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Recurrence time correlations in random walks with preferential relocation to visited places
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Random walks with memory usually involve rules where a preference for either revisiting or avoiding those
sites visited in the past are introduced somehow. Such effects have a direct consequence on the transport
properties as well as on the statistics of first-passage and subsequent recurrence times through a site. A preference
for revisiting sites is thus expected to result in a positive correlation between consecutive recurrence times. Here
we derive a continuous-time generalization of the random walk model with preferential relocation to visited sites
proposed in Phys. Rev. Lett. 112, 240601 (2014) to explore this effect, together with the main transport properties
induced by the long-range memory. Despite the long-range memory effects governing the process, our analytical
treatment allows us to (i) observe the existence of an asymptotic logarithmic (ultraslow) growth for the mean
square displacement, in accordance to the results found for the original discrete-time model, and (ii) confirm
the existence of positive correlations between first-passage and subsequent recurrence times. This analysis is
completed with a comprehensive numerical study which reveals, among other results, that these correlations
between first-passage and recurrence times also exhibit clear signatures of this ultraslow relaxation dynamics.
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I. INTRODUCTION

Purposeful memory is one of the essential ingredients that
serves us to distinguish the behavior of higher organisms from
that of simpler (living or nonliving) entities; this is an idea
which has been recognized for a very long time and has
represented a matter of debate in science, psychology, and
epistemology for decades. Nowadays, quantitative approaches
to animal and human behavior have progressively become a
field of active research in biological physics. The study of
neuronal patterns in the brain with the help of imaging tech-
niques and its modelization through mathematical tools from
network theory and/or population dynamics represent proba-
bly the most renowned example [1,2], but the monitoring and
subsequent analysis of animal movements or trajectories in
connection to statistical physics and dynamical systems [3–5]
has also gained its attention as an effective field of study.

In particular, for those behavioral processes related to
dispersal and/or navigation of living beings, it is clear that
random walks represent a convenient description in order to
condense and/or account for the properties of real trajec-
tories and individual or collective space use [6–8]. Simpler
approaches within this area just neglect any effects from
spatial memory, so the position of the individual walker at
time t , X (t ), is then a Markovian random variable. However,
a rich bibliography on random walks with memory rules of
a different sort has been developed throughout the years and
connected to biological movement, too. Some examples of
this include models in which walkers tend to exhibit locally
some kind of directional memory or persistence (these could
be loosely termed as annealed memory models); this is the
case of persistent random walks [6,9,10], continuous-time
random walks (CTRW) [11], Lévy walks [12–15], etc. On
the other side, quenched memory models represent a more

complex situation in which local information about the sites
visited is stored by the walker somehow, and so future rules
of advance will explicitly depend on it, which in general
introduces strong departures from a Markovian situation.
Some well-known frameworks falling within this class are
the different versions and generalizations of the self-avoiding
random walk (though originally this model was proposed
to describe polymer growth, not biological movement) [16],
elephant random walks (which were probably the first class of
solvable models proposed with long-range memory effects)
[17], or, more recently, models with preferential relocation
to already visited sites [18,19] or preferential persistence for
familiar paths [20,21].

Though a large amount of realism can be gained by
introducing memory in the description of animal and hu-
man movement, it is clear that mathematical treatment be-
comes then cumbersome due to its non-Markovian charac-
ter. First-passage and coverage properties, for instance, of
non-Markovian processes represent a formidable problem for
which it is very difficult to extract analytical results unless
additional assumptions are considered [22]. For the case of
annealed memory some exceptions can be found, like those
works where nonstationary random walk patterns are con-
sidered [23], but for quenched memory it is very difficult
to find references in the literature where this has been even
addressed; we can cite the recent work by Kearney and Martin
[24] on the first-passage properties of Pólya urns and their
connection to random walks as one of the few exceptions.

Taking all this context into account, our aim is to pro-
pose the study of first-passage and recurrence times statistics
for quenched memory random walks roughly describing the
movement of biological organisms with different memory
(cognitive) abilities. While a whole analytical treatment of
such situations is unattainable, still some general properties
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of interest can be derived. If �n represents a random variable
describing the time at which the individual hits a site for nth
time, then we will focus here on the random variables

Tn = �n − �n−1 (n � 1)

representing the random times between consecutive hittings,
with �0 = 0. So, a consequence of introducing memory ef-
fects in the trajectories could be the emergence of correla-
tions between T1, T2, . . .. Note that all these variables would
be independent for the simplest case of Markovian random
walks, since memory is lost after hittings. So, characterizing
the correlations between these recurrence times could provide
a way to classify memory random walks.

As a first step towards this aim, we here study the cor-
relation properties between first-passage and successive re-
currence times in a generalized (continuous-time) version of
the random walk with preferential relocation to visited sites
[18,25]. This preferential relocation process, as reported in
the original work, tries to capture some basic properties of
foraging in higher animals driven by a tendency to revisit
sites where resources (e.g., food,...) have been successfully
detected previously (so assuming that these resources are
never depleted and/or can be replenished in a relatively short
time). Hence this process is obviously expected to yield a
positive correlation between the variables Tn, though this idea
has never been explored previously as far as we know.

The present article is structured as follows. In Sec. II we
derive the CTRW master equation for random walks with pref-
erential relocation to visited sites, and justify the interest of
such generalization if compared to the original (time-discrete)
version. In Sec. III, we study the dispersal properties through
the mean square displacement (MSD) of the corresponding
random walkers to check that our results are in agreement with
those from the original model. In Sec. IV we formally present
the hitting and recurrence problem for this case and provide
analytical justification to support the existence of positive
correlations between first-passages and subsequent recurrence
times for a particularly simplified case. Also, we show results
from Monte Carlo simulations in order to understand the main
properties of the process. Finally, the conclusions from our
study are presented in Sec. V.

II. CONTINUOUS-TIME MODEL

A. CTRW framework

We start by revising briefly the classical CTRW formalism
to facilitate understanding of the model presented below. The
CTRW is based on the idea that the walker performs jumps
of random (i.i.d.) lengths separated by random (i.i.d.) waiting
times. A possible mathematical derivation is based on the
combination of two balance equations. The first one states
that the probability of reaching a position x at the mth step,
denoted by jm(x), satisfies the mesoscopic balance equation

jm(x) =
∫ ∞

−∞
jm−1(x − z)�(z)dz + δm,0δ(t ) j0, (1)

where �(x) is the jump kernel, which determines the probabil-
ity distribution function of the jump lengths, and the last term
stands for the initial condition [where δm,0 is a Kronecker delta
function, δ(t ) is a Dirac delta function, and j0 = δ(x − x0)

with x0 the position of the site occupied at t = 0]. One can
also include time explicitly within this expression to write

jm(x, t ) =
∫ t

0

∫ ∞

−∞
jm−1(x − z, t − τ )ϕ(τ )�(z)dz dτ

+ δm,0δ(t ) j0, (2)

where jm(x, t ) corresponds to the probability that the mth step
is done to position x at time t [so jm(x) = ∫ ∞

0 jm(x, t )dt] and
ϕ(t ) is the probability distribution function of waiting times
between consecutive jumps.

A second equation is introduced through the probability of
being at position x at time t after m steps have been made,
pm(x, t ); this expression reads

pm(x, t ) =
∫ t

0
jm(x, t − τ )φ(τ )dτ, (3)

where φ(τ ) is the probability that the walker has not jumped
in a time τ since it arrived to x, so this satisfies φ(t ) =∫ ∞

t ϕ(τ )dτ . By combining (2) and (3) one obtains the mas-
ter equation which contains the statistical properties of the
CTRW. In particular, if we sum the equations (2) and (3) for
m from zero to ∞ (with jm = 0 for m < 0) we recover the
well-known master equation of the CTRW as it appears in the
books on the subject [7]:

j(x, t ) =
∫ t

0

∫ ∞

−∞
j(x − z, t − τ )ϕ(τ )�(z)dz dτ + δ(t ) j0,

(4)

p(x, t ) =
∫ t

0
j(x, t − τ )φ(τ )dτ. (5)

B. Preferential relocation to visited sites

Now we include in the CTRW framework the possibility
that the walker can use memory to return to previously visited
sites. While the original model with preferential relocation
rules was discrete both in time and space [18], a continuous
generalization has already been proposed in a different context
[26], though a mesoscopic derivation was not provided there
as we do in the following. In particular, a generalization within
the CTRW framework allows one the possibility to consider in
a natural way different waiting time distributions, including
those with power-law tails (leading to a Lévy statistics) or
with a combination of different dispersal modes, for example.

We will consider that at the end of each waiting time the
particle can either (i) decide to do a random jump governed
by the kernel �(x) with probability α (in the following, we
denote this as the normal transport mode) or (ii) use its
memory and then fly instantaneously to a previously visited
site with probability 1 − α (in the following, this is termed
as memory transport mode). If we denote the memory kernel
(that is, the probability to remember a site visited i jumps ago)
as Km(i), with

∑m
i=1 Km(i) = 1 for any m, then we can write

jm(x, t ) = α

∫ t

0

∫ ∞

−∞
jm−1(x − z, t − τ )ϕ(τ )�(z)dz dτ

+ (1 − α)
m∑

i=1

Km(i)[ jm−i(x, t ) ∗ ϕ(t )∗i], (6)
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where the asterisk symbol ∗ denotes the time-convolution
operator and ϕ(t )∗i denotes the time convolution of the dis-
tribution ϕ(t ) with itself i times.

From now on, for the sake of simplicity we will use a
memory kernel that gives the same weight to all previously
visited sites, so Kn(i) = 1/m, in agreement with the original
model [18]. For that case, the previous equation becomes

jm(x, t ) = α

∫ t

0

∫ ∞

−∞
jm−1(x − z, t − τ )ϕ(τ )�(z)dz dτ

+ 1 − α

m

m∑
i=1

[ jm−i(x, t ) ∗ ϕ(t )∗i]. (7)

We can apply Fourier-Laplace transforms to the previous
equation to take advantage of the renewal property of the
process in time and space,

jm(k, s) = α jm−1(k, s)ϕ(s)�(k) + 1 − α

m

m∑
i=1

jm−i(k, s)ϕ(s)i.

(8)

Note that we use k and s as the Fourier and Laplace arguments,
so that jm(k, s) represents the Fourier-Laplace transform of
jm(x, t ), and we will distinguish them just by explicitly writ-
ing their variables. Now, due to the explicit dependence of the
memory factor on m, it is also convenient to carry out a Z
transform on the jump index m such that

ĵ(λ, k, s) =
∞∑

m=0

λm jm(k, s),

with 0 < λ < 1. By applying this on Eq. (8) we obtain

ĵ(λ, k, s) = αλ ĵ(λ, k, s)ϕ(s)�(k) + (1 − α)

×
∫ λ

0

ϕ(s) ĵ(u, k, s)

1 − uϕ(s)
du. (9)

Due to the integral that appears now in the equation one
needs to rewrite this expression as a differential equation by
differentiating with respect to λ and replacing the integral in
the resulting equation with the help of Eq. (9). This procedure
leads to

d ĵ(λ, k, s)

dλ
= ĵ(λ, k, s)

[
αϕ(s)�(k)

1 − αλϕ(s)�(k)

+ (1 − α)ϕ(s)

[1 − λϕ(s)][1 − αλϕ(s)�(k)]

]
. (10)

The solution of this first-order differential equation reads

ĵ(λ, k, s) =
[

1

1 − αλϕ(s)�(k)

] α[1−�(k)]
1−α�(k)

[
1

1 − λϕ(s)

] 1−α
1−α�(k)

,

(11)

where we have taken into account the boundary condition
ĵ(λ → 0+, k, s) = 1. Finally, since we are mainly interested
in the behavior of j(k, s) (independent of m) we can remove
the dependence on the jump index by using j(k, s) ≡ ĵ(λ =
1, k, s) = ∑∞

m=0 jm(k, s). On setting λ = 1 into Eq. (11) we

have

j(k, s) =
[

1

1 − αϕ(s)�(k)

] α[1−�(k)]
1−α�(k)

[
1

1 − ϕ(s)

] 1−α
1−α�(k)

. (12)

This expression, together with (5) (which is still valid for the
model with memory), represents the CTRW generalization of
the random walk with preferential relocation to visited places.
Next, we will use this result to derive several properties of the
model.

III. DISPERSAL PROPERTIES

First we will explore the dispersal properties of the model
in order to check that they agree with those found for the
time-discrete version [18]. For this, we will compute the MSD
〈x2(t )〉, which is nothing but the second moment of p(x, t ) in
space. So that, working again in Fourier-Laplace space,

〈x2(s)〉 = − lim
k→0

∂2 p(k, s)

∂k2
= −1 − ϕ(s)

s
lim
k→0

∂2 j(k, s)

∂k2
,

(13)

where we have made use of Eq. (5). Performing the second
derivative of j(k, s) we find, after some tedious calculations,

〈x2(s)〉 = − α

1 − α

�′′(0)

s
ln

[
1 − αϕ(s)

1 − ϕ(s)

]
, (14)

where �′′(0) stands for the second derivative of �(k) eval-
uated at k = 0. If the waiting time distribution has finite
moments then we can make use of the expansion ϕ(s) 	 1 −
τ s + · · · for large times, where τ is the mean waiting time.
Hence, using this expansion and assuming s → 0, we obtain

〈x2(s)〉 ≈ α

1 − α

�′′(0)

s
ln

(
τ s

1 − α

)
, (15)

which yields

〈x2(t )〉 ≈ −α�′′(0)

1 − α

[
γ + ln

(
t

τ (1 − α)

)]
for t → ∞

(16)

after inverting by Laplace, where γ = 0.577 . . . is the Euler-
Mascheroni constant. This result is very general and holds for
any dispersal kernel and waiting time distributions with finite
moments and predicts an ultraslow diffusion due to the loga-
rithmic growth of the MSD [27,28]. If, for example, the dis-
persal kernel is Gaussian �(x) = (2πσ 2)−1/2 exp(−x2/2σ 2)
the asymptotic form of the MSD is given by

〈x2(t )〉 = ασ 2

1 − α

[
γ + ln

(
t

τ (1 − α)

)]
for t → ∞. (17)

In Fig. 1 we confirm this result via direct comparison with
extensive simulations of the random walk process described
in Sec. II B (points) for different α values. Simulations were
carried out in one-dimensional domains for the case of expo-
nential waiting times between jumps (with mean τ = 1) and
Gaussian jump lengths with σ 2 = 1 so a direct comparison
to the result in (17) can be performed. We find that not
only the ultraslow (logarithmic) character of the dispersal is
observed, but the prefactor and the constant term in (17) are
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FIG. 1. MSD for the CTRW model with preferential relocation to
visited places. Symbols represent the results from Monte Carlo sim-
ulations averaged over 2 × 106 realizations, while lines correspond
to the asymptotic prediction for a Gaussian kernel with σ 2 = 1 as
in Eq. (17). For the waiting time distribution ϕ(t ) an exponential
distribution with τ = 1 has been used.

relevant in order to fit properly the behavior obtained from the
simulations. The small differences observed in the plot should
be due to lower order terms in the expansion, which due to
the ultraslow nature of the process may still have some minor
effect even at relatively long times. As a whole, the agreement
observed confirms the validity of our CTRW approach before
we proceed to the analysis of the recurrence statistics in the
next section.

IV. RECURRENCE STATISTICS

A. Theoretical framework

First-passage times and the statistics of recurrence times
for Markovian random walks can be derived in general for
finite domains with the help of renewal properties [29], but
this no longer holds for non-Markovian walks [22]. While
the problem is analytically unattainable for the model with
preferential relocation presented in Sec. II B, some results can
still be derived by simplifying the model considerably.

In particular, we will use the assumption that the system
is finite (with N denoting the number of accessible sites)
and it is spatially unconstrained [that is, the kernel �(x) is
such that any site is accessible from any other with the same
probability 1/N]. This is not unreasonable in the context of
the preferential relocation model we are considering here:
since the memory mode can lead the individual to any visited
site without restrictions, then it may be plausible to consider
that the normal transport mode has this spatial capacity, too.
In Sec. IV C, however, we will relax this assumption to check
how our numerical results change when only jumps of a given
maximum length are permitted.

1. Case n = 1

To illustrate our method, we first derive a formal expression
for the first-passage distribution, following a similar strat-
egy to that in Sec. II B based on discretizing the process

according to the jump index m. We denote by S1(t ) the
survival probability through a target site x∗ (that is, the prob-
ability that after time t that site has not been visited yet; note
that we do not consider an explicit dependence on x∗ due to
the assumption of unconstrained space). Then, this probability
can be decomposed through

S1(t ) =
∞∑

m=0

S(m)
1 P(m|t ) =

∞∑
m=0

S(m)
1 [ϕ(t )∗m ∗ φ(t )], (18)

where S(m)
1 is the survival probability after m jumps and

P(m|t ) = ϕ(t )∗m ∗ φ(t ) is the probability of having performed
m jumps at time t . The latter is given by the convolution of m
times the waiting time distribution [plus the convolution with
φ(t ), which is necessary to assert that the (m + 1)th jump has
not been done yet].

Since the memory transport mode does not contribute to the
first-passage time (as the target site has not been visited yet),
the survival probability after m jumps is

S(m)
1 = (1 − α/N )m, (19)

making use of the unconstrained space assumption. This result
follows since the probability to find the target at any jump is
just α/N . Transforming (18) to the Laplace space one finds

S1(s) = φ(s)

1 − (1 − α/N )ϕ(s)
. (20)

Hence one can write as usual the first-passage distribution
f1(t ) as the time derivative of S1(t ) or, alternatively, as f1(s) =
sS1(s) − 1 in the Laplace space. The first moment of f1(t ),
namely 〈T1〉 = ∫ ∞

0 t f1(t )dt , provides the mean first-passage
time, which reads then

〈T1〉 = lim
s→0

df1(s)

ds
= lim

s→0

[
s

dS1(s)

ds
+ S1(s)

]
. (21)

So, if we assume again that ϕ(t ) has finite moments [with
ϕ(s) ≈ 1 − τ s + · · · ], then we reach from (20) and (21)

〈T1〉 = Nτ

α
(22)

and, similarly, for the second order moment

〈T 2
1 〉 =

∫ ∞

0
t2 f1(t )dt = 2

(
Nτ

α

)2

. (23)

These results are to be expected. In the absence of contribu-
tions from the memory mode the process is Markovian, so
(22) simply represents Wald’s identity [30] for a stochastic
process with constant rate α/τN (which is nothing but the rate
at which the target site will be reached through the normal
mode).

2. Case n > 1

Now we can extend the procedure above to study sub-
sequent recurrence times (T2, T3, . . ., as we defined them in
the Introduction) through a site. For this, we introduce the
distribution function fn(t ) for the random variable Tn and,
equivalently, the joint distribution fn(t ; mn−1) for Tn and the
random variable mn−1, which is the number of jumps done by
the individual (counting since t = 0) when it hits the site for
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the (n − 1)th time (this is, the number of jumps performed
when �n−1 = t). Then we can write

〈Tn〉 =
∞∑

mn−1=0

∫ ∞

0
t fn(t ; mn−1)dt

=
∞∑

mn−1=0

∫ ∞

0
t fn(t |mn−1)qn−1(mn−1)dt

= −
∞∑

mn−1=0

qn−1(mn−1)
∫ ∞

0
t
dSn(t |mn−1)

dt
dt, (24)

where in the second step we have introduced, through the
Bayes theorem, the conditional probability fn(t |mn−1) and the
probability distribution function qn−1(mn−1) for the variable
mn−1. Finally, in the last step we have expressed the condi-
tional n-passage distribution fn(t |mn−1) as the derivative of
the corresponding survival probability Sn(t |mn−1). The reason
for writing the mean recurrence time in that way is because for
each recurrence process one can provide explicit expressions
equivalent to (18) and (19) for the first passage, respectively:

Sn(t |mn−1) =
∞∑

m=0

S(m)
n|mn−1

P(m|t ) =
∞∑

m=0

S(m)
n|mn−1

[ϕ(t )∗m ∗ φ(t )],

(25)

where

S(m)
n|mn−1

=
m−1∏
i=0

(
1 − α

N
− (1 − α)(n − 1)

mn−1 + i

)
. (26)

Note first of all that both expressions for the survival
probabilities reduce to (18) and (19) for n = 1 (since m0 = 0
and so the conditional probability is unnecessary in that case).
Now, we observe that the memory mode explicitly contributes
to the survival probability through the last term within the
parentheses of (26). So, the probability that the memory mode
leads the individual to the target is given by (n − 1)/(mn−1 +
i), where (mn−1 + i) is the total number of jumps performed
up to date [that is, those done up to the (n − 1)th hitting, mn−1,
plus those done afterwards, i].

As a whole, the expressions (24)–(26) provide a recurrent
method to determine the statistics of recurrence times as
follows. First, once we know the properties of the first-passage
time, we can use them to determine q1(m1), which by defini-
tion satisfies

q1(m1) = S(m1 )
1 − S(m1−1)

1 . (27)

This, in combination with (24)–(26) for n = 2, will be used to
determine f2(t ; m1) and its mean value 〈T2〉. Then we will be
able to determine q2(m2) from the general expression

qn(mn) =
mn−1∑
m=0

qn−1(m)
[
S(mn−m)

n|m − S(mn−m−1)
n|m

]
(28)

and the same idea can be applied recurrently for n = 3, 4, . . ..
This method, obviously, will become increasingly cumber-
some as n increases, so at practice we can only expect it to be
of practical utility for n small. In the next subsection we will

illustrate its use for n = 2, which is enough for the specific
objectives we pursue in this paper.

B. Recurrence time for n = 2

Although the method described above could be applied to
any waiting time distribution, to keep notation and results
manageable we will focus here on the case of exponential
waiting times, ϕ(t ) = τ−1e−t/τ . Note that in this case the
random walk would become Markovian in the absence of the
preferential relocation rule (that is, for α = 1). We already
know that the mean first-passage time is determined by (22).
Also, introducing (19) into (27) one has

q1(m1) = α

N

(
1 − α

N

)m1−1

. (29)

On the other side, the combination of Eqs. (25) and (26)
yields for this case

S2(t |m1) =
∞∑

m=0

Bm,m1

(
t

τ

)m e−t/τ

�(m + 1)
, (30)

where we have defined

Bm,m1 ≡
m−1∏
i=0

(
1 − α

N
− 1 − α

m1 + i

)
. (31)

So, we finally insert (29) and (30) into (24) to determine the
mean recurrence time after first hitting, T2. By doing this and
performing the integral in t we get

〈T2〉 =
∞∑

m1=0

ατ

N

(
1 − α

N

)m1−1 ∞∑
m=0

Bm,m1 . (32)

This expression cannot be further simplified due to the
product within the definition of Bm,m1 , but we can reach useful
approximations in the large-domain limit N � 1, so the num-
ber of jumps required for the first passage, m1, is also large
in average. Using such an approximation, one can provide
an analytical approximation for 〈T2〉 which can be expressed
as a combination of exponential integral (or, alternatively,
confluent hypergeometric) functions (see the discussion in the
Appendix for the details).

Also, note that the same idea can be applied to higher order
or cross moments (e.g., 〈T 2

2 〉 or 〈T1T2〉) (see the Appendix).
This allows us to provide an estimation for the correlation
coefficient between first-passage and subsequent recurrence
times

Cor(T1, T2) ≡ 〈T1T2〉 − 〈T1〉〈T2〉
σ1σ2

, (33)

where σi denotes the standard deviation of Ti. The goodness of
that estimation will be checked through the comparison with
results from numerical simulations in the next section.

C. Numerical results

All the simulations of the stochastic process presented in
this section have been carried out for a discrete domain (a lat-
tice of unit lattice size) with N = 1024. While this value of N
may seem small for a normal transport mode, one should take
into account that the ultraslow dynamics of the process makes

062137-5



DANIEL CAMPOS AND VICENÇ MÉNDEZ PHYSICAL REVIEW E 99, 062137 (2019)

0

5

10

15

20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1

0

0.1

0.2

0.3

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

τ
T

2
/N

α

C
or

(T
1
,T

2
)

α

(a)

(b)

FIG. 2. Comparison between numerical results (symbols) and
analytical approximations (lines) for (a) the nondimensional mean
recurrence time after first hitting and (b) the correlation coefficient
between first hitting and first recurrence times as a function of
the memory parameter α. Results from simulations correspond to
averages over 106 realizations. All results are for the case with-
out spatial constraints and an exponential waiting time distribution
ϕ(t ) = τ−1e−t/τ with τ = 1. The dotted line represents the heuristic
approximation 〈T2〉 = τN/α(2 − α).

first-passage times through a site increase exponentially with
N , so very large values of N are unattainable. In agreement
with our approximations above, exponential waiting times
between jumps (with τ = 1) have been taken in all cases.

The first results we show try to verify the validity of the
approximations carried out in the previous section. In Fig. 2
we see that our analytical approximations for the nondimen-
sional recurrence time 〈T2〉/τN and Cor(T1, T2) (solid lines)
fits rather well the results for α small (strong memory regime)
but the approximation fails clearly as long as we approach the
limit without memory, α = 1. Note that our approximation is
valid as long as m1 (and so 〈T1〉) are large enough, and this will
be satisfied in particular in the limit α → 0, so our method is
specially suited for explaining the regime of strong memory
effects.

Surprisingly, we find that a simple heuristic approximation
is able to fit the behavior for 〈T2〉 accurately (dotted lines
in Fig. 2). Such approximation follows from assuming that
the probability of reaching the target at each particular jump
is constant and equals α/N + (1 − α)α/N = α(2 − α)/N .
Here, the two terms in the sum represent the contribution
from the normal and memory modes, respectively. For the
latter we are assuming that the individual revisits the target
with probability (1 − α)/〈m〉, where 〈m〉 is the mean number
of jumps done previously, N/α (as discussed in Sec. IV A).
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FIG. 3. Results for simulations of the stochastic process (sym-
bols) for the (a) mean recurrence time after first hitting and (b) cor-
relation coefficient between first-passage and subsequent recurrence
times as a function of n, and for different values of the memory
parameter α. Averages over 106 realizations are shown in all cases.
The solid line in the lower panel is just a visual cue to illustrate the
logarithmic nature of the decay.

The rate at which the target is found will be then τ times
the inverse of the overall probability, leading to the estimation
〈T2〉 = τN/α(2 − α). The agreement found in Fig. 2 between
this approximation (dotted line) and the numerical results is
clear. However, this kind of approximation cannot be extended
to cross moments (e.g., 〈T1T2〉) and so it is not helpful to obtain
an estimation of the correlation coefficient, as we pursue here.

Regarding the correlation coefficient, Fig. 2 shows that
the tendency predicted by our analytical approach is approx-
imately correct (except, again, in the limit α → 1), but the
accumulated error in the estimation of 〈T2〉, 〈T 2

2 〉, and 〈T1T2〉
makes the quantitative agreement not completely satisfactory.
In particular, we have checked that our approximation works
much better for predicting first-order moment of the recur-
rence times than higher-order moments. This should be due
to problems of convergence of the series expansion proposed
(see the Appendix) but we have not been able to figure out
the details. In any case, this plot confirms the main idea of
the present work, which is the fact that consecutive hitting
times become positively correlated as a consequence of the
preferential relocation rule.

Most of the conclusions above for n = 2 can be extended
to subsequent recurrence times (n > 2), as reported in Fig. 3.
There we observe that the mean value of Tn becomes progres-
sively reduced as a function of n due to the accumulated effect
of memory, and also it can be checked that its behavior as a
function of the memory parameter α is qualitatively the same
as for T2 (not shown). Furthermore, Fig. 3(b) yields a very
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FIG. 4. Results for the (a),(b) mean recurrence time after first hitting and (c),(d) correlation coefficient between first-passage and
subsequent recurrence times as a function of n, obtained from simulations of the stochastic process for the case where the normal mode
is constrained by a maximum jump length of size L. Two values of L and different values of the memory parameter α are reported.

interesting result, as is the fact that correlations between first-
passage and subsequent recurrence times Tn show an ultraslow
(logarithmic, as for the MSD) relaxation to zero as a function
of n. This tells us that the signature of strong memory induced
by the preferential relocation rule does not only emerge at the
level of dispersal (as was already known from previous works
[18,26]) but also on the recurrence statistics.

Finally, to complete the numerical analysis we provide
results for the case where individuals are not allowed to jump
freely from any site to another, but only short jumps are
to be expected, so that we reformulate the dispersal process
by assuming that the individual can only do jumps up to a
maximum distance L (this rule only applies to the normal
mode, while the memory mode is kept unchanged and without
spatial constraints). The results for L = N/4 and L = N/8
are provided in Fig. 4, where the initial position is chosen at
random at each realization of the Monte Carlo simulation.

Note that the spatial constraint increases considerably the
values of the first-passage and recurrence times (since now
further sites become increasingly difficult to be reached due
to the ultraslow dispersal properties of the model). So, low
values of L become computationally very costly. Apart from
that, we observe that the spatial constraint does not modify
qualitatively the picture found in Figures 2 and 3. In particu-
lar, positive correlations between first-passage and recurrence
times are still present and actually become enforced.

V. CONCLUSIONS

Summarizing the ideas reported in the work, we have
confirmed that one of the essential signatures of random
walks with memory (in this case, we have just focused on
the model with preferential relocation to visited places) is
the existence of correlations between first-passage and subse-
quent recurrence times through a site or, equivalently, between
consecutive recurrence times. Furthermore, we have been able
to characterize such correlations not only numerically but also
through an approximated analytical study, at least for the case
n = 2.

Anyway, the most interesting result we obtain is probably
(Fig. 3) that the decay of these correlations with time for the
case of walks with preferential relocation exhibits an ultraslow
(logarithmic) behavior, in accordance with the dispersal prop-
erties of the model which were already known from previous
works [18,25]. Since memory effects persist in the model
for arbitrarily long times, such long-range dynamics is also
present in the hitting and recurrence statistics. This suggests
that such correlations capture adequately the memory dynam-
ics in the model and so can be used as a proxy to identify
what kind of memory rules govern the process. This could be
of great interest, for example, in the analysis of trajectories of
real organisms as a method to understand how memory has
been employed during the underlying dynamics.
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APPENDIX: DERIVATION OF THE MOMENTS OF T2

We start from the definition of the coefficients Bm,m1 , given
implicitly in (30), and express them in a more convenient
form:

Bm,m1 = [γ (m1)]m

(
1 + 1

m1−β

)
. . .

(
1 + m−1

m1−β

)
(
1 + 1

m1

)
. . .

(
1 + m−1

m1

) , (A1)

where we have defined β ≡ (1 − α)/(1 − α/N ) and γ (m1) ≡
(1 − α/N )(1 − β/m1). In this way it is clear that we can
propose an expansion for m1 � 1 in the form

Bm,m1 = [γ (m1)]m

(
1 +

m−1∑
i=1

vi(m)

(m1 − β )i

)(
1 −

m−1∑
i=1

wi(m)

(m1)i

)
,

(A2)

with the first coefficients vi, wi given by

v1(m) = w1(m) = m(m − 1)

2
,

v2(m) = m(m − 1)(m − 2)(3m − 1)

72
,

w2(m) = v2(m) − v2
1 (m),

. . . (A3)

Leading this expansion up to second order (that is, up to
powers of order m−2

1 ) and summing over all values of m = 0

we obtain, after some lengthy algebra,
∞∑

m=0

Bm,m1 = 1

1 − γ (m1)
+ (1 − α)γ (m1)

m2
1[1 − γ (m1)]3

− β[1 + γ (m1)]

m3
1[1 − γ (m1)]4

+ β2[1 + 2γ (m1)]

m4
1[1 − γ (m1)]5

+ · · · .

(A4)

In order to apply (32) we use the fact that in the limit of
large media size (N � 1, m1 � 1) the sum over m1 can be
adequately approximated by an integral

〈T2〉 =
∞∑

m1=0

ατ

N

(
1 − α

N

)m1−1
( ∞∑

m=0

Bm,m1

)

≈ ατ

N

∫ ∞

0
e− α

N u

( ∞∑
m=0

Bm,u

)
du. (A5)

So, by introducing (A4) into (A5) one finally obtains an
approximated expression for 〈T2〉. This result can be expressed
as a combination of algebraic and exponential integral func-
tions (the resulting expression is too long to be reproduced
here).

Similarly, the second order moment of 〈T2〉 can be approx-
imated using exactly the same procedure and leading to

〈T 2
2 〉 ≈ 2ατ 2

N

∫ ∞

0
e− α

N u

( ∞∑
m=0

(1 + m)Bm,u

)
du (A6)

and the same for the cross moment,

〈T1T2〉 ≈ ατ 2

N

∫ ∞

0
u e− α

N u

( ∞∑
m=0

Bm,u

)
du, (A7)

so the value of the correlation coefficient between T1 and T2,
as defined in (33), can be estimated.
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