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Abstract.  In this work, we consider stochastic movement with random resets 
to the origin followed by a random residence time before the motion starts 
again. First, we study the transport properties of the walker, i.e. we derive an 
expression for the mean square displacement of the overall process and study 
its dependence on the statistical properties of the resets and the residence times 
probability density functions (PDFs) and the type of movement. From this 
general formula, we see that the inclusion of the residence after the resets is 
able to induce super-diusive to sub-diusive (or diusive) regimes and it can 
also make a sub-diusive walker reach a constant mean square displacement 
or even collapse. Second, we study how the reset-and-residence mechanism 
aects the survival probability of dierent search processes to a given position, 
showing that the long time behavior of the reset and residence time PDFs 
determine the existence of the mean first arrival time.
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1. Introduction

The territorial dynamics of animals are compound multi-stage processes. When they 
are seeking for food, their behaviour is completely dierent than when they are resting 
or socializing around their nest or just exploring potential areas to migrate. Therefore, 
a complete model to describe spatial occupation of animals should consider a combina-
tion of dierent states and the overall process would end up determining their region 
of influence, which is technically called the home range [1].

Among these states, the movement for searching has been the main object of study 
[2–5] but resting phases [6] or migrations [7] have also been analysed. Also, data-ori-
ented models [8] and macroscopic models based in the Fokker–Planck equation [9, 10] 
have been employed to study the home range of animals in practical cases. Nevertheless, 
a mesoscopic multi-stage formulation is still lacking.

The inclusion of resets in diusive motion [11] is a first step in the formulation of a 
model able to capture the global dynamics from the multiple internal states of the ani-
mals. After that, multiple works have been devoted to study many types of processes 
with dierent resetting mechanisms [12–32], some of them focusing on the completion 
time of the processes [33, 34], or using resets to concatenate dierent processes [35, 36].

Generally, resets have been treated as an instantaneous action that connects two 
dierent realisations of a given process. This, for most of the applications of stochas-
tic search (including movement ecology), is not realistic. Nevertheless, some works 
have introduced a penalizing period after a reset happens using the Michaelis–Mentens 
reaction scheme. In particular, search processes with constant rate restarts and finite 
time overheads were studied in [37, 38] and an equation for the first completion time 
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distribution of a process with constant rate restarts and a general PDF for the time 
overheads was derived in [39]. Also, in [40] a stochastic process with Poissonian resets 
followed by a generally distributed quiescent time has been recently studied using a 
renewal approach.

Following this line, we study the transport properties and the first arrival statistics 
of a walker which may experience resets after which we introduce a residence (or rest-
ing) quiescent period before starting anew. Unlike the previous works, our most inter-
esting results correspond to the particular case where both the reset and the residence 
time PDFs have a power-law decay. For this case we show that the inclusion of the 
residence period generates a wide variety of transport regimes. Previous models have 
already shown this capacity of resting states to modify the transport regime of a pro-
cess (see for instance [41, 42] or [43] for a successful application).

In an ecological context, the residence period can be interpreted as the time spent 
by an animal at the nest between two consecutive foraging trips. Furthermore, assum-
ing that the animal ceases to do any task when it decides to return to the nest, the qui-
escent time could also include the time spent by the animal to go there. This partially 
solves the unphysical instantaneous nature of resets.

This paper is organised as follows. In section 2 we present the model and we derive 
an expression for the probability of the walker being at position x at time t. In sec-
tion 3 we find a formula for the overall mean square displacement (MSD) in terms of 
the MSD of the movement process and its long-term behaviour is analysed, while in 
section 4 we study the case where a stationary state is reached. Finally, in section 5 
the first arrival statistics of the process are studied and, in the cases where it is finite, 
a general expression for the mean first arrival time (MFAT) is found. We conclude the 
work in section 6.

2. The process

Let us introduce the general formulation of the process studied in this paper. In order 
to describe both the movement process and the resting of the walker in the nest, we 
define two dierent states. The first state, i  =  1, corresponds to the movement stage, 
while in the second state, i  =  2, the walker rests at the origin. First, we study the trans-
ition probabilities between the two states. Let ϕR(t) be the reset time PDF (i.e. the 
distribution of times the walker spends travelling) and ϕS(t) or residence time PDF (i.e. 
the distribution of times that the walker stays at the origin before moving again). Then, 
the probability of arriving at state i = 1, 2 at time t can be written as

j1(t) = δ(t) +

∫ t

0

j2(t− t′)ϕS(t
′)dt′ (2.1)

j2(t) =

∫ t

0

j1(t− t′)ϕR(t
′)dt′, (2.2)

where the δ(t) in the first equation indicates that the process starts at state i  =  1. 
The second term in the first equation and the second equation are the probabilities of 
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reaching the state i from state i′; which is the probability of reaching the state i′ at 
any past time t− t′ and stay there for a time t′, when the walker switches back to i. 
Transforming equations (2.1) and (2.2) by Laplace for the time variable we get

ĵ1(s) =
1

1− ϕ̂R(s)ϕ̂S(s)
 (2.3)

ĵ2(s) =
ϕ̂R(s)

1− ϕ̂R(s)ϕ̂S(s)
 (2.4)

where L[ f(t)] = f̂(s) =
∫∞
0

e−stf(t)dt is the laplace transform of f(t). The next step is 

to introduce the spatial motion in the model. The overall probability that the walker 
is at point x at time t can be split into two parts ρ(x, t) = ρ1(x, t) + ρ2(x, t), where 
ρi(x, t) is the partial probability when it is at state i. For the state i  =  1 we define the 
propagator P (x, t) as the time-dependent distribution of the walker position during a 
single movement stage. On the other hand, we take the position of the the walker to 
be fixed at x  =  0 when it is in the resting state (i  =  2). With these considerations, the 
time-dependent PDF for each of the states becomes

ρ1(x, t) =

∫ t

0

dt′j1(t− t′)ϕ∗
R(t

′)P (x, t′), (2.5)

ρ2(x, t) = δ(x)

∫ t

0

dt′j2(t− t′)ϕ∗
S(t

′) (2.6)

where ϕ∗
R,S(t) =

∫∞
t

ϕR,S(t
′)dt′. These equations can be read as follows: the position dis-

tribution of the walker in each of the states i = 1, 2 at time t is the probability of getting 
there any time before (j1(t− t′) and j2(t− t′), respectively), stay there for the remain-
ing time (ϕ∗

R(t
′) and ϕ∗

S(t
′) respectively), with the dynamics of the walker described by 

the corresponding propagator (P (x, t′) and δ(x), respectively). Transforming by Laplace 
in time, and substituting the transition probabilities by their explicit expressions given 
in equations (2.3) and (2.4) we get

ρ̂1(x, s) =
L [ϕ∗

R(t)P (x, t)]

1− ϕ̂R(s)ϕ̂S(s)
 (2.7)

ρ̂2(x, s) =
ϕ̂∗
S(s)ϕ̂R(s)

1− ϕ̂R(s)ϕ̂S(s)
δ(x). (2.8)

Hence,

ρ̂(x, s) =
ϕ̂∗
S(s)ϕ̂R(s)δ(x) + L [ϕ∗

R(t)P (x, t)]

1− ϕ̂R(s)ϕ̂S(s)
 (2.9)

is the PDF of the overall process. In particular, when the time PDF at the origin is 
taken as ϕS(t) = δ(t), this expression reduces to the case in [44]. Also, if we consider 
only exponentially distributed resets, this expression reduces to the first result in [40]. 
There, the case where the reset time and the residence period (refractory period therein) 
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are correlated is also considered and a general propagator for the resulting process is 
derived.

3. Transport regime analysis

In the previous section we have derived an expression for the probability ρ(x, t) that 
the walker is at point x at time t. Here we will study the asymptotic behaviour of the 
MSD. Particularly, we study how the tails of the reset and residence time PDFs modify 
the transport properties of the overall process, leaving for the next section the study of 
the cases where the walker reaches a stationary state.

To do so, we start from equation (2.9). If we multiply at both sides by x2 and inte-
grate over the whole spatial domain we get an equation for the overall MSD in the 
Laplace space in terms of the time PDFs and the movement MSD:

L[〈x2(t)〉] = L [ϕ∗
R(t)〈x2(t)〉m]

1− ϕ̂R(s)ϕ̂S(s)
. (3.1)

Here, the subindex m in 〈x2(t)〉m indicates that the MSD corresponds to the movement 
stage, while the expression without subindex 〈x2(t)〉 corresponds to the overall process. 
In order to study more explicitly the MSD we choose a particular expression for the 
time PDFs:

ϕR(t) =
tγR−1

τ γRm
EγR,γR

[
−
(

t

τm

)γR
]

 (3.2)

ϕS(t) =
tγS−1

τ γSs
EγS,γS

[
−
(

t

τs

)γS
]

 (3.3)

with

Eα,β(z) =
∞∑
n=0

(−z)n

Γ(αn+ β)
, (3.4)

being the Mittag-Leer function, and 0 < γi � 1 and τi (for i = R,S) are characteris-
tic parameters. In the large time limit and for γi < 1 we have that ϕi(t) ∼ t−1−γi. The 
choice of these PDFs is motivated by the fact that we can recover exponential PDFs 
for γR = 1 and we can also study power-law behaviours for γR < 1. The first correspond 
to constant rate events, i.e. at any time there is the same probability of switching from 
one state to the other. As for the latter, they are a type of PDFs with infinite mean 
frequently used in the modelling of movement processes. Particularly, sub-diusion 
processes are usually modelled by introducing power law tails in the waiting time 
PDF between two consecutive jumps (see [5]). The dierence here is that the resetting 
mechanism constantly forces the system to wait at the origin, which makes the eect 
of the long tailed waiting time PDF at the origin much stronger.

Let us also assume that the movement proces follows a general MSD which scales as

〈x2(t)〉m ∼ t p, (3.5)

https://doi.org/10.1088/1742-5468/ab02f3
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with 0  <  p   <  2. Then, the asymptotic behaviour of the overall process MSD can be 
found by taking the small s limit of equation (3.1) and performing the inverse Laplace 
transform on the result. Doing so for the whole range of parameters, one finds three 
dierent behaviours 〈x2(t)〉 ∼ ta depending on the relative values of γR and γS:

a =




γS − 1, γS � γR = 1

p+ γS − γR, γS < γR < 1

p, γS � γR < 1.
 (3.6)

This expression, which groups the main results of this section, shows that the 
inclusion of the residence at the origin generates a competition between the tails of 
the PDFs ϕR(t) and ϕS(t). This produces a rich diversity of transport regimes for the 
overall process in terms of the exponent of the MSD for the movement process and the 
reset-and-residence mechanism. In the following we study the dierent cases of equa-
tion (3.6) in detail.

3.1. Long tail ϕR(t) PDF

Let us start with the cases for which the reset time PDF has a long tail (γR < 1). In 
figure 1 the exponent of the MSD at the asymptotic limit, obtained with Monte Carlo 
simulations, is shown for the whole range 0 < γS < 1 and 0 < γR < 1, for both a sub-
diusive and a super-diusive case. There, we can observe the two bottom cases in 
equation (3.6) separated by the analytical limiting case γR = γS (red line). Below the 
red line, the asymptotic exponent of the MSD does not depend on the values of γR and 
γS while above the red line the asymptotic exponent decreases like γR − γS, as we have 
found in the second case of equation (3.6).

Interestingly, shape of the regimes in equation (3.6) does not depend on the move-
ment transport regime exponent p . Therefore, the competition is exclusively between 
the tails of the reset and residence time PDFs. When the tail of ϕR(t) decays equally 
or slower than the tail of ϕS(t) (γS � γR < 1), asymptotically there are less walkers 
resetting their position than leaving the origin, which makes the residence stage neg-
ligible. On the other hand, when the tail of ϕS(t) decays slower than the tail of ϕR(t) 
(γS < γR < 1), the residence PDF becomes significant and the overall transport regime 
is aected by the reset and residence time PDFs. In fact, this change of behaviour is a 
consequence of the requirement of the walker to have restarted its position for the resi-
dence mechanism to be triggered. Therefore, when the reset times are asymptotically 
longer than the residence times, the asymptotic behaviour of the MSD is as if there was 
no residence [44]. Otherwise, when the residence times are asymptotically longer, the 
eect of the particles stacked at the origin becomes qualitatively relevant.

3.2. Exponential ϕR(t) PDF

When the reset time PDF ϕR(t) is exponential, the asymptotic behaviour of the MSD 
changes drastically. This case includes both power law and exponential PDFs for ϕS(t). 
In figure 2 we show the simulated MSD for long tailed residence time PDFs and dierent 
movement: sub-diusive and diusive processes, and super-diusive Lévy walks. In all 
three cases, the MSD increases for short times until it reaches a maximum value and 

https://doi.org/10.1088/1742-5468/ab02f3
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starts to decrease as predicted with the first case in equation (3.6). The asymptotic 
decay depends exclusively on the residence time PDF exponent γS and in this regime 
the movement process only modifies multiplicatively the overall MSD.

To summarize, in figure 3 we present a phase diagram with the possible transport 
regimes. There we can see that a super-diusive process (p   >  1) can be transformed to 
a sub-diusive (or diusive) process when the reset-and-residence mechanism is taken 
into account. Similarly, a sub-diusive process (p   <  1) can derive into a transport 

Figure 1. Exponent a of the asymptotic behaviour of the MSD of the overall 
process 〈x2(t)〉 ∼ ta with respect to the long tailed reset and residence time PDFs 
exponents γR and γS respectively is shown. The plots correspond to simulations 
of two dierent movement processes: a sub-diusive process with p   =  0.5 in (A) 
and a super-diusive Lévy walk with p   =  1.5 in (B). For both cases, in the region 
below the red line (γR = γS) the exponent is constant and equal to the movement 
MSD exponent a  =  p  while in the region above the line the exponent diminishes 
progressively.

https://doi.org/10.1088/1742-5468/ab02f3
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failure regime. Therefore, the reset-and-residence mechanism can be also seen as a tool 
to slow down the transport regime.

4. Stationary state

In the previous section we have derived in a general manner the transport regime of 
the overall process and we have also studied how the reset-and-residence mechanism 

Figure 2. The time evolution of the MSD of a simulation of an overall process 
with γR = 1 and γS = 0.5 is plotted for a sub-diusive (SD), a diusive (D) and a 
Lévy walk (LW) super-diusive motion. In all three cases the MSD decreases as 
t−0.5 in the long time limit as predicted by the first case in equation (3.6). See the 
guide line (black line in the plot) for comparison.

Figure 3. Schematic plot of the dierent overall transport regimes in terms of 
the transport regime of the movement process p  and the dierence between the 
decaying exponents of the reset and residence time PDFs γR − γS. In the red region 
the overall behaviour is super-diusive. In the yellow region it is sub-diusive and 
the pink represents the values for which we have transport failure.

https://doi.org/10.1088/1742-5468/ab02f3
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aects the long term behaviour of the system. In this section we study the special case 
where both the residence and the reset time PDFs are exponential (γS = γR = 1), so 
a stationary state is reached. Concretely, we derive a formula for the overall MSD in 
terms of the MSD of the movement and we find the stationary distribution for some 
well-known movement processes.

To do so, we start from equation (3.1) and the time PDFs from equations (3.2) and 
(3.3) with γR = 1 and γS = 1 respectively. With these parameters the Laplace transform 
of the overall MSD reads

L[〈x2(t)〉] = L[e−
t

τm 〈x2(t)〉m]
1− 1

(1+τms)(1+τss)

. (4.1)

In order to find the asymptotic behaviour of the MSD we make use of the final value 
theorem limt→∞ f(t) = lims→0 sL[ f(t)]. Doing so, the stationary MSD can be easily 
found from equation (4.1) giving

〈x2〉st =
1

τm + τs

∫ ∞

0

e−
t

τm 〈x2(t)〉m dt. (4.2)

For a motion with 〈x2(t)〉m = 2Dt p with D, p positive constants, the stationary MSD 
takes the simple form

〈x2〉st = 2D Γ( p+ 1)
τ p+1
m

τm + τs
. (4.3)

This result has been compared with Monte Carlo simulations in figure 4 for three 
dierent types of movement. Let us now calculate the stationary distribution. Doing so 
it is easy to see that the stationary distribution can be written in terms of the propaga-
tor P (x, t) as

ρst(x) =
τs

τm + τs
δ(x) +

P̂ (x, s = 1
τm

)

τm + τs
, (4.4)

which has been recently found in [40]. For a propagator of the form

P SD(k, s) =
1

s+Dγs1−γk2

in the Fourier–Laplace space, which corresponds to a sub-diusive process for γ < 1 
and diusive for γ = 1, the stationary distribution is

ρSDst (x) =
τs

τm + τs
δ(x) +

τm
τm + τs

e
− |x|√

Dγτm√
4Dγτ

γ
m

. (4.5)

If instead of a sub-diusive (or diusive) motion we consider a Lévy flight, its propaga-
tor is

P LF(k, s) =
1

s+Dα|k|α

https://doi.org/10.1088/1742-5468/ab02f3
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in the Fourier–Laplace space, where α < 2 and Dα is the corresponding diusion con-
stant. The stationary distribution reads

ρLFst (x) =
τs

τm + τs
δ(x) + 2

τm
τm + τs

∫ ∞

0

cos(kx)

1 + τmDαkα
dk. (4.6)

This distribution has divergent second order moment since it decays as 1
|x|1+α for 

large |x|. Therefore, despite a stationary state is reached the average region of space 
covered by the walker around the nest is infinite. Contrarily, for the sub-diusive and 
diusive movement processes we have a finite stationary MSD, the value of which is 
given by equation (4.3) with properly chosen parameters.

5. Mean first arrival time

In the previous section we have analysed the long-term behaviour of the overall process. 
Here we perform a first arrival time analysis which is still lacking despite of the previ-
ous works including a quiescient period after the resets. It consists on determining the 
conditions for which the MFAT is finite, taking into account finite and infinite mean 
PDFs for the reset and residence time PDFs. To do so, we build up a mesoscopic equa-
tion for the overall survival probability σx(t), which is the probability of the walker not 
having arrived to x at time t. Let us separate the overall survival probability into three 
temporal non-overlapping processes. If the walker starts at the origin but is moving 
(i.e. at the state i  =  1), the three contributions to the overall survival probability are:

Figure 4. Stationary MSD for a sub-diusive (SD), a diusive (D) and a Lévy 
flight (LF) propagator when they are subject to reset times which are exponential 
distributed with τm = 10 and retained at the origin during a time given by an 
exponential PDF with dierent means τs. For the propagators we have chosen 
p = 0.5, D = 1.05 · 10−2 for the sub-diusive, p = 1, D = 2.63 · 10−3 for the 
diusive and p = 1.1, D = 6.11 · 10−3 for the Lévy walk. The crosses correspond to 
the simulated distributions while the solid curves show the analytical result given 
in equation (4.3).

https://doi.org/10.1088/1742-5468/ab02f3
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 (i)  The walker has not yet restarted at time t. This happens with probability ϕ∗
R(t) 

and in this case the overall survival probability is the same as the motion survival 
probability Qx(t).

 (ii)  The walker has restarted its position once at time t′ < t, during which it has 
not arrived to x, and during the period (t′, t) it has not left the origin. The first 
happens with probability ϕR(t

′)Qx(t
′)dt′, the second with probability ϕ∗

S(t− t′) 
with 0 � t′ � t.

 (iii)  The walker has restarted its position at least once at time t′ < t and it has not 
reached x before t′, which happens with probability ϕR(t

′)Qx(t
′)dt′ as in the 

previous case. However, here the walker leaves the origin after a time t′′ < t− t′ 
and in this case the walker is exactly at the initial scenario but instead of 
having a time t, we have to subtract the time of the first non-triggering journey 
(t → t− t′ − t′′). This happens with probability ϕS(t

′′)σx(t− t′ − t′′)dt′′ given that 
the first reset was at time t′. These scenarios must be taken into account for all 
t′′ < t− t′ and t′ < t.

Putting the three contributions together we get:

σx(t) = ϕ∗
R(t)Qx(t) +

∫ t

0

ϕR(t
′)Qx(t

′)ϕ∗
S(t− t′)dt′

+

∫ t

0

ϕR(t
′)Qx(t

′)dt′
∫ t−t′

0

ϕS(t
′′)σx(t− t′ − t′′)dt′′,

 

(5.1)

where Qx(t) is the survival probability of the movement process and the first, second 
and third terms in the rhs correspond to cases (i), (ii) and (iii), respectively. Applying 
the Laplace transform to equation (5.1) we get

σ̂x(s) =
L[ϕ∗

R(t)Qx(t)] + L[ϕR(t)Qx(t)]ϕ̂
∗
S(s)

1− L[ϕR(t)Qx(t)]ϕ̂S(s)
, (5.2)

which has been also found as a particular case in [40] by assuming non-correlated reset 
and residence time PDFs on their general result. This equation is completely general 
so it is valid for any survival probability of the movement process Qx(t) and any reset 
and residence time PDFs ϕR(t) and ϕS(t), respectively. Here we focus on studying the 
asymptotic behaviour of the overall survival probability for Qx(t) ∼ t−q with 0  <  q  <  1. 
This choice encompasses some processes associated with animal foraging as shown in 
the particular examples below. For ϕR(t) and ϕS(t) we consider again expressions (3.2) 
and (3.3), respectively.

The existence of a MFAT can be determined by taking the limit s → 0 in equa-
tion (5.2) (TF = lims→0 σ̂(s)). In this limit, corresponding to the long t limit, the domi-
nant term in the numerator of equation (5.2) depends on the tail exponents of the PDFs 
ϕR(t) and ϕS(t). Concretely, we can distinguish three dierent cases:

 (a)  γS � γR + q . At long times, the first term in the numerator of equation (5.2) 
dominates over the second (or they are equal in the limiting case). The MFAT is 
infinite since the survival probability decays as

https://doi.org/10.1088/1742-5468/ab02f3
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σx(t) ∼ tγR+q−1. (5.3)

 (b)  γS < γR + q, γS < 1. At long times, the second term in the numerator of equa-
tion (5.2) is the dominant term. Here, the MFAT is infinite again, with a survival 
probability decaying as

σx(t) ∼ tγS−1. (5.4)

 (c)  γS < γR + q, γS = 1. In this scenario, the MFAT is finite and it can be written as

TF =
I1 + τsI2
1− I2

, (5.5)

  with

I1 =

∫ ∞

0

EγR,1

[
−
(

t

τm

)γR
]
Qx(t)dt (5.6)

  and

I2 =

∫ ∞

0

tγR−1

τ γRm
EγR,γR

[
−
(

t

τm

)γR
]
Qx(t)dt, (5.7)

  where we have made use of equations (3.2) and (3.3).

From this we see that, when studying the overall survival probability, the reset time 
PDF couples to the survival probability of the movement process and is the joint tail 
the one which competes with the residence time PDF. Therefore, the type of movement 
has a direct eect on which distribution determines the tail exponent of the overall 
survival probability. To illustrate this, we next study these general results for some 
particular cases.

5.1. Infinite MFAT

Let us leave the case (c) in the previous Section apart for the moment. From cases (a) 
and (b) we see that there are two dierent regions in the state space where the govern-
ing tail diers, limited by the plane γS = γR + q. In the following we test this for two 
dierent movement processes: a sub-diusive random walk (figure 5(A)) and a Lévy 
flight (figure 5(B)).

The survival probability of a sub-diusive jump process has been studied in [45], 
where it was found to be

QSD
x (t) =

x√
Dtγ

∞∑
k=0

(
− x√

Dtγ

)k

(k + 1)!Γ
(
1− γ

2
− k γ

2

) (5.8)

with 0 < γ < 1. This, in the large time limit decays as

https://doi.org/10.1088/1742-5468/ab02f3
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QSD
x ∼ t−

γ
2 . (5.9)

For γ = 1, we can recover the well-known decay for the survival probability of a 
diusive process. From the asymptotic expression we can identify q = γ

2
 and, there-

fore, in this case the limiting plane is γS = γR + γ
2
, which is illustrated as a red line in 

figure 5(A) for the particular case γ = 0.5. There we can see that, below the line, the 
tail exponent of the overall survival probability increases upwards and remains con-
stant in the horizontal direction, which means that it depends on the reset tail only. 

Figure 5. Exponent b of the asymptotic behaviour of the survival probability of 
the overall process σx(t) ∼ t−b with long tailed reset and residence time PDFs is 
shown. Their exponents are γR and γS and the plots are for simulations of two 
dierent movement processes: a sub-diusive process with γ = 0.5 in (A) and a 
super-diusive Lévy walk with α = 1.5 in (B). For both cases, in the region above 
the red line (γS = γR + q with q  =  0.25 in (A) and q  =  0.33 in (B)) b only changes 
horizontally with γS while below the line b only varies vertically with γR. These are 
the results predicted by the cases (a) and (b) in the main text respectively.

https://doi.org/10.1088/1742-5468/ab02f3
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Contrarily, above the red line the decaying exponent of the overall survival probability 
increases from left to right and remains constant in the vertical direction. Therefore, 
in this case, it only depends on the residence tail, which is in agreement with cases 
(a) and (b) above. This general behaviour becomes less clear near the red lines, where 
the tail competition is evener. This can be amended by running considerably longer 
simulations.

Regarding the Lévy flight process, an expression for the Laplace transform of the 
first arrival survival probability was derived in [46]:

Q̂LF
x (s) =

αD1/α sin(π/α)

πs1/α

∫ ∞

0

1− cos(kx)

s+Dkα
dk. (5.10)

This scales asymptotically as

QLF
x (t) ∼ t

1
α
−1. (5.11)

Here 1 < α < 2, being α = 2 the diusive limit. In this case, the limiting surface is 

γS = γR + 1
α
, which has been plotted for the particular value α = 1.5 in figure 5(B) as a 

red straight line. As for the previous example, the line separates two dierent regions 
in which the dominant exponent is γS above the red line and γR below.

5.2. Finite MFAT

From the three dierent cases from equation (5.2), the (c) scenario is the only one where 
the MFAT is finite. In this case, equation (5.5) gives us its value for dierent movement 
survival probabilities. As for the previous situations, we consider the two cases where 

Figure 6. The simulated MFAT (crosses) with an exponential residence time PDF 
with mean τs = 10 and for three representative cases of subdiusion (SD) with 
γ = 0.5, diusion (D) with γ = 1 and a Lévy flight with α = 1.5, all with D  =  0.1. 
We compare our simulations to the analytical result in equation (3.4) (solid curves) 
for dierent reset time PDF tail exponents γR and τm = 10. Concretely, the MFAT 
is computed at a distance x  =  0.5 from the origin.

https://doi.org/10.1088/1742-5468/ab02f3
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the motion is sub-diusive and a Lévy flight, the survival probabilities of which are in 
equations (5.8) and (5.10) respectively. In figure 6 we show the simulated MFAT for 
a sub-diusive, a diusive (as a limit of the first) and a Lévy flight process in the (c) 
scenario. The simulations are compared with the result obtained by numerically inte-
grating equation (5.5) for the dierent cases.

6. Conclusions

We have studied how a stochastic residence period at the resetting position aects the 
overall dynamics of a random walker. More specifically, we have employed a renewal 
approach to derive analytical expressions for the MSD and the survival probability (or 
MFAT when it is finite), which have been validated with Monte Carlo simulations of 
dierent processes such as diusion, Lévy walks or Lévy flights.

For the MSD we have found that, on one hand, for long tailed reset and residence 
time PDFs the MSD of the overall process depends strongly on the relation between 
the tail exponents of both PDFs (γR for resets and γS for residence times). Concretely, 
for γR � γS the overall MSD exponent is the same as the one for the movement pro-
cess while for γR > γS the exponent of the movement process is diminished by a factor 
γR − γS. On the other hand, for exponentially distributed reset times, if the residence 
time PDF is long tailed the overall process collapses to the origin while for an exponen-
tial residence time PDF a stationary MSD is reached (see equation (4.2)).

Regarding the decaying exponent of the survival probability when both time PDFs 
are long tailed, we have seen that the tail of the residence time PDF competes with 
both the tail of the movement process survival probability and the tail of the reset time 
PDF. In this case the MFAT is always infinite. Contrarily, when the residence time 
PDF is exponential, a finite MFAT may be found but only when q + γR > 1 with q and 
γR being the tail exponents of the survival probability of the movement process and the 
reset time PDF respectively.

We note that, in the context of movement ecology, resets are a natural mechanism 
to concatenate dierent trials of a particular behaviour of the animals. In this work 
we have tried to include explicitly the period that they spend in the nest separating 
excursions for feeding, mating or any other basic functions. The next step towards a 
complete model could be the introduction of multiple search strategies with dierent 
movement patterns to be chosen during the resting period, similarly to what has been 
done in [35, 36] for instance. Also, regarding the interpretation of the quiescent time 
as the time needed by the animal to return to the nest, a further step to be addressed 
in future works would be the introduction of a process driving the individual gradually 
towards the nest instead of leaving it in a motionless state.
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