 and n∗ =
(μb!/λ)1/(b−1). Since b > 1, the first term of the right-hand
side of (63) is nonlinear. Linearizing Eq. (63) around the steady
states, we find that n = 0 is an attractor, whereas n = n∗ is a
repeller. Equation (63) can be integrated exactly,

n(t) = 1[
λ

b!μ − (
λ

b!μ − n1−b
0

)
e(b−1)μt

] 1
b−1

, (64)

where n0 = n(t = 0). Depending on the initial condition and in
the absence of fluctuations, this solution may represent either
an extinction scenario or an unlimited population growth. If
n0 < n∗, then the denominator of (64) is always positive and
the population density tends to 0 as t → ∞. If on the other hand
n0 > n∗, then the denominator becomes zero at a finite time,
tc, which is known in the ecological literature as doomsday

[36,37]. Here tc satisfies

tc = − 1

μ(b − 1)
ln

(
1 − n1−b

0

b!μ

λ

)
. (65)

However, if we take internal fluctuations into account, ex-
tinction can occur with a nonzero probability, even if the
population starts at n0 > n∗ = (μb!/λ)1/(b−1). We determine
the extinction probability in the next section.

B. Extinction probability

We write the birth and death rates, respectively, of system
(62) as

W+
n = λ

b!

n!

(n − b)!
, W−

n = μn. (66)

We are interested in calculating the probability of extinction of
a population, starting from n > n∗ and obeying the interactions
given by (62). As previously, we denote the typical system
size by N , such that N ≡ n∗ = (μb!/λ)1/(b−1), and Q(n) is the
extinction probability starting from n individuals. When n <

N , this probability is close to unity, since there is a mean-field
flow towards 0. However, starting from n > N , the probability
of extinction decreases as N increases, since n = N is an
unstable fixed point.

The recursion equation for Q(n) is given by [38–40]

W+
n Q(n + 1) + W−

n Q(n − 1) − [W+
n + W−

n ]Q(n) = 0.

(67)

It reflects the fact the probability of extinction starting from n

individuals is the probability of extinction starting from n + 1
individuals, multiplied by the probability to reach state n + 1
from state n, plus the probability of extinction starting from
n − 1 individuals, multiplied by the probability to reach state
n − 1 from state n. Equation (67) is supplemented with the
boundary conditions (see, e.g., Refs. [38–40])

Q(0) = 1, Q(∞) = 0. (68)

Let

R(n) = Q(n + 1) − Q(n). (69)

The equation for R(n) reads

W+
n R(n) − W−

n R(n − 1) = 0, (70)

which can be expressed as

(n − 1)(n − 2) · · · (n − b + 1)R(n) = R(n − 1)Nb−1 (71)

by virtue of Eq. (66). This equation self-generates the boundary
conditions for R(n), which are found to be R(0) = R(1) =
R(2) = · · · = R(b − 2) = 0. By iterating Eq. (71) and taking
into account the above boundary conditions, we arrive at the
solution

R(n) = R(b − 1)N (b−1)(n−b)
n∏

j=b

(j − b)!

(j − 1)!
. (72)

Using Eq. (69) and the boundary conditions for Q(n), we
obtain

Q(n) = 1 +
n−1∑

m=b−1

R(m). (73)
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FIG. 6. Probability of extinction Q(n) starting from n individuals.
We have considered here μ = 6, N = 100 and b = 2,3,4. The
symbols correspond to numerical simulations, and the solid curves
are obtained from the exact solutions Eqs. (76), (77), and (78). The
number of events considered in the simulations is 107.

Since Q(∞) = 0, we have
∞∑

m=b−1

R(m) = −1. (74)

This condition allows us to find the unknown constant
R(b − 1) in (72). Using Eqs. (72), (73), and (74), we finally
have

Q(n) = 1 −
∑n−1

m=b−1 N (b−1)(m−b+1) ∏m
j=b

(j−b)!
(j−1)!∑∞

n=b−1 N (b−1)(n−b)
∏n

j=b
(j−b)!
(j−1)!

. (75)

This is an exact expression valid for any value of b.
Let us evaluate this expression for several specific values

of b. For example, for b = 2, Eq. (75) becomes

Q(n) = 1 − 	(n − 1,N )

	(n − 1)
, (76)

where 	(,) is the incomplete Gamma function. For b = 3 we
have Q(1) = Q(2) = 1, and for n � 3 the solution reads

Q(n) = N2n−4(n − 1)(n − 2)

	(n)2I2(2N )
1F2(1; n,n − 2; N2), (77)

where pFq(·) is the generalized hypergeometric function.
Finally, for b = 4 we have Q(1) = Q(2) = Q(3) = 1, and for
n � 4 the solution reads

Q(n) = N3n
1F3(1; n,n − 1,n − 2; N3)

(n − 1)!(n − 2)!(n − 3)!θ (N )
, (78)

where

θ (N ) =
∞∑

n=3

N3n

(n − 1)!(n − 2)!(n − 3)!
. (79)

In Fig. 6 we plot the exact solutions (76), (77), and (78), which
are in excellent agreement with numerical simulations.

VI. CONCLUSIONS

We have constructed several individual-based models that
give rise to the generalized logistic model at the mean-field

deterministic level. Importantly, and unlike previous studies
that used ad hoc effective rates, our microscopic models, based
on multistep reaction schemes for birth and death processes,
allow us to interpret the parameters of the deterministic
model in terms of the interactions between individuals. For
the different deterministic models that have been widely
used in the literature, we have studied their corresponding
microscopic analogs and have taken into account the ef-
fect of internal demographic fluctuations on the long-time
dynamics and the conditions for extinction. In particular,
when extinction takes place, we have analytically deter-
mined the mean time to extinction using the WKB method.
To the best of our knowledge, this is the first derivation of an
analytical expression of the MTE for the generalized logistic
model. For those models that do not exhibit extinction, we
have analytically derived the stationary population abundance
distribution, using the probability generating function formal-
ism. Importantly we have found that microscopic models that
display different long-time behaviors, namely, extinction or
persistence, obey nevertheless the same mean-field equation.
We have also provided results for runaway systems, i.e.,
populations that undergo a doomsday scenario. We have shown
that such systems can undergo extinction events, even under
doomsday conditions, due to internal fluctuations. We have
derived analytical expressions for the extinction probability
of such populations. All our theoretical predictions have
been verified by numerical simulations. We expect that our
identification of the macroscopic parameters widely used in
ecology in terms of the actual rates of individual interactions
and our simple and analytically amenable expressions for the
mean time to extinction, population abundance, and extinction
probability will have impact in the fields of theoretical ecology
and biodiversity.
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APPENDIX

In this appendix we briefly present the WKB calculation
for the (quasi)stationary distribution (QSD) [25,29–33]. Our
starting point is the (quasi)stationary master equation (11)
with ∂tP (n,t) = 0. Employing the WKB ansatz for the QSD,
P (n) ≡ P (Nq) [25],

PWKB(q) ≡ Ae−NS(q)−S1(q), (A1)

and substituting it into the quasi-stationary master equation,
we can determine the functions S(q) and S1(q) order by order
for N � 1. In the leading order we find the action function to
be

S(q) =
∫

pa(q) dq. (A2)
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Here qa(p) or pa(q) define the nontrivial optimal path to
extinction, H = 0, where the Hamiltonian satisfies

H (q,p) =
∑

r

wr (q)(erp − 1), (A3)

and p = S ′(q) is the associated momentum [25]. Note that
the mean-field dynamics, Eq. (12), can be found by writing
Hamilton’s equation q̇ = ∂pH along the deterministic (noise-
free) path p = 0 [25,29–33].

In the subleading N−1 order, we find

S ′
1(q) =

1
2S ′′(q)∂ppH + ∂qpH − ∑

r ur (q)(erp − 1)

∂pH

∣∣∣∣
p=pa (q)

.

(A4)

The constant A in Eq. (A1) can be obtained by normalizing
the QSD to unity in the Gaussian vicinity of the deterministic
stable state q∗. Expanding the QSD near q = q∗ up to second
order, the Gaussian limit, integrating over q, and equating to
one, we find that the constant A has the form

A =
√

S ′′(q∗)

2πN
eNS(q∗)+S1(q∗). (A5)

Substituting this expression into Eq. (A1), we obtain

PWKB(q) =
√

S ′′(q∗)

2πN
eNS(q∗)+S1(q∗)−NS(q)−S1(q). (A6)

Defining S1(q) = φ(q) + ln q, the QSD takes the final form

PWKB(q) =
√

S ′′(q∗)

2πN

q∗
q

eN[S(q∗)−S(q)]eφ(q∗)−φ(q), (A7)

where S(q) is defined in (A2),

φ(q) = S1(q) − ln q =
∫

Λ[q,p = pa(q)] dq, (A8)

and

Λ(q,p) = ∂qpH (q,p) + 1
2∂ppH (q,p)p′

a(q)

∂pH (q,p)

−
∑

r ur (q)(erp − 1)

∂pH (q,p)
− 1

q
. (A9)

This QSD is valid as long as q � N−1, or n � 1. In order
to find the QSD for n = O(1) one has to solve a recursive
equation; see the main text.
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