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Random walks with stochastic resetting provides a treatable framework to study interesting features about
central-place motion. In this work, we introduce noninstantaneous resetting as a two-state model being a
combination of an exploring state where the walker moves randomly according to a propagator and a returning
state where the walker performs a ballistic motion with constant velocity towards the origin. We study the
emerging transport properties for two types of reset time probability density functions (PDFs): exponential and
Pareto. In the first case, we find the stationary distribution and a general expression for the stationary mean-square
displacement (MSD) in terms of the propagator. We find that the stationary MSD may increase, decrease or
remain constant with the returning velocity. This depends on the moments of the propagator. Regarding the
Pareto resetting PDF we also study the stationary distribution and the asymptotic scaling of the MSD for
diffusive motion. In this case, we see that the resetting modifies the transport regime, making the overall transport
subdiffusive and even reaching a stationary MSD, i.e., a stochastic localization. This phenomena is also observed
in diffusion under instantaneous Pareto resetting. We check the main results with stochastic simulations of the
process.
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I. INTRODUCTION

Living organisms and moving particles in general can
rarely exhibit free motion independent of environmental or
internal constraints. One of these constraints consists of the
presence of a privileged location, which is visited with a
higher frequency, either for natural or artificial reasons. For
instance, in a movement ecology context, the term central-
place foraging [1] is often used to describe how animals seek
for food near their nest. In other scenarios, such as human
visual search [2], a fixed location is also used as a reference
point.

From a physical point of view, this topic has been often
addressed using stochastic motion models. Historically, the ef-
fect from the central point has been modeled via an attracting
potential [3]. This allows the authors to analytically study the
problem from a treatable perspective. However, these models
do not consider the possibility of the walker returning directly
to the central point, instead of (or in addition to) feeling an
attraction for it. A possible mechanism that could mimic this
is the random resetting of its motion to the origin.

It was not until 2011 that a simple model of stochastic
motion with a strong bound to a given position was published
in the physical literature [4]. There, a diffusive particle is
studied when it may occasionally reset its position with a
constant probability and the authors find that a nonequilibrium
steady state (NESS) is reached and the mean first passage time
of the overall process is finite and attains a minimum in terms
of the resetting rate. The existence of a NESS has been further
studied for different types of motion and resetting mecha-
nisms [5–18], showing that they are not exclusive of diffusion
with Markovian resets. Aside from these, other works have

shown that the resetting does not always generate a NESS
but transport is also possible when the resetting probability
density function (PDF) is long tailed [19–22] or when the
resetting process is subordinated to the motion [10,12].

However, the above-cited stochastic resetting models lack
some realism as long as resetting is treated as an instantaneous
process. Some recent papers include a quiescent period after
the resetting [23,24], which could mimic the time required by
the walker to return to the origin. But this only serves as a
partial solution to the problem since it does not consider the
back-to-the-origin movement explicitly. In a slightly different
context, this notion of costly resetting has also appeared in
some works where search processes with restarts are stud-
ied from a Michaelis-Menten reaction scheme perspective
[25,26].

In this direction, we propose a two-state model to describe
both the exploratory motion and the return to the origin, which
we assume to be ballistic. We analyze the main consequences
that the application of a noninstantaneous resetting has on
the results known for the instantaneous case. Particularly, we
derive an expression for the overall propagator to study the
transport properties of the overall process for different types
of resetting PDFs. We also study the statistics of the returning
time in terms of the motion and the resetting PDF.

The paper is organized as follows. In Sec. II, the model is
introduced and general expressions for both the overall PDF
and the overall MSD are derived. Afterwards, in Sec. II B, the
PDF of the time required by a walker to go back to the origin
is studied in terms of the propagator and the resetting PDF. In
Secs. III and IV we study the particular cases of Markovian
and scale-free PDFs, respectively. Finally, we conclude the
work in Sec. V.
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II. MODEL

We model the dynamics of the walker by considering two
different states: an exploring state (state 1) where the motion
is described by a general propagator P(x, t ) and a returning
state (state 2) where the motion is ballistic with velocity v

towards the origin defined by x = 0. The exploring state ends
at a random time according to the resetting time PDF ϕR(t ),
while the returning state ends when the motion reaches the
origin. At this time, the process is renewed.

Let us start by introducing the flux of particles between
these two states. On one hand, assuming that the motion starts
at state 1, the rate of walkers arriving at the exploring state
(state 1) is

j1(t ) = δ(t ) +
∫ +∞

−∞
dz

∫ t

0
dt ′ j2(z, t − t ′)δ

(
t ′ − |z|

v

)
,

(2.1)

where the integral term is expressed in terms of the rate of the
particle arriving at state 2 at point x at time t , j2(x, t ). This
term implements the probability of entering state 2 at position
z at any time t − t ′ < t and subsequently reaching the origin
ballistically within time t ′ [δ(t ′ − |z|/v)]. The first term on the
right-hand side is the initial condition. On the other hand, the
rate of walkers arriving at the returning state (state 2) reads

j2(x, t ) =
∫ t

0
j1(t − t ′)ϕR(t ′)P(x, t ′)dt ′, (2.2)

which, unlike for state 1, depends explicitly on the position x
(i.e., the rate is not spatially uniform). Here, the probability of
arriving at state 2 at position x and time t is the probability
of having arrived at state 1 at any past time t − t ′, times
the probability that exploration finished at time t ′, given
the walker has reached position x. Transforming these two
equations by Laplace and isolating for the rates we get the
explicit expressions

ĵ1(s) =
[

1 −
∫ +∞

−∞
dze− |z|

v
s�(z, s)

]−1

(2.3)

and

ĵ2(x, s) = �(x, s)

[
1 −

∫ +∞

−∞
dze− |z|

v
s�(z, s)

]−1

, (2.4)

where we have introduced the notation

�(x, s) ≡ L[ϕR(t )P(x, t )], (2.5)

and

f̂ (s) = L[ f (t )] =
∫ ∞

0
e−st f (t )dt

is the Laplace transform of f (t ).
Let us now introduce the spatial dynamics for each of the

states. We write the global propagator as ρ(x, t ) = ρ1(x, t ) +
ρ2(x, t ), i.e., the overall motion is described by the com-
bination of the propagators in states 1 and 2. Defining the
probability that no reset has occurred until time t as ϕ∗

R(t ) =∫ ∞
t ϕR(t ′)dt ′, the probability of finding the walker at the

exploring state at point x and time t can be written as

ρ1(x, t ) =
∫ t

0
j1(t − t ′)ϕ∗

R(t ′)P(x, t ′)dt ′. (2.6)

Transforming by Laplace and inserting Eq. (2.3), we have

ρ̂1(x, s) = �∗(x, s)

[
1 −

∫ +∞

−∞
dze− |z|

v
s�(z, s)

]−1

, (2.7)

with

�∗(x, s) ≡ L[ϕ∗
R(t )P(x, t )]. (2.8)

For the sake of simplicity we will restrict to symmetric
random walks, i.e., P(x, t ) = P(−x, t ). Then, for the returning
state (we consider x > 0, which is labeled by a plus sign in the
following, to later generalize this result for x < 0) we have
that

ρ+
2 (x, t ) =

∫ +∞

x
dz

∫ t

0
dt ′ j2(z, t − t ′)δ(x − z + vt ′). (2.9)

This is, to be at position x > 0 at time t in the returning state,
the motion had to reach this state at a previous time t − t ′ and
position z > x and, during the time t ′, the returning ballistic
motion must have gone from z to x. Transforming by Laplace,
we get

ρ̂+
2 (x, s) = e

x
v

s

v

∫ +∞

x
dze− z

v
s ĵ2(z, s). (2.10)

Now, introducing Eq. (2.4) and generalizing it for the negative
positions [i.e., x → |x| in Eq. (2.10)], we get the general
expression for the propagator in the state i = 2

ρ̂2(x, s) = 1

v
e

|x|
v

s

∫ +∞
|x| dze− |z|

v
s�(z, s)

1 − ∫ +∞
−∞ dze− |z|

v
s�(z, s)

. (2.11)

Finally, putting both propagators together, the overall prop-
agator ρ̂(x, s) = ρ̂1(x, s) + ρ̂2(x, s) turns out to be

ρ̂(x, s) =
�∗(x, s) + 1

v
e

|x|
v

s
∫ +∞
|x| dze− |z|

v
s�(z, s)

1 − ϕ(s)
, (2.12)

where

ϕ(s) =
∫ +∞

−∞
dze− |z|

v
s�(z, s)

= vs

π

∫ +∞

−∞
dk

�(k, s)

k2v2 + s2
, (2.13)

with �(k, s) the Fourier-Laplace transform of �(x, t ).
Therefore, for a general resetting PDF ϕR(t ) and prop-

agation P(x, t ), one can in principle find the PDF of the
overall motion process. In the numerator we have the contri-
butions of the exploring and returning states clearly separated.
However, the first term, corresponding to the exploring state,
is velocity-dependent since in the denominator v appears
explicitly. Therefore, both the exploring and returning states
are actively modified by the finiteness of the resetting velocity.
Transforming Eq. (2.12) by Fourier one finally gets, after
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some calculations,

ρ(k, s) = 1

1 − ϕ(s)

[
�∗(k, s) + s

�(k, s) − ϕ(s)

k2v2 + s2

+ 2kv

k2v2 + s2

∫ ∞

0
dz sin(kz)�(z, s)

]
, (2.14)

where

�(k, s) =
∫ ∞

0
e−stϕR(t )P(k, t )dt . (2.15)

One can check that ρ(k = 0, s) = 1/s, so ρ(x, t ) is conve-
niently normalized.

A. MSD

The MSD can be obtained as

〈x̂2(s)〉 = −
[
∂2ρ(k, s)

∂k2

]
k=0

. (2.16)

Using Eq. (2.14), after some calculations one obtains

〈x̂2(s)〉 = L[ϕ∗
R(t )〈x2(t )〉P] + 1

sL[ϕR(t )〈x2(t )〉P] − 2 v
s3 �(s)

1 − ϕ(s)
,

(2.17)

where

�(s) ≡ sL[ϕR(t )〈|x|(t )〉P] + v[ϕ(s) − ϕR(s)] (2.18)

and

〈x2(t )〉P =
∫ ∞

−∞
x2P(x, t )dx,

(2.19)

〈|x|n(t )〉P = 2
∫ ∞

0
xnP(x, t )dx,

with n = 1, 2, . . .. In the large time limit, that is, s → 0 we
can simplify Eq. (2.17) keeping the leading-order terms. One
gets, after some algebra

〈x̂2(s)〉 	 L[ϕ∗
R(t )〈x2(t )〉P] + 1

3v
L[ϕR(t )〈|x|3(t )〉P]

1 − ϕR(s) + s
v
L[ϕR(t )〈|x|(t )〉P]

. (2.20)

Therefore, a finite returning velocity makes the overall asymp-
totic MSD depend explicitly on the first and third absolute-
value moments of the propagator, in addition to the second
moment. Crucially, this dependence disappears when the limit
v → ∞ is taken to recover the equivalent expression for
instantaneous resetting [20].

In Secs. III and IV, we explore this and more properties
on particular scenarios to analyze in more detail the effect
that a finite resetting velocity has at long times, comparing
our model to some of the most significant results obtained for
instantaneous resets.

B. Returning time PDF

After a resetting event, the random walker is forced to
interrupt its motion and go back to the origin with constant
velocity v. During the time required to go back to the origin
and restart its motion, the walker remains in a state, which
hinders the overall propagation. Similar models have been
studied in the literature, where the walker is forced to remain

inactive at the origin after resetting [23,24]. Nevertheless,
in none of these models the duration of the nonpropagating
period is considered to depend explicitly on the motion of the
walker, which is a natural correlation to be taken into account.

In Ref. [20], the asymptotic behavior of the overall MSD
is studied for a stochastic motion process which resets its
position at times distributed according to a resetting PDF, after
which remains at the origin during a period determined by a
residence time PDF. There, the scaling of the overall MSD is
shown to strongly depend on the resetting and the residence
time PDFs. In the current model, while the resetting PDF is
explicitly introduced, the PDF of the nonpropagating period
emerges from the combination of both the resetting time PDF
ϕR(t ) and the stochastic motion performed by the walker, i.e.,
the propagator P(x, t ). Therefore, it is convenient to study the
stochastic properties of the returning time for a later analysis
of the overall transport properties of the system.

In general, the PDF of the returning time can be written as

ϕr (t ) =
∫ +∞

−∞
dx δ

(
t − |x|

v

) ∫ ∞

0
dt ′P(x, t ′)ϕR(t ′), (2.21)

which is the probability of the exploratory motion ending at
a given position x (t ′ integral) times the probability of the
returning state to last at time t from this position (δ term),
averaged over all the possible positions. The integral in x can
be performed to give a general expression for the returning
time PDF in terms of both the propagator and the resetting
PDF:

ϕr (t ) = 2v

∫ ∞

0
P(vt, t ′)ϕR(t ′)dt ′ = 2v �(vt, 0), (2.22)

with �(x, s) defined from Eq. (2.5). An equation for the nth
moment of the returning time PDF can be also found by
multiplying both sides of Eq. (2.22) by t n and integrating over
t > 0:

〈
t n
r

〉 = 1

vn

∫ ∞

0
ϕR(t )〈|x(t )|n〉Pdt . (2.23)

It is interesting to observe that the contribution of the
motion to the nth moment of the returning time PDF comes
exclusively from the nth absolute moment of the motion
propagator. In the following we dig into these results for two
different types of resetting time PDFs.

1. Markovian resetting

As a first case, we analyze the returning time PDF when
the resetting is equally probable at any time. This consists on
choosing a reset time PDF of the form

ϕR(t ) = re−rt . (2.24)

The general expressions derived above reduce to

ϕr (t ) = 2vr P̂(vt, r) (2.25)

and 〈
t n
r

〉 = r

vn
〈|x̂(r)|n〉P. (2.26)

Notably, if the nth moment of the motion has a finite Laplace
transform, the nth moment of the returning time PDF con-
verges to a finite value. This includes, for instance, all the
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(a) (b)

FIG. 1. On the left (a), the returning time survival probability ϕ∗
r (t ) = ∫ ∞

t ϕr (t ′)dt ′ = e−v
√

r
D t for diffusion with D = 5 under exponential

resetting with r = 0.25 is shown for different values of the returning velocity v in a stochastic simulation of the process. On the right (b), the
returning time distribution for the same motion is shown with exponential resetting for different r and returning velocity v = 1. In both cases,
the PDF is represented in a log-linear axis and the exponential behavior can be clearly observed to be in agreement with the corresponding
analytical prediction (solid lines).

cases where the moments grow as a power law in time. Be-
tween these, let us consider diffusive motion with a Gaussian
propagator of the form P(x, t ) = exp(−x2/4Dt )/

√
4πDt . Af-

ter some simple calculations, the returning time PDF can be
found to be exponential

ϕr (t ) = v

√
r

D
e−v

√
r
D t . (2.27)

This result has been compared to stochastic simulations of the
process and it has been seen to be in agreement with them
(Fig. 1).

Therefore, for diffusive Gaussian motion, when the reset-
ting PDF is exponential, the duration of the returning state
also follows an exponential distribution. In other words, the
transition from the returning state to the exploring state is also
Markov process and happens at a constant rate, which can be
identified to be

rr = v

√
r

D
.

Remarkably, the return-to-explore transition rate depends on
the explore-to-return rate as a square root. This is, by increas-
ing r, the rate of the return-to-explore transition will be less
increased than the rate of the explore-to-return transition. It
is also interesting to observe that the returning rate depends
linearly with the velocity v. So, aside from the weight factor√

r/D related to the propagation ability of the motion, the
velocity can be interpreted as the actual transition rate from
the returning to the exploring state.

2. Scale-free resetting

Let us now explore the case where the resetting PDF is
scale free, meaning that in the long time regime it decays as

ϕR(t ) ∼ t1+γ , (2.28)

with γ a real, positive number. To do so, we employ a partic-
ular form of the resetting PDF, being a Pareto distribution of
the form

ϕR(t ) = γ r

(1 + rt )1+γ
, (2.29)

with γ > 0. As a difference with the exponential PDF, this
choice allows us to study a resetting PDF with diverging
moments, having that the mth moment will exist whenever
γ > m. In particular, here we will consider diffusive mo-
tion. Introducing the resetting PDF and the propagator to
Eq. (2.22), one can formally write

ϕr (t ) = vγ

√
r

πD



(
γ + 1

2

)
U

(
γ + 1

2
,

1

2
;

rv2

4D
t2

)
, (2.30)

where U (a, b; z) is the Tricomi confluent hypergeometric
function or confluent hypergeometric function of the second
kind (see Sec. 13 in Ref. [27]). Now, from the long time
behavior of the Tricomi function we can obtain the decaying
of the returning PDF:

ϕr (t ) ∼ t−(1+2γ ) as t → ∞. (2.31)

Therefore, the returning PDF always decays faster than the
resetting PDF [see Eq. (2.28)]. This decaying has been also
obtained in stochastic simulations as shown in Fig. 2.

100 101
t

10 4

10 3

10 2

10 1

100

* r(
t)

= 0.75
=1.25
=1.75

FIG. 2. The returning time survival probability ϕ∗
r (t ) =∫ ∞

t ϕr (t ′)dt ′ ∼ 1/t2γ is shown for three different simulations with
the corresponding γ parameters. A diffusion process with D = 5
with resets with r = 1 and returning velocity v = 1 have been
employed. Straight solid lines of slope −2γ have been included as a
guide for the eye.
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Let us now derive the moments of the returning PDF. To
do so, we employ Eq. (2.23) and use the expression for the
nth absolute moment of a Gaussian distribution

〈|x(t )|n〉 = 


(
n + 1

2

)√
(4D)n

π
t

n
2 . (2.32)

This way, one can express the moments of the returning PDF
as 〈

t n
r

〉 = 2vγ rU
(n

2
+ 1,

n

2
+ 1 − γ ; 0

)
. (2.33)

Now, the Tricomi confluent hypergeometric function
U (a, b; z) at z = 0 does not converge when b < 1. This
establishes a condition for the moments of the returning time
PDF to exist, being that the nth moment of ϕr (t ) exist when

γ >
n

2
. (2.34)

In particular, the returning time will have a finite mean (n = 1)
only if γ > 1/2. Therefore, for 1/2 < γ < 1, despite the
exploration (resetting) time has diverging mean value, the
mean returning time to the origin will be finite.

III. MARKOVIAN RESETTING

In this section we analyze the large time behavior of the
propagator ρ(x, t ) and the MSD 〈x2(t )〉 for a random walker
under noninstantaneous resettings when the resetting times
are drawn from an exponential PDF [Eq. (2.24)]. This has
been the most studied case in the literature and various random
walks have been tested under this type of resets. For this
particular case, one has from Eqs. (2.5) and (2.8) that

�(x, s) = rP̂(x, s + r) (3.1)

and

�∗(x, s) = P̂(x, s + r). (3.2)

If P(x, t ) has nondiverging moments, in the large time limit
(small s), Eq. (2.13) reads

ϕ(s) = 1 − sr − sr

v
〈|x̂(s = r)|〉P + O(s2) (3.3)

and the overall propagator reaches the NESS

ρs(x) =
P̂(x, s = r) + r

v

∫ ∞
|x| P̂(z, s = r)dz

1
r + r

v
〈|x̂(s = r)|〉P

. (3.4)

Here we have made use of Eq. (2.14) and inverted by Fourier.
It is interesting to note that this is a general result for any
symmetric propagator P(x, t ) with finite moments under ex-
ponential resetting times.

Despite the tedious calculations employed to reach it, this
result is extremely simple to interpret from a physical point
of view. We have two different contributions to the PDF at
the NESS: the first term in the numerator accounts for the
propagation of the stochastic motion, while the second term
accounts for the walkers returning to the origin at a finite
velocity, after suffering a reset at a position |z| > |x|. In
fact, taking the limit v → ∞, corresponding to instantaneous
resets, one recovers the result recently found in Ref. [20] for
Markovian resetting applied to a general propagator P(x, t ).

In Ref. [24], a model with instantaneous resetting followed
by a random residence period at the origin was studied.
There, it was seen that considering a residence period does
not modify the shape of the NESS. In particular, this occurs
if one considers the returning time distribution obtained in
Eq. (2.25). Contrarily, in Eq. (3.5) one can see that considering
a finite returning velocity does modify the shape of the NESS.
Therefore, from the model in Ref. [24] with the distribution
in Eq. (2.25) one cannot emulate the NESS arising from the
noninstantaneous resetting model.

More specifically, for a diffusive random walks the prop-
agator follows a Gaussian distribution, which in the Laplace
space takes the form P̂(x, s) = √

1/4sD exp(−|x|√s/D). In-
serting this result into Eq. (3.5) we obtain

ρs(x) =
√

r

4D
e−|x|√r/D, (3.5)

which is independent of the returning velocity. This is a well-
known result already obtained for diffusing particles under
Markovian instantaneous resettings [4]. Regarding the MSD,
inserting the exponential distribution for the resetting times
into Eq. (2.20) one readily finds that the MSD tends, in the
t → ∞ limit, to

〈x2〉s = 〈x̂(s = r)2〉P + r
3v

〈|x̂(s = r)|3〉P

1
r + r

v
〈|x̂(s = r)|〉P

. (3.6)

Notably, the overall stationary MSD does not depend only on
the MSD of the motion 〈x2〉P as does when the resetting is
instantaneous [4,20] but also on its first and third absolute-
value moments.

Let us analyze how the overall MSD depends on the
velocity. An extreme (either maximum or minimum) for the
MSD in terms of the velocity v does not exist. Nevertheless,
depending on the relative values of the three first moments of
the motion, the overall MSD may increase, decrease or remain
constant with v. General conditions can be indeed established
for any propagator under exponential resetting PDF. Thus, we
have that the MSD decreases with v if

〈|x̂(s = r)|3〉P > 3r〈|x̂(s = r)|〉P〈x̂(s = r)2〉P, (3.7)

and the MSD remains constant with v. It is independent on the
velocity if

〈|x̂(s = r)|3〉P = 3r〈|x̂(s = r)|〉P〈x̂(s = r)2〉P. (3.8)

In this case, it reduces to the instantaneous resetting value
〈x2〉s = r〈x̂(s = r)2〉P [20]. Finally, the MSD increases with
v if

〈|x̂(s = r)|3〉P < 3r〈|x̂(s = r)|〉P〈x̂(s = r)2〉P. (3.9)

Since 〈x2〉s is directly related to the width of the NESS
distribution, its shape is affected by the returning velocity
v in those cases where 〈x2〉s depends on v, that is, when
one of the conditions (3.7) or (3.9) is fulfilled. Let us be
more specific and consider two cases: the propagators for
Brownian motion and for fractional Brownian motion (fBm).
In the former case P(x, t ) = [4πDt]−1/2 exp(−x2/4Dt ) and
the moments involved in Eq. (3.6) are, in the Laplace space,
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0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
v

1.8

1.9

2.0

2.1

2.2

x2
s

= 0.75
=1
=1.25

FIG. 3. The results of a stochastic simulation of the stationary
MSD for two fractional Brownian motions with α = 0.75 and α =
1.25, and a normal Brownian motion with α = 1 with noninstan-
taneous resetting (r = 0.2) are presented in terms of the returning
velocity v. The multiplicative constant has been chosen to be K =
rα/
(1 + α) in order to have the same instantaneous resetting limit
(large v) for all of them. The solid lines are the corresponding
analytical predictions from Eq. (3.12).

given by

〈x̂(s)2〉P = 2D/s2

〈|x̂(s)|〉P =
√

D/s3/2

〈|x̂(s)|3〉P = 6D3/2/s5/2. (3.10)

Introducing these results into Eq. (3.6) and simplifying one
finds 〈x2〉s = 2D/r, so that the overall MSD in the large time
limit does not depend on v. Note that in this case, condition
(3.8) is fulfilled and the NESS distribution does not depend
on v.

For a fBm, the propagator is given by P(x, t ) =
[4πKtα]−1/2 exp(−x2/4Ktα ) and the moments we are inter-
ested in are

〈x̂(s)2〉P = 2K
(1 + α)/s1+α

〈|x̂(s)|〉P =
√

4K


(
1 + α

2

)/√
πs1+ α

2

〈|x̂(s)|3〉P = (4K )
3
2 


(
1 + 3α

2

)/√
πs1+ 3α

2 (3.11)

in the Laplace space. It is easy to check from (3.7)–(3.9) that,
unlike the normal diffusion, the overall MSD increases with v

when 0 < α < 1 while it decreases with v when 1 < α < 2.
When α = 1 we recover the normal diffusion case and the
MSD does not depend on v. The overall MSD is found from
Eq. (3.6) and Eq. (3.11), which leads to

〈x2〉s = 2K
(1 + α)

rα

1 + 2
(1+ 3α
2 )

3
√

π
(1+α)

√
4Kr1− α

2

v

1 + 
(1+ α
2 )√

π

√
4Kr1− α

2

v

. (3.12)

In Fig. 3 we show three representative cases of this result
compared to stochastic simulations. There, one can see that
for motion processes, which are prone to stay near the origin,
as fBm with α < 1, the stationary MSD increases with v.

Otherwise, for processes that quickly move away from the
origin, as fBm with α > 1, a larger returning velocity v makes
the stationary MSD decrease. Finally, when α = 1, which is
the case of Gaussian propagator, the overall stationary MSD
is shown to not depend on the returning velocity.

IV. SCALE-FREE RESETTING

In this section we consider a Gaussian propagator and a
Pareto for the resetting time PDF. For practical examples of
phenomena that may generate scale-free reset times we refer
the reader to Ref. [14]. The interest of this distribution is
that the exponent γ controls the existence of finite moments.
When 0 < γ � 1 the distribution lacks moments and behaves
like a Mittag-Leffler distribution in the large time limit, i.e.,
it decays as t−1−γ . However, when 1 < γ � 2 only the first
moment is finite and there exists a characteristic resetting rate,
when 2 < γ � 3 only the first and second moments exist and
so on and so forth.

Our first goal is to study the large time behavior of the
overall distribution. To this end we take the limit s → 0 in
Eq. (2.12). For a diffusive propagator for the exploring state
and the resetting times PDF in Eq. (2.29) we obtain that the
NESS is reached when γ > 1 and it reads

ρs(x) =
(γ − 1)/

√
4πD

r

1 +
√

Dr
v


(γ− 1
2 )


(γ−1)

[



(
γ − 1

2

)
U

(
γ − 1

2
,

1

2
;

rx2

4D

)

+ r|x|
2v




(
γ + 1

2

)
U

(
γ + 1

2
,

3

2
;

rx2

4D

)]
. (4.1)

This has been shown to be in agreement with the results from
stochastic simulations of the process [see inset in Fig. 4(a)].
As for the stationary state with Markovian resetting, this result
shows that the returning state modifies the shape of the NESS.
Particularly, in Fig. 4(a) one can see that the NESS becomes
wider when increasing the velocity, showing an asymptotic
tendency to the instantaneous resetting NESS.

Our second goal is to find the overall MSD by using
Eq. (2.20). To this end we need to compute separately the
Laplace transforms that appear in this equation. The Laplace
transform of the Pareto PDF is

ϕ̂R(s) = γU (1, 1 − γ ; s/r). (4.2)

Analogously,

L[ϕR(t )〈|x(t )|〉P] = γ

√
D

r
U

(
3

2
,

3

2
− γ ; s

s

r

)

L[ϕR(t )〈|x(t )|3〉P] = 6γ

(
D

r

) 3
2

U

(
5

2
,

5

2
− γ ;

s

r

)
, (4.3)

where we made use of Eq. (3.10). Finally, since the survival
PDF is ϕ∗

R(t ) = (1 + rt )γ we get

L[ϕ∗
R(t )〈x(t )2〉P] = 2D/r2U (2, 3 − γ ; s/r). (4.4)

Taking into account the asymptotic expansions for small
arguments of the Tricomi functions (see Sec. 13 in Ref. [27]
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FIG. 4. Diffusive motion reset according to a Pareto PDF with r = 0.2 has been stochastically simulated. On the left (a), we show the
NESS from simulations with exponent γ = 2.25 in the Pareto PDF, diffusion constant D = 0.05 and different returning velocities. The solid
black line corresponds to the instantaneous resetting case, which can be obtained by taking the v → ∞ limit in Eq. (4.1). As an inset, we
include the relative distance between the different noninstantaneous resetting NESS and the instantaneous resetting NESS for simulations
(squares, dots and triangles) and the corresponding analytical distribution from Eq. (4.1) (solid curves). On the right (panel B), the stationary
MSD is plotted in terms of γ for three different values of the returning velocity and with diffusion constant D = 5.

for details) we find that, for s/r � 1,

1 − ϕ̂R(s) ∼
{

sγ , γ � 1
s, γ > 1 (4.5)

and from (4.3) we obtain

L[ϕR(t )〈|x(t )|〉P] ∼
{

sγ− 1
2 , γ � 1

2
s0, γ > 1

2 ,
(4.6)

L[ϕ∗
R(t )〈x(t )2〉P] ∼

{
sγ−2, γ � 2
s0, γ > 2,

(4.7)

L[ϕR(t )〈|x(t )|3〉P] ∼
{

sγ− 3
2 , γ � 3

2
s0, γ > 3

2 .
(4.8)

Inserting the results (4.5)–(4.8) into Eq. (2.20) we find the
overall MSD in the large time limit. The temporal scaling
depends critically on the value of the exponent γ as follows:

〈x2(t )〉 ∼
⎧⎨
⎩

t, 0 < γ � 1
t2−γ , 1 < γ � 2

t0, γ > 2
, (4.9)

where, for γ > 2 the following stationary value is reached:

〈x2〉s = 2D

r(γ − 2)

1 + 
(γ−3/2)
v
(γ−2)

√
rD

1 + 1
v


(γ−1/2)

(γ−1)

√
rD

. (4.10)

Therefore, when 0 < γ � 1 the overall MSD is diffusive,
when 1 < γ < 2 is subdiffusive and when γ � 2 there is
stochastic localization, i.e., it saturates to a constant value with
the consequent formation of a NESS. So that, as γ increases,
the resetting PDF decays faster, i.e., the reset rate increases by
hindering the overall transport process. It is interesting to note
that if the instantaneous resetting limit (v → ∞) is taken, the
asymptotic scaling of the MSD remains the same. This can be
explained with the result in Sec. II B in which we have found
that the resetting PDF always decays slower than the returning
PDF. This means that, at long times, the former becomes more
relevant than the latter and therefore the effect of the latter
is negligible. Seeing this, the asymptotic equivalence of the

MSD scaling for instantaneous and noninstantaneous resetting
is not surprising. In fact, this result resembles what has been
recently found for a stochastic motion with a residence period
after resetting [24]. There, it is shown that when both the
resetting and the residence PDFs are long tailed, the residence
only affects the asymptotic transport properties of the overall
process when its PDF decays slower than the resetting PDF
(i.e., it becomes more relevant at long times).

In Eq. (4.10) one can see that the stationary MSD is
sensible to the returning velocity [see Fig. 4(b) for numerical
confirmation] and in this case the MSD is always an increasing
function of v. In addition, the Pareto PDF for resetting times
makes possible the coexistence of a subdiffusive behavior [see
the MSD in Eq. (4.9) for 1 < γ < 2] with the existence of a
NESS given by Eq. (4.1). This counterintuitive phenomenon
is explained by noticing that the NESS for this case has
divergent MSD. The subdiffusive scaling measures then the
speed at which the second moment of ρ(x, t ) diverges. Actu-
ally, the NESS in Eq. (4.1) exhibits the asymptotic behavior
ρs(x) ∼ 1/|x|2γ−1 when x2 
 2D/r, which resembles the tail
of a Lévy distribution precisely when 1 < γ < 2.

V. CONCLUSIONS

We have developed a two-state model to describe resetting
as a noninstantaneous movement towards the origin. In one of
the states the walker is exploring and performs a random walk,
while in the other it travels ballistically until it reaches the
origin to start exploring again. In some way, the returning state
can be seen as an exploration cost, which depends on both the
type of movement in the exploring state and its duration.

We first focus on the case where the resetting (exploring)
times are drawn from an exponential distribution and we
derive an expression for the stationary distribution attained in
this case. It is seen that it does not depend on the returning
velocity for a diffusion process and the distribution for the
exponential instantaneous resetting case is recovered [4]. Re-
garding the stationary value of the MSD, a general formula
is found in terms of the first, second, and third absolute-value
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moments of the propagator, the resetting rate and the returning
velocity. It is seen to be an increasing function of the returning
velocity for exploring motions, which are more likely to stay
close to the origin (fBm with α < 1) and a decreasing function
when the exploring motion is more likely to occur away from
it (fBm with α > 1). Therefore, depending on the type of
exploration, increasing the returning velocity may help or
harm to have a bigger area of influence.

In the case of diffusion with resetting at times drawn from
a Pareto PDFs, we find that the asymptotic scaling of the
MSD in the noninstantaneous resetting model does not depend
on the returning velocity and, consequently, is equivalent
to the scaling observed in the instantaneous resetting limit.
This is, the MSD scales linearly with time for γ � 1, when
1 < γ � 2 the overall transport is subdiffusive and for γ > 2
the MSD reaches a stationary value. In this case there is a

NESS with a shape that depends explicitly on the returning
velocity.

From a practical point of view, the results of this work may
also help us to understand the underlying dynamics of certain
processes. For instance, in a central-place foraging context
where animals explore their environment and occasionally
return to their nest, the model gives the particular relation
between the dynamics of exploration and return to the nest,
on one side, and the stationary distribution on the other. This
relation could in principle be validated by empirical data.
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