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General scaling in bidirectional 
flows of self-avoiding agents
Javier Cristín   *, Vicenç Méndez    & Daniel Campos

The analysis of the classical radial distribution function of a system provides a possible procedure for 
uncovering interaction rules between individuals out of collective movement patterns. A formal 
extension of this approach has revealed recently the existence of a universal scaling in the collective 
spatial patterns of pedestrians, characterized by an effective potential of interaction V τ( ) conveniently 
defined in the space of the times-to-collision t between the individuals. Here we significantly extend 
and clarify this idea by exploring numerically the emergence of that scaling for different scenarios. In 
particular, we compare the results of bidirectional flows when completely different rules of self-
avoidance between individuals are assumed (from physical-like repulsive potentials to standard 
heuristic rules commonly used to reproduce pedestrians dynamics). We prove that all the situations lead 
to a common scaling in the t-space both in the disordered phase (V τ τ( ) ~ −2) and in the lane-formation 
regime (V τ τ( ) ~ −1), independent of the nature of the interactions considered. Our results thus suggest 
that these scalings cannot be interpreted as a proxy for how interactions between pedestrians actually 
occur, but they rather represent a common feature for bidirectional flows of self-avoiding agents.

The theoretical description of pedestrian flows represents a field of the greatest importance due to its direct 
impact on issues related to urban planning, monitoring of public spaces or optimization of evacuation protocols, 
to name a few1–4. In the last years, facilitated by an improvement in simulation capacities and in the availability of 
experimental data, this topic has attracted physicists for its interest as a multiagent system driven by non-trivial 
rules of ordering, alignment and self-avoidance, among other. Thus, a significant effort has been put both in (i) 
understanding these interaction rules in order to recover the patterns experimentally observed5,6 and (ii) identi-
fying the minimal or toy models which are able to capture the essentials of such phenomena7,8.

Lane or trail formation in crowds, in particular, has been extensively studied as a manifestation of 
self-organization in pedestrian flows, both theoretically9–13 and through controlled experiments14,15. While in the 
case of humans one could attribute lane formation to intelligent and efficient decision-making based on visual 
information and subsequent prospection, such patterns have been shown to arise even in extremely simple mod-
els of agent interaction. The Vicsek model for swarming dynamics16,17 is probably the best known, but many var-
iations and generalizations based on lattice-gas18,19 or social force20,21 models have been developed. Additionally, 
the formation and sustainance of bidirectional (trail) flows represent also an intriguing situation of interest in 
behavioral biology too, since only a few social species in the animal kingdom are able to exhibit such behavior in 
natural conditions22, ants being the most renowned case23,24.

Despite all this multidisciplinary interest, the heterogeneity of models used nowadays to generate such flows/
dynamics sometimes goes against the possibility of finding general and far-reaching conclusions. So, existing 
models/works can sometimes provide different or even contradictory conclusions15. Works aimed at providing 
unified frameworks and/or at revealing the common properties of these approaches are then convenient to pro-
mote understanding and theoretical research within the field25.

Within this context, a valuable insight has been recently provided by Karamaouzas et al.26. By analyzing 1500 
trajectories of pedestrians in outdoor environments they found consistent evidence for an effective potential of 
interaction τV( ) between pairs, which was found to depend only on the time-to-collision τ between the individ-
uals and not on the interparticle distance as in classical fluid systems. This is in line with recent approaches that 
introduce prospection of future outcomes as the main driving force for intelligent agents, as those based on causal 
entropic forces27,28. The analysis carried out in26 yielded τ τ−~V( ) 2, at least in the significant range of scales 
where self-avoidance between the pedestrians is relevant. So, a mechanical (Langevin-like) model based on this 
interaction potential could adequately reproduce the dynamics of pedestrians in real scenarios.
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Intrigued by these results, we use here numerical simulations to explore the convenience of a description 
based on the τ-space for different bidirectional systems based on radically different rules of self-avoidance. In 
general, bidirectional flows emerge from the tension between pair interactions and the existence of two subpop-
ulations that have preference for moving in opposite directions; when the density of individuals ρ is large enough 
the freedom of movement gets reduced and interactions will be then largely governed by self-avoidance rules.

Agent based model
We consider in the following a multiagent system where the dynamics of the (identical disk-like) agents are gov-
erned by a force 

ξ= − + .F v v F( ) (1)pr sa( ) ( )

Here, the first term accounts for the preference of each individual to maintain its preferred velocity v pr( ) 
(denoting v as the actual velocity) with a certain intensity that we call the stubbornness, ξ. In order to generate 
bidirectional fluxes we assume two different subpopulations with the same number of agents each, whose pre-
ferred velocities are the same in modulus but have opposite directions. In particular, to avoid spuriors effects in 
the simulations we sample for each agent a stochastic preferred speed from a Gaussian distribution with mean 

= .v 1 3pr( )  m/s and standard deviation σ = .0 1v  m/s. These specific values are in agreement with those used in26 
and similar works on pedestrian dynamics29,30. Anyway, we have numerically checked that the results reported 
below are independent of the specific values chosen.

On the other hand, F sa( ) stands for the pair (self-avoiding) interaction between agents. We here compare the 
results for three rules/mechanisms based on completely different grounds. The first one consists of a classical pair 
repulsive interaction in the radial direction, −~F rsa k

rep
( )  (where r is the distance between pairs of individuals), with 

>k 0. The second one corresponds to the effective potential empirically obtained in26, this is, a repulsion in the 
time-to-collision (ttc) space, = −∇F Vsa

ttc ttc
( ) , with τ−~Vttc

2. These two mechanisms then are reminiscent of 
typical interaction potentials from statistical mechanics, though in the second case we are considering that the 
relevant space for interactions is that of τ , so assuming that our intelligent agents can somehow prospect future 
collisions and adapt its behavior to the outcome of such prospections. So, the space of interactions is defined only 
for those individuals for which τ is finite, this is, for the set of pairs that will collide at some future time provided 
its present velocity is mantained (see Fig. 1). Finally, as a third case, F sa

heu
( ) , we consider a nonphysical (heuristic) 

rule which has been found to reproduce most features (e.g stop-and-go waves, turbulent dynamics,...) of collective 
behavior in pedestrians31. This rule consists of recomputing continually the direction of motion in order to max-
imize at each step the distance that the agent could travel without colliding with other agents (see the Methods 
Section for the finer details for the implementation of the self-avoiding rules).

Numerical implementation of our multiagent system identifies, as expected, the existence of a phase transition 
from a disordered state to lane formation as a function of the values of ρ and ξ. To characterize this transition we 
use the order parameter 

cos( ) , (2)f θ=

 where θ is the angle between the actual and the preferred velocities (this is, v and v pr( )) and the average is carried 
out over all the agents in the system. So, f → 0 corresponds to the disordered state in which individuals cannot 

Figure 1.  Representation of the differences between the interactions based on the distance r (left) and those in 
the τ-space (right). The arrows represent the relative velocity of the agents respect to the orange agent at the 
origin. The individuals filled with solid blue are the only ones contributing to interactions with the orange one 
(it is, in the second case only those for which a finite and positive τ can be defined).
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follow its preferred direction and spend their time avoiding collisions in all directions, while 1f →  represents the 
case where the agents are able to follow its desired direction of motion by adopting a collective pattern with alter-
nate lanes in one direction and the other.

Results and Discussion
Figure 2 confirms that the three mechanisms of self-avoidance exhibit qualitatively a very similar behavior for the 
order parameter f at the stationary state. Low stubbornness and high densities promote the disordered phase, 
while for high stubbornness and low densities the system self-organizes into a new phase where lanes are formed 
(we provide in the Supplementary Information short videos showing the dynamics observed in each of these two 
phases for the three self-avoidance mechanisms mentioned above). In the disordered state the difference between 
the actual direction of motion and the preferred one is relatively homogeneous in π(0, ). We can plot the proba-
bility distribution θp( ) of angle θ to visualize this (Fig. 3, left). For the case of lanes, on the contrary, most of the 
individuals move in their desired direction and then the probability distribution becomes clearly peaked at θ = 0. 
Additionally, we observe how the heuristic mechanism exhibits a larger probability for large deviations in the lane 
state than the other interactions; this is due to the intrinsic properties of the algorithm, which allows larger reori-
entations provided they satisfy the maximization of the traveled distance, as explained above.

To understand in greater detail the properties of these two phases, we next study the spatial distribution of the 
agents in stationary conditions through the radial distribution function g r( ) from the simulations carried out 
using the three self-avoiding mechanisms mentioned above. As in classical fluids, g r( ) here compares the density 
of interacting agents at a distance r with the density obtained for a non-interacting system, with →g r( ) 1 as 

→ ∞r . The corresponding results are presented in Fig. 4. Despite some qualitative differences found due to the 
different nature of the self-avoiding mechanisms, we observe that the results are relatively consistent with those 

Figure 2.  Phase diagram of the order parameter f for the three different mechanisms of self-avoidance as a 
function of the density of the system ρ and the stubbornness ξ. The repulsive interaction is fixed to =k 4.

Figure 3.  Probability distribution of the relative angle θ. The left image corresponds to ξ = .0 025 and the right 
image for ξ = 2, with ρ = .0 14 in both cases. The blue squares correspond to the repulsive interaction ( =k 4), 
the red circles correspond to the time to collision interaction, and the orange triangles correspond to the 
heuristic rule.

https://doi.org/10.1038/s41598-019-54977-3


4Scientific Reports |         (2019) 9:18488  | https://doi.org/10.1038/s41598-019-54977-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

from the classical Ornstein-Zernike (OZ) approximation for fluid systems32, which predicts an asymptotic decay 
→ − .G r r( ) 0 5 (with ≡ −G r g r( ) ( ) 1) when the system is far from the critical region where the phase transition 

occurs. The oscillatory behavior observed there is also characteristic from similar statistical analysis on fluids33. 
All the points of the phase diagram that are far from the critical region satisfy approximately this scaling while 
those close to the critical region (separating disorder from lane formation) exhibit a much slower asymptotic 
decay. In consequence, g r( ) cannot be easily used to detect or identify the particular state (disordered or lanes) in 
the system.

Going further, we reproduce the analysis in26 by showing how g r( ) gets modified if the data is split into three 
parts according to the relative speed between pairs of individuals i and j, = → − →v v vr i j . We find that individuals 
approaching each other with slow ( <v 1r ), intermediate ( < <v1 2r ) or fast ( >v 2r ) relative speeds exhibit very 
different behaviors in all cases (Fig. 5, left column). However, we stress that, at least for the repulsive potential Frep

sa  
for which interactions are not velocity-dependent, the function g r( ) should be also independent of the actual 
velocity of the particles; this is confirmed in our simulations (see Suplemmentary Information file) for 
consistency.

The authors in26 concluded that the differences observed in g r( ) for different values fo vr , reflects that such 
function is not a very appropriate descriptor for capturing the effective interactions within the crowd or, stated in 
different words, the collective statistics of the system do not apparently yield a common behavior in the physical 
r space of the distances between individuals.

To explore here this idea we introduce a new magnitude ∗g r( ), defined as the radial structure function but only 
for pairs of colliding agents, which are those for which τ  is finite at that time step (Fig. 1). The splitting of ∗g r( ) 
into different values of the relative velocities still shows that the results are strongly dependent on vr (Fig. 5, middle 
column), albeit the differences get reduced for F sa

ttc
( ) and F sa

heu
( )  (since these two interaction rules only apply to 

particles which are about to collide). Instead, for the rule F sa
rep
( ) , which applies to all pairs of particles, the results 

found are almost the same as those for g r( ). So, again collective statistics seem to depart from such descriptor.
Our intuition, however, gained from the results in26 is that the dynamics of self-avoidance should rather translate 

into a robust behavior within the τ-space, as the events with low τ are the ones which must be avoided first. So, we 
finally introduce τ†g ( ), which is the equivalent to g r( ) but on τ-space, i.e. the density of agents found at a 
time-to-collision τ divided by the density we would find at the same τ for the case of non-interacting agents. The corre-
sponding results are shown in Fig. 5 (right column). The idea that interactions should occur in the τ-space is of course 
introduced by hand in our rule F sa

ttc
( ), and also implicitly in the rule F sa

heu
( ) , so when we explore the dynamics in the τ

-space then we observe that the collapse between the three curves (for low, intermediate and high relative speeds) is 
almost perfect. However, we unexpectedly find that the collapse between the curves is moderately improved for F sa

rep
( )  

too, though this self-avoiding rule has nothing to do with τ. This suggests the existence of an underlying phenomena 
enhancing the relevance (at least at the level of how collective structures emerge) of the τ-space whenever self-avoidance 
and bidirectionality effects drive the system dynamics. In the Supplementary Material we carry out an alternative anal-
ysis of the radial distribution functions in order to provide additional support for this idea. Note that our results in Fig. 5 
do not necessarily mean that pair interaction occurs in the τ-space (which is not the case for our repulsive potential, 
actually) but that at a collective level this is the effective situation produced.

Figure 4.  Comparison between G rln[ ( )] as a function of the radial distance r over the phase diagram. The black 
line corresponds to the OZ approximation ( − .~ ~G r rln ( ) 0 5 ln ) which is introduced for visual comparison. 
The repulsive potential ( =k 4) curves (left) correspond to a) ρ = .0 32 and ξ = .0 025 (disordered phase), b) 
ρ = .0 05 and ξ = .0 5 (critical region) and c) ρ = .0 14 and ξ = 2 (lanes phase). The time to collision curves 
(center) correspond to a) ρ = .0 32 and ξ = .0 025 (disordered phase), b) ρ = .0 32 and ξ = .0 1 (critical region) 
and c) ρ = .0 32 and ξ = 4 (lanes phase). The heuristic curves (right) correspond to a) ρ = .0 14 and ξ = .0 025 
(disordered phase), b) ρ = .0 08 and ξ = .0 5 (critical region) and c) ρ = .0 14 and ξ = 4 (lanes phase).

https://doi.org/10.1038/s41598-019-54977-3


5Scientific Reports |         (2019) 9:18488  | https://doi.org/10.1038/s41598-019-54977-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Next step is to derive an effective potential of interaction between agents in the τ-space. For the classical the-
ory of fluids, the reversible work theorem34 in the r space links the radial distribution function g r( ) with interaction 
energy between pairs in the form ∝V r g r( ) ln[ ( )]. Using an analogy with this classical result, the τ-space also 
admits an equivalent derivation. Such derivation is based on the idea that the system satisfies in the τ-space a 
Boltzmann-like statistics. This cannot be justified from classical statistical mechanics since the concept of thermal 
equilibrium is meaningless in our context, but one can still invoke the Maximum Entropy Principle, which has 
solid foundations from information theory, to justify it at a statistical level35 \cite{. So that, the corresponding 
expression τ τ∝ †V g( ) ln[ ( )] must be interpreted as a statistical relation describing average properties in the τ
-space; note, however, that τV( ) does not represent the real potential of interaction between particles, and so 

τ∇V( )r  is not to be interpreted as a physical force.
The effective potential τV( ) obtained from our model is presented in Fig. 6, which represents the main result of our 

work. Surprisingly, we find that the three self avoiding mechanisms collapse for intermediate times-to collision (which 
is the significant region where most of the pair-pair interactions occur) into a common power-law relationship 

τ τ∝ γ−V( ) , with γ ≈ 2 for the disordered state and γ ≈ 1 for the state with lanes (in Table 1 we show the results 
obtained from fitting the curves presented in Fig. 6). This common scaling is then apparently independent of the 
self-avoiding mechanism, and would be a direct consequence of the bidirectional nature of the flow considered. Note 
also that, contrary to what happened in the r space (Fig. 4), the τ†g ( ) and the corresponding τV( ) show a different decay 
for the disordered phase and the case with lanes, so τ†g ( ) can be effectively used to identify these two states.

Figure 5.  Radial and partial distribution functions g r( ), ∗g r( ) and τ†g ( ) when split into different regimes 
according to the relative speed between pairs vr. Results are shown for ρ = .0 14 and ξ = .0 1, which corresponds 
to a disordered state (equivalent results for the phase with lanes are presented in the Supplementary Information 
for the sake of completeness). The repulsive interaction is fixed to =k 4.
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According to Fig. 3 (left), in the disordered state collisions can be produced in any orientation and the events 
corresponding to large τ are supressed by the shielding of closer events. The decay exponent γ takes then a value 
of 2, in agreement with the power-law proposed for pedestrians in26. While this is to be expected in the 
time-to-collision interaction F sa

ttc
( ) by definition, there is no apparent reason to justify why the same behavior 

emerges for F sa
rep
( )  and F sa

heu
( ) . On the other side, the effective potential in the lane state exhibits a completely differ-

ent behavior. The homogeneity in θ is there completely broken (Fig. 3, right) due to the two preferred directions 
of movement and most of the collisions are produced in the frontiers between opposite lanes. There is not shield-
ing effect in this case and, as a consequence, the system is driven by a slower interaction decay, with γ ≈ 1. We 
have not been able, however, to find an analytical justification for the specific values of γ emerging in each state; 
this remains an open question.

To conclude, from our findings in Fig. 6 we obtain that the same effective potential, if computed through Eq. 
?? as done here, could emerge from a very wide range of interactions between the agents. This suggests that the 
result τ τ−~V( ) 2 experimentally reported in26 is not necessarily determining the actual rule of interaction (or 
self-avoidance) used by pedestrians, but it could rather be the manifestation of a common dynamics exhibited by 
a wide range of systems combining self-avoidance and bidirectionality. In particular, our results in Fig. 5 confirm 
that it is not possible to discern whether pedestrians use a time-to-colision potential (as in26) or a heuristic rule of 
path maximization (as in31) only from examining the shape of the distribution function τg( ), but additional anal-
ysis would be required. Still, the scaling τ τ γ−~V( )  will presumably work as a useful effective rule in bidirectional 
flows for different situations of interest (either pedestrian movement, ant organization or complex plasma36, to 
cite some known cases). Such effective rule could be of great utility in order to simulate bidirectional fluxes with-
out caring too much about the fine details of the interactions, and so it can be used as a toy or reference approxi-
mation to computational or analytical approaches in the field.

Our work is not able to delimit what is the exact range of validity of the scaling reported in Fig. 5. Given the 
strong differences between the three self-avoiding mechanisms explored here, we suspect that this range can be 
quite large as long as the initial scheme in Eq. 1 holds. However, this does not guarantee the existence of an equiv-
alent effective potential in situations where additional forces get introduced. Hence the extension of our results in 
this direction can represent an stimulating area of future research.

Appendix A: Methods
Self-avoidance mechanisms.  As we explained before, we propose in our work three very different mech-
anism for the self-avoidance potential F sa( ) between the agents (which are considered as disk-like particles with 
the same diameter D). Here we provide a short description of each mechanism.

Figure 6.  Effective interaction τV( ) obtained from τ†g ( ) for ρ = .0 14 in the different states of the phase space 
(the top image for ξ = .0 025 and the bottom image for ξ = 2).

γ (disordered) γ (lanes)

Repulsive =k 2 . ± .2 2 0 3 . ± .1 03 0 06

Repulsive =k 3 . ± .2 13 0 09 . ± .1 01 0 04

Repulsive =k 4 . ± .2 07 0 09 . ± .0 99 0 05

Time to coll . ± .2 09 0 12 . ± .1 08 0 07

Heuristic . ± .1 97 0 09 . ± .1 04 0 06

Table 1.  Fit for the power law effective interaction τV( ) obtained from τ†g ( ) for ρ = .0 14 in the different states 
of the phase space (the left column for ξ = .0 025 and the right column for ξ = 2).
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Repulsive potentials.  We introduce a repulsive pair energy which is a function of the distance r between the 
agents, 

= −
A
r

F u
(3)rep

sa
k

( )

 where >A 0, u is a unit vector in the direction joining the pair of interacting agents, and the distance r is meas-
ured in units of D, so =r 1 corresponds to the distance between two adjacent agents. The parameter k regulates 
the decay of the force, so implicitly it determines the range of scales where its effect is relevant, with the limit 

→ ∞k , reproducing hard-disk interactions.
This approach represents a reference model against which we subsequently compare the performance of more 

sophisticated mechanisms of self-avoidance between pedestrians. In this case the effect of Frep
sa( ) is to pull all the 

individuals apart, independently if their are moving forward to a collision or not.

Time to collision.  The second potential used corresponds to an interaction explicitly occurring in the 
time-to-collision (or τ) space, defined as the time needed for the pair of agents to get in contact provided they 
followed their actual direction of motion. This time can be explicitly defined in terms of the relative velocity vr and 
the relative position r between two given particles, 

τ =
− − − −

.
Drv rv v r

v
( ) ( )

(4)
r r r

r

2 2 2 2

2

The idea of using the τ-space for driving interactions is directly borrowed from26 and is justified from the 
empirical results on pedestrians dynamics therein obtained. The rule reads then 

τ= −∇
τ
τ− −k eF ( ), (5)tcc

sa( ) 2
0

with >k 0, τ > 00 , and u defined again as in 3. The exponential term is used as a cutoff to impair the effect of 
outermost collisions, so introducing the idea that agents possess a characteristic radius of perception (τ0, defined 
in the τ-space). The potential so defined only applies to agents moving forward to a collision, such that τ can be 
defined and is positive; this is, pairs for which a positive value of τ cannot be found are considered as noninteract-
ing agents. As a result, the set of agents interacting with a given one is a dynamic object which is updated contin-
uously throughout the simulation.

Heuristic rule.  In order to consider very disparate mechanisms, we finally introduce a self-avoiding heuristic 
rule proposed for pedestrians dynamics in31. This algorithm relies on the idea of adapting the direction of motion 
by maximizing locally the accessible distance path. So, each agent samples its possible future trajectories by sim-
ulating internally (with a time horizon tm) where it will reach by moving in a given direction (characterized by an 
angle α) for some fixed time, provided that the other agents are assumed to go on moving in the same direction 
they do have at present. After sampling for a range of values of α (up to maximum αmax, to avoid sudden or 
extreme changes of direction) the agent will choose the one that maximizes the length covered. After the election, 
all the agents reorient synchronously and the internal simulation starts anew.

There is a second rule, which determines the walking speed modulus after the reorientation. This is introduced 
in order to maintain a certain time to collision between the agent and the obstacle in the chosen walking direc-
tion31. For this, we define a minimum time τm such that times-to-collision are forced to stay always below τm by 
reducing adequately the speed of the agents. That speed is then computed at practice as = 



τ

v t v( ) min , dobs

m
 where 

dobs is the distance between the agent and the first obstacle in the desired direction α at that time step.

Implementation and technical details.  In this section we provide additional details of how the simula-
tions of our multiagent model have been carried out. For the first two interactions, the number of agents is fixed 
to =N 512, while for the heuristic rule the number is fixed to =N 128 due to the computational cost of its sim-
ulations (different time steps ∆t are also used in each case for the same reason, see below). The simulation time 
for the repulsive and time-to-collision mechanisms (it is, Frep

sa( ) and Fttc
sa( )) scales as ∝N2, as they are pair to pair 

interactions. Instead, the heuristic rule prospects into the future the different α paths. This algorithm implies a 
scaling time ∝ αt N m dm

2 , where αm  is the number of explored directions α in each evaluation of the rule (fixed in 
our case to =αm 50), and = ∆d t t/m m  is the number of time steps in the prospection. Additionally, the simula-
tion time step ∆t is also different in each one.

The agents are placed in a two-dimensional simulation box with density ρ using periodic boundary condi-
tions. The units of length are re-scaled to σ, so =r 1 is equal to a diameter agent. The agent mass is settled as 

=m 1. The Verlet algorithm has been used to integrate the equations. The system is studied for different values of 
the density in the range ρ = . .[0 05, 0 32], which is accomplished by fixing the number of individuals to a certain 
value N  and changing the box size L, given ρ = N L/ 2).

The parameters used for the implementation of the self-avoidance mechanisms are as follows:
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•	 The repulsive interaction(3) is fixed to =k 4 (unless indicated otherwise), = .A 2 5 and ∆ = .t 0 001rep .
•	 The time-to-collision potential(5) is fixed to = .k 1 5, τ = 100  and ∆ = .t 0 005ttc  according to26. The τ0 value is 

defined in order to not affect the dynamics in the scaling region.
•	 The heuristic rule is fixed to τ = .0 5m  and =d v tmax i m, with =t 5m , α = 75max  and ∆ = .t 0 05heu , according 

to31.

To carry out the simulations 8 CPUs have been used, with a total simulation time around ~250 hours for each 
CPU.
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