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Nonstationary dynamics of encounters: Mean valuable territory covered by a random searcher
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Inspired by recent experiments on the organism Caenorhabditis elegans we present a stochastic problem to
capture the adaptive dynamics of search in living beings, which involves the exploration-exploitation dilemma
between remaining in a previously preferred area and relocating to new places. We assess the question of search
efficiency by introducing a new magnitude, the mean valuable territory covered by a Browinan searcher, for the
case where each site in the domain becomes valuable only after a random time controlled by a nonhomogeneous
rate which expands from the origin outwards. We explore analytically this magnitude for domains of dimensions
1, 2, and 3 and discuss the theoretical and applied (biological) interest of our approach. As the main results
here, we (i) report the existence of some universal scaling properties for the mean valuable territory covered as a
function of time and (ii) reveal the emergence of an optimal diffusivity which appears only for domains in two
and higher dimensions.
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I. INTRODUCTION

The last years have witnessed increasing interest of physi-
cists and applied mathematicians in the principles driving
optimization of random searches and problems related to
efficient exploration or area coverage by random walkers
[1–5]. This interest has often (though not exclusively) been
motivated by ecological problems in cell biology [6] or animal
foraging [7–9]. The fact that many ecologists have found
it convenient to interpret organisms’ trajectories in terms
of random walks of different types (e.g., Brownian, Lévy,
multimodal) as a way to compare and classify their patterns of
motion has facilitated this and has led to a fruitful interaction
between the two communities [1,6].

Within this context, concepts from statistical physics such
as the mean first-passage time and the territory covered
by the walker have been used as measures of search or
area-coverage performance in living beings. This, however,
implicitly assumes that throughout the search process the
organism has a well-defined and static purpose (e.g., reaching
food at a given position). This is in clear contradiction to
experimental observations. Foraging trajectories and motor
decisions of real organisms show that search in living beings
is highly adaptive [10–12], even for extremely simple forms
of life [13], due both to the exchange of information with the
environment and to the internal dynamics of the organism.
Quoting [14], many aspects of search “...depend on the
animal’s internal state: how recently it has eaten, the presence
of food in the digestive tract, the quantity and nature of stored
reserves such as fat or glycogen.” So, more sophisticated
measures are required to capture the adaptive dynamics of
these systems; this represents one of the main goals of the
present article.

As a paradigmatic case study, consider the organism
Caenorhabditis elegans, which has been recurrently used to
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elucidate the basis of the biochemical circuits responsible for
hunger and satiety, as well as the corresponding motor outputs
these generate [9,14–17]. For this, C. elegans movements are
tracked once individuals, after being cultured under controlled
conditions, are moved to a different environment. If the new
environment shows a high nutrient concentration, quiescent
(i.e., low or null) movement is observed [18]. For low nutrient
concentrations, instead, a motor response (“search for food”)
becomes activated. Figure 1(a) shows a typical trajectory of
an individual displaced from nutrient-rich to nutrient-poor
media. After movement reactions due to manipulation, a motor
response starts. The individual spirals around its initial position
and executes strong turns, expecting to find resources where
they were available previously. The curvature of these spirals
becomes gradually smaller; hence, a larger exploration area
is apparently assumed by the individual through time. After
approximately 1 h, widening of the territory coverage, and
the addition of complex movement features, the individual
drastically changes its motion pattern and decides to depart
from the original area by following a more or less straight line.

A lesson from these observations is that, at least over a
range of relevant time scales, search is clearly a nonstationary
process. Actually, the computational problem the organism
is trying to solve is itself nonstationary [9]. Organisms use
motion mechanisms that presumably adapt better to their prior
expectations. In resource-plentiful environments, the prior is
that food is near. As evidence departs from that expectation,
expectations must change (e.g., a larger area should be
explored), and movement towards regions which were not
given any importance or value previously is initiated. Thus the
exploration-exploitation trade-off in such situations is tuned
dynamically by the organism, and the initial state in which
exploitation of the nearby region is promoted (driven by the
initial prior expectation) evolves in time to enhance exploration
gradually.

The most natural framework to describe this process would
be that of inference (either Bayesian or other) methods [19,20].
Alternatively, random walks with different self-avoidance [21]
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FIG. 1. (a) Individual C. elegans trajectory obtained after passing it from a nutrient-rich to a nutrient-poor environment, with the starting
point defined at (0,0). (Experimental data generated at William S. Ryu Lab, University of Toronto, Canada.) (b–e) Snapshots at increasing
times [from (b) to (e)] of a single realization of the stochastic process described in the text. Red lines represent the walker trajectory. Sites on
the lattice become valuable with time (shown in gray). Sites in black are those visited after they become valuable, so the objective of the walker
should be to maximize the black region.

or memory [22,23] effects have been used as convenient
approximations. However, first-passage, area-coverage, and
similar measures hardly ever permit an analytical treatment in
these cases. As an alternative approach, we here introduce a
novel stochastic (search) problem in which we consider that the
internal (search) plan of the organism changes with time while
the motion pattern it follows is still stationary, for simplicity
(e.g., Brownian motion or any classical model of biological
transport). We do this by introducing the idea that not all
the territory covered by the organism is equally beneficial or
valuable for it; instead, we define a valuable region, which
is the one of interest to the organism and which grows with
time (this makes the dynamics of the problem nonstationary).
We intend to provide a toy approximation to the experimental
situation described above for the C. elegans case, where the
region that the organism considers worth exploring seems to
change gradually with time. As we show, this approach allows
us to derive meaningful measures of search performance (in
terms of the mean valuable region visited by the organism) that
take explicitly into account the nonstationarity of the process
and are analytically treatable for a wide range of situations.

II. GENERAL MODEL

Consider a random walker of size b initially set at the origin
of an infinite domain in d dimensions. Each infinitesimal
volume in the domain can be either in a valuable or a
nonvaluable state, where we assume that value represents a
variable which measures the potential benefit that visiting this
region has for the walker. For simplicity, we assume that at
t = 0 the whole domain is nonvaluable. Subsequently, each
infinitesimal volume dr can become valuable after a random
waiting time exponentially distributed at rate β(r). Afterwards,
when a valuable region is visited by the walker it again
becomes nonvaluable, forever (see Fig. 1, right, for a particular

realization of the process). The magnitude of interest in this
problem is then the valuable territory visited by the walker
after a given time. Note that in the limit β(r) → ∞, for all
r, this will reduce to the classical problem of computing the
territory covered by a random walker [24–29].

We note at this point that the experimental evaluation
of β(r) from real trajectories is problematic, since it would
require disentangling movement from the internal state of the
organism. So, in practice this function should be seen as a
phenomenological proxy to understand and/or predict (to a
first approximation) the drivers of the movement. Using the C.
elegans experiment above as a reference, for example, it seems
reasonable to consider that the rate β(r) is a monotonically
decreasing function of the distance to the origin; for simplicity,
we explore here the case β(r) = βαr−α , with r = |r| and
α � 0, so the whole valuable region will expand on average
from the origin outwards (as in Fig. 1, right; see gray region) at
a rate determined by βα and α. The random walker must then
reach a nontrivial balance between gradually exploring farther
areas of the domain and not departing from the valuable region.

III. MEAN VALUABLE TERRITORY COVERED
UP TO A GIVEN TIME

We compute V (t), the mean valuable territory covered
by the individual up to time t , averaged over all possible
realizations (we do not explicitly include any symbol to denote
“average,” to simplify notation). While we focus here on
the space-continuous version of the problem, we note that
the case of discrete walks could be studied equivalently.

In analogy with classical approaches used to compute the
territory covered by a random walker [24,25] we can write in
our case

V (t) =
∫
Rd

dr
∫ t

0
dtfV (r(b),t ; 0), (1)
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where fV (r(b),t ; 0) is the probability distribution function to
reach the vicinity of point r for the first time after it becomes
a valuable site, provided the walk starts from the origin 0. We
use the notation r(b) to represent the boundary of a sphere of
radius b around point r, where b denotes the size of the walker
or its effective detection radius.

Due to the Markovian nature of the transition from
nonvaluable to valuable (as waiting times before switching
are exponential), and assuming that the motion of the walker
is Markovian too, fV (r(b),t ; 0) can be computed in terms
of the classical first-passage distribution f (r(b),t ; 0). The
corresponding relation will satisfy

fV (r(b),t ; 0) = f (r(b),t ; 0)(1 − e−β(r)t ) + [f (r(b),t ; 0)e−β(r)t ]

× ∗ [f (r(b),t ; r(b))(1 − e−β(r)t )] + . . . . (2)

Here, the asterisk (∗) denotes time convolution and e−β(r)t

represents the probability that the site r has not switched to
valuable yet at time t . The first term on the right-hand side
(r.h.s.) then corresponds to the case where the first passage
through r occurs after the site has become valuable, the second
term corresponds to the case where the first passage occurs
before the site becomes valuable but the second passage occurs
after it, and so on. Using the time convolution theorem the
previous expression, (1), can be simplified in the Laplace space
as

V̂ (s) = 1

s

∫
Rd

dr
[
f̂ (r(b),s; 0) − f̂ (r(b),s + β(r); 0)

× 1 − f̂ (r(b),s; r(b))

1 − f̂ (r(b),s + β(r); r(b))

]
, (3)

where the hat denotes the Laplace transform and s is the
Laplace variable. This expression, which represents one of
our main results, can also be derived in an alternative way that
may help to clarify its specific meaning; details are provided
in the Appendix.

We now illustrate the utility of this approach by exploring
the idealized case of a Brownian particle of characteristic
size b moving within a space of dimension d with diffusion
coefficient D. For this case, the solution of the first-passage
distribution in the Laplace space is known to obey, for r > b

[25,30],

f̂ (r(b),s; 0) =
(

b

r

) d
2 −1 K d

2 −1(
√

s/Dr)

K d
2 −1(

√
s/Db)

, (4)

where Kn( ) is the n-order modified Bessel function of the
second kind. Inserting (4) into (3) and using Laplace inversion
one could then numerically compute the mean valuable
territory covered by the walker.

We focus our attention on the asymptotic (large-t) prop-
erties of V (t). For this, it is convenient to introduce the
characteristic size of the valuable region, RV , and the char-
acteristic size of the area explored by the random walker, RE .
For Brownian particles we have RE ≈ √

2dDt . Also, for a
nonvaluable-to-valuable rate of the type β(r) = βαr−α , as we
consider here, RV ≈ (βαt)1/α follows. It is clear then that when
RV is asymptotically smaller than RE (this happens for α > 2)
then the number of valuable sites encountered by the walker
per unit time will decrease gradually, so the overall number

of sites will saturate. No characteristic scaling properties can
be obtained for this case [note that the same will happen if
β(r) includes a cutoff such that it equals 0 for sufficiently
large times, a situation that could also be biologically plausible
under some conditions]. On the contrary, if RV increases more
rapidly with time than RE (it is, for the case 0 � α < 2), then
in the asymptotic limit all sites visited by the walker will be
valuable. The asymptotic scaling of V (t) will then be the same
as that for the classical problem of the territory covered by a
walker [25], which reads V (t) ∼ √

t for d = 1, V (t) ∼ t/ ln t

for d = 2, and V (t) ∼ t for d � 3.
Interestingly, if 0 < α < 2 but the growth of the valuable

region is initially slow (for example, because βα is small),
a new intermediate regime, also characterized by universal
scaling properties, emerges for the region where β−1

α < t (so
the valuable region is already large) but still RV < RE . This
regime is revealed by carrying out random-walk simulations of
the process and can be analytically described by first expanding
for βα → 0 in Eqs. (3) and (4) and subsequently exploring the
large-time regime. This procedure reveals that the transient
regime behaves as

V (t) ∼
⎧⎨
⎩

t (3−α)/2, d = 1,

t (4−α)/2/ ln t, d = 2,

t (4−α)/2, d = 3,

(5)

which agrees very well with the results found from simulations
in one and two dimensions (Fig. 2). The emergence of this
universal transient regime may have potential implications
on the evolution of exploration strategies through time.
Assuming that our dynamics could roughly reproduce the
search dynamics of a real organism (as in the C. elegans
case), we have that the characteristic exponent in the transient
regime is always larger than the asymptotic one (at least for
α < 2), which means that the exploration rate is higher during
the transient regime. So one could speculate, for example, on
the possibility that the drastic change in the exploration rate
that occurs in the transition to the asymptotic regime could
be detected by the organism somehow and trigger an internal
response in order to switch its motion strategy.

IV. SEARCH EFFICIENCY

We aim now at providing a measure of search efficiency.
For this, we consider that the search process will end up
after a random time τ , as is reasonable in most experimental
situations. This random time represents the time before the
organism gets exhausted or before it gives up searching for
any other reason. Assuming, for simplicity, that this random
time also follows an exponential distribution with mean τ ,
we find that τ−1 can be formally interpreted as a “mortality”
rate, in analogy with the terminology used for mortal random
walks [31,32]. We can then define, following the guidelines of
those works, the mean valuable territory covered by the walker
before giving up searching:

Vτ =
∫
Rd

dr
∫ ∞

0
dte−t/τ fV (r(b),t ; 0). (6)

As a result of this definition, it is not difficult to check
that Vτ easily connects to the solution, (3), above through
Vτ = τ−1V̂ (s = τ−1). Figure 3 (solid lines) shows the results
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FIG. 2. Mean valuable territory covered by a Brownian walker up to time t for different values of d and α, with (a) d = 1, α = 0,
(b) d = 1, α = 1, (c) d = 2, α = 0, and (d) d = 2, α = 1. Symbols correspond to the numerical results obtained for βα: 10−2 (open circles),
10−3 (filled circles), 10−4 (open triangles), and 10−5 (filled triangles). Solid lines showing the asymptotic scaling and the new (α-dependent)
intermediate scaling reported here are provided as a visual guide.

found by introducing (4) into this definition and evaluating
the corresponding integrals numerically. We additionally
show that an excellent agreement is found by comparing
these results to those obtained through simulations repro-
ducing the random-walk process described before (Fig. 3;
symbols).

Exact analytical expressions for Vτ are not attainable
except in some particular cases as, for instance, α = 0. Here,
however, we provide accurate approximations by studying

separately the two main regions of interest, (Dτ )α/2 � βατ

and (Dτ )α/2 	 βατ , which correspond to RE � RV and
RE 	 RV , respectively, during a search of duration τ .

In the regime (Dτ )α/2 � βατ analytical approximations
are hard to obtain since there are no parameters for which a
perturbative analysis can be satisfactorily used. We provide
instead a heuristic approximation by assuming that all sites
visited by the particle (within the maximum radius RV ) are
likely to be valuable; this leads to

Vτ ≈
∫ RV

b

2πd/2

(d/2)!
rd−1drf (r(b),t ; 0), (7)

where we have used that the infinitesimal volume element in d dimensions is
∫
Rd dr = 2πd/2

(d/2)!

∫
rd−1dr under isotropic conditions.

By introducing (4) into this expression we obtain

Vτ ≈ 2b

η
(1 − e−η(1−ν)) (d = 1), (8)

Vτ ≈ 2πb2

η

K1(η) + νK1(ην)

K1(η)
(d = 2), (9)

Vτ ≈ 4πb3

η2
(1 + η − (1 + ην)e−η(1−ν)) (d = 3). (10)

We have introduced here the nondimensional parameters ν ≡ βατ/bα and η ≡ b/
√

Dτ . The former provides the relation between
the characteristic time scale of the valuable to nonvaluable transition and the time scale τ , while the latter gives a relation between
τ and the movement time scale.

We focus next our interest in the regime (Dτ )α/2 	 βατ , where the nontrivial balance between staying close to the origin and
gradually exploring farther areas will be especially determining. In this case we can expand the expression for Vτ in the limit
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βα → 0 and solve analytically the integrals obtained. This procedure leads to

Vτ = bνηα−1eη[(1 + η)�1−α(η) − �2−α(η)] (d = 1), (11)

Vτ = πb2

2
ν
(η

2

)α−2

⎡
⎢⎢⎣

G3,0
1,3

(
1

0,2 − α
2 ,1 − α

2

∣∣∣∣ η2

4

)

K0(η)
− η

2

G3,0
1,3

(
1

0,1 − α
2 ,1 − α

2

∣∣∣∣ η2

4

)

K1(η)

⎤
⎥⎥⎦ (d = 2), (12)

Vτ = 2πb3νηα−2eη

[
�3−α(η) − η2

1 + η
�2−α(η)

]
(d = 3). (13)

Here, �m(z) denotes the incomplete gamma function with

argument m, and Gm,n
p,q (

a1, . . . ,ap

b1, . . . ,bq
|z) is the Meijer G

function.
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FIG. 3. Mean valuable territory covered by a Brownian walker
up to a characteristic leaving time τ for different α values in (a)
one, (b) two, and (c) three dimensions. Symbols correspond to
random-walk simulations, with α = 1 (open circles), α = 2 (filled
circles), and α = 3 (triangles). Solid lines correspond to the numerical
computation of Vτ from (6), while dotted and dashed lines correspond
to approximations in Eqs. (8)–(10) and (11)–(13), respectively.
Insets: Relative error found by the approximations (with 	Vτ the
absolute value of the difference between the approximation and
the exact solution); again, dotted and dashed lines correspond to
the approximations in Eqs. (8)–(10) and (11)–(13). Values used in all
cases are b = 0.25, D = 1, and τ = 50 (one dimension) or τ = 200
(two and three dimensions).

The validity of the approximations presented in the limits
(Dτ )α/2 � βατ and (Dτ )α/2 	 βατ is verified in Fig. 3
(dotted and dashed lines, respectively), where it clearly shows
that each approximation fits the numerical solutions as long as
the corresponding regimes are approached. The insets in that
figure also show the relative error done by the approximations
used [dotted lines correspond to the approximation, (8)–(10);
dashed lines, to (11)–(13)], where it is clear that the error tends
to decrease gradually in the corresponding limits, as expected;
note also that some strange effects, giving rise to one or several
peaks in the relative error, appear in the regime of intermediate
βα for the approximation, (8)–(10), which should be attributed
to the inaccuracy of the approximation in that regime.

Finally, we address the problem of optimizing Vτ . When
we plot Vτ as a function of η [or, equivalently, as a function of
D = τ−1(b/η)2], we find some situations where a maximum of
Vτ appears (Fig. 4). This optimum does not exist in the classical
problem of computing the territory covered by the Brownian
walker, since that magnitude increases monotonically with
D [25]. In our case, instead, if the valuable region does not
expand rapidly enough, in the limit η → 0 (or, equivalently,
D → ∞, so movement is very fast), the walker will depart
from the valuable region and search will be inefficient (i.e., Vτ

will be small). Since slow diffusion or η → ∞ leads to a large
trajectory overlap and is also inefficient, an intermediate ηopt

is expected.
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FIG. 4. Vτ as a function of the nondimensional parameter η

[computed from (6)]. Inset: Optimal values of η maximizing Vτ .
In all cases shown we have used parameter values b = 0.25, D = 1,
βα = 0.001, and τ = 200.
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An intermediate optimum ηopt (or, equivalently, Dopt)
indeed arises for α > 2 in two and three dimensions (see
inset, Fig. 4). This holds in higher dimensions too, as we
could verify from our expressions above (results not shown).
Note that for α > 2 the size of the valuable region, RV , grows
in time more slowly than the size of the area explored, RE ,
as discussed above; in the limit η → 0 movement is thus
too fast and the valuable region is consequently missed, so
reducing Vτ . Instead, the intermediate optimum ηopt does not
exist for one-dimensional systems; in that case, we observe that
increasing D (it is, in the limit η → 0) leads to the saturation
of Vτ . We attribute this result to the recurrence properties
of one-dimensional Brownian motion: since walkers always
have a unit probability of coming back to the origin (and to
the valuable region) the disadvantages of departing too rapidly
from the origin are compensated by the higher capacity of
return they have in that case.

Finally, we also note that small values of α also preclude
the possibility that the maximum in Vτ appears. In that case,
the valuable region (RV ) grows more rapidly than the region
explored by the searcher (RE); this, in the end, reduces the
problem again to that of maximizing the territory covered by
the walker, and so the classical result (where the territory
covered increases monotonically with D) is recovered.

V. DISCUSSION

In this paper we have introduced a new magnitude, the
mean valuable territory covered by a random walker V (t),
which is of specific interest for addressing the idea of search
efficiency in nonstationary contexts such as the one described
above for the experiments with C. elegans [9]. Two novel
results have been provided, which are absent in the classical
problem of computing the territory covered by a Brownian
particle. First, we have shown that when the growth of the
valuable region is initially slow (but asymptotically faster, in
the long-time regime) compared to that of the region explored
by the individual, then a transient regime appears characterized
by a universal scaling of V (t) with time. Second, the optimum
diffusivity (which corresponds to a correct balance between
covering the valuable region exhaustively and avoiding unnec-
essary overlaps) emerges in two and higher dimensions. This
idea connects easily to the exploration-exploitation trade-off
typically employed by biologists to characterize many foraging
situations [9], where trajectory overlap would represent here a
measure of exploitation and the area coverage would be related
to exploration.

Following the initial idea of the article (optimization of
random searches in living organisms) we can intuitively
conclude from our results and discussion above that finding
a global optimum for Vτ would probably involve an adaptive
pattern of motion, e.g., by using a tunable diffusion coefficient
D to increase the efficiency by gradually adapting the capacity
of area coverage. Note that random-walk models combining
different movement scales have already been explored in
similar contexts [8]. In more sophisticated models of motion
we expect that this dynamics will become even richer, since
there we have different parameters controlling movement (e.g.,
speed, persistence length). For example, generalization of our
results to the case of persistent random walks (which are often

used to fit animal trajectories) is easily attainable. We have
already started exploring that idea and have checked that some
properties of the Brownian case, such as the transient scaling,
(5), still hold, which confirms the robustness of our findings.

We also note that to keep our approach simple we needed
to consider nonstationarity only at the level of the value
dynamics, while the searcher movement is kept stationary.
This does not undermine, however, the potential interest of our
framework for theoretical biologists and ecologists. Generally
speaking, the spreading dynamics of valuable sites from an
initial position we have considered represents the spatial
dilution through time of an initial “attraction” point, which
may represent home, a temporary hide, or an exploitable area.
Exploring new territory means departing from well-known
areas, which are usually the most valued (e.g., already proved
subsistence, less risk, exploitable resources), towards unknown
territory. This kind of dynamics is typical of central-place
foraging [33] and, more generally, exists in patch-leaving
behavior [9]. A gradual shift in the relative value of the core
vs the outer territory would then represent an effective or
phenomenological driver for this type of exploratory dynam-
ics. Additionally, real environments involve the continuous
extinction and emergence of food sources or items, which
may be implemented in our model by introducing a more
complex dynamics for β(r) instead of simply radial growth.
While the experimental determination of this function remains
an open issue, we note that our approach could possibly be
used in an inverse way too, so one could try to infer from
real trajectories the valuable region the individual is trying to
optimize or, alternatively, an expression for β(r). Altogether,
we expect that these ideas will open a new line of research
on the formidable problem of using statistical physics to infer
biologically relevant information from trajectories of living
organisms.
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APPENDIX: ALTERNATIVE DERIVATION OF V̂ (t)

Since we consider that the derivation of V̂ (t) provided in
Eqs. (2) and (3) is mathematically more clear and elegant, we
want to stress here that there is an alternative formula that
probably provides a more intuitive understanding of the exact
meaning of that function.

The following derivation can be seen as a generalization
of those provided in some of our previous works [8,33].
To proceed, we first define q(r(b),t ; 0) as the rate at which
walker trajectories departing from 0 pass at time t through
the boundary r(b). Accordingly, the rate at which walker
trajectories departing from 0 pass through the boundary r(b)

before that site has become valuable will be

e−β(r)t q(r(b),t ; 0). (A1)

Taking these considerations into account, the trajectories
contributing to q(r(b),t ; 0) can then be divided into three terms
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as

q(r(b),t ; 0) = fV (r(b),t ; 0) + fV (r(b),t ; 0) ∗ q(0(b),t ; 0(b))

+ e−β(r)t q(r(b),t ; 0), (A2)

where, again, the asterisk denotes convolution in time. Note
that the first and second terms on the r.h.s. account for all
trajectories that pass through r(b) after that site has become
valuable. In this case it might be that the present is the first
time the walker has reached r(b) since the site became valuable;
this is the contribution of the first term on the r.h.s. If there
was a previous visit to r(b) since the site become valuable, this
contributes to the second term on the r.h.s.

If we carry out the Laplace transform of Eq. (A2) with
respect to time, we can obtain an explicit expression for
fV (r(b),t ; 0):

f̂V (r(b),s; 0) = q̂(r(b),s; 0) − q̂(r(b),s + β(r); 0)

1 + q̂(0(b),s; 0(b))
. (A3)

Next, we introduce this expression into the definition of V̂ (t)
[Eq. (1)] to get, after Laplace transforming,

V̂ (s) = 1

s

∫
Rd

dr
[
q̂(r(b),s; 0) − q̂(r(b),s + β(r); 0)

1 + q̂(0(b),s; 0(b))

]
. (A4)

The last step of the derivation consists of writing this
expression in terms of the first-passage distribution f (r(b),t ; 0).
This can be obtained by recovering the well-known relation for
Markovian processes between this distribution and q̂(r(b),s; 0)
(see, e.g., [8], [33]):

f̂ (r(b),s; 0) = q̂(r(b),s; 0)

1 + q̂(0(b),s; 0(b))
. (A5)

This leads almost immediately to

q̂(r(b),s; 0) = f̂ (r(b),s; 0)

1 − f̂ (0(b),s; 0(b))
. (A6)

So, inserting Eq. (A6) into Eq. (A4) and assuming that
first-passage distributions under initial conditions 0 or 0(b) are
equivalent for b small enough, then we finally obtain the result,
(3):

V̂ (s) = 1

s

∫
Rd

dr
[
f̂ (r(b),s; 0) − f̂ (r(b),s + βr; 0)

× 1 − f̂ (r(b),s; r(b))

1 − f̂ (r(b),s + βr; r(b))

]
. (A7)
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