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Stochastic resetting on comblike structures
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We study a diffusion process on a three-dimensional comb under stochastic resetting. We consider three
different types of resetting: global resetting from any point in the comb to the initial position, resetting from
a finger to the corresponding backbone, and resetting from secondary fingers to the main fingers. The transient
dynamics along the backbone in all three cases is different due to the different resetting mechanisms, finding
a wide range of dynamics for the mean-squared displacement. For the particular geometry studied herein, we
compute the stationary solution and the mean-square displacement and find that the global resetting breaks the
transport in the three directions. Regarding the resetting to the backbone, the transport is broken in two directions
but it is enhanced in the main axis. Finally, the resetting to the fingers enhances the transport in the backbone
and the main fingers but reaches a steady value for the mean-squared displacement in the secondary fingers.
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I. INTRODUCTION

Combs are two- or three-dimensional branched structures
with a backbone crossed by perpendicular fingers. These
fingers may be one- or two-dimensional side structures. A
random walker moving along the backbone may enter into
a finger (or fingers) and move there for a time and return
to the backbone to start the process again. As a result of
a Brownian motion in a two-dimensional comb, the mean
squared displacement (MSD) shows a subdiffusive behavior
depending on time as t1/2 and was originally introduced
to understand anomalous transport in percolation clusters
and many other applications [1]. Although three-dimensional
combs have been less developed, they have modeled transport
in spiny dendrites [2] or ultraslow diffusion in combs with
circular fingers [3].
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In this paper, we investigate a diffusion process on an xyz
comb (see Fig. 1) with stochastic resetting. The diffusion
on a three-dimensional comb is governed by the following
equation:

∂

∂t
P(x, y, z, t ) = LFPP(x, y, t ), (1)

where

LFP = Dxδ(y)δ(z)
∂2

∂x2
+ Dyδ(z)

∂2

∂y2
+ Dz

∂2

∂z2

is the Fokker-Planck (transport) operator, and Dxδ(y)δ(z),
Dyδ(z), and Dz are the diffusion coefficients along the x,
y, and z directions, respectively. The δ functions δ(y)δ(z) in
front of the second spatial derivative with respect to x, mean
that diffusion along the backbone (x axis) is allowed only at
y = z = 0, while the δ function δ(z) in front of the second
spatial derivative with respect to y means that the diffusion
along the main fingers (or branches) (y axis) is allowed only at
z = 0. The z axis is a secondary finger, an auxiliary direction
along which the particle performs normal diffusion.

On the other hand, the diffusion process in one dimen-
sion under stochastic resetting was introduced by Evans and
Majumdar [4]. The corresponding equation is given by

∂

∂t
P(x, t |x0) = D ∂2

∂x2
P(x, t |x0) − rP(x, t |x0) + rδ(x − x0),

(2)

where the initial position reads P(x, t = 0|x0) = δ(x − x0),
D is the diffusion coefficient, r is the rate of resetting to
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FIG. 1. Three-dimensional comblike structure, which is a dis-
crete caricature of the continuous 3D comb model described by
Eq. (1). It consists of the backbone along the x axis and continuously
distributed side-branches—fingers along the y and z axes.

the initial position, the second term on the right-hand side
represents the loss of probability from the position x due to
reset to the initial position x0, and the third term is the gain of
probability at x0 due to resetting from all other positions. This
equation represents a renewal process: each resetting event to
the initial position x0 renews the process at a rate r. Between
two consecutive renewal events, the particle undergoes free
diffusion [4]. It is known that this equation has a stationary
solution in the long-time limit given by

Pst (x|x0) = 1√
4D/r

e− |x−x0 |√
D/r .

Other types of motion and resetting mechanisms have
been studied by introducing the two resetting terms to the
Fokker-Planck equation of the corresponding process [5–13],
also including a two-dimensional comb structure [14]. For
instance, space-dependent reset rates [5] or diffusion in a po-
tential landscape [9] and the telegrapher’s equation [11] have
been analyzed under this perspective. Other works have stud-
ied motion with resetting by employing a renewal equation
[15–28], which has also been used to study the completion
time of search processes with resetting [29–35].

Multidimensional diffusion has already been studied in the
literature [6]. There, diffusion with resets in an multidimen-
sional, homogeneous, infinite media is studied. In this paper,
we analyze the transport properties and the long-time behavior
of diffusion in an heterogeneous environment and determine
the properties emerging from resetting in the different space
coordinates.

The paper is organized as follows. In Sec. II, we consider
diffusion in a three-dimensional comb with global exponential
(Markovian) resetting. We give exact results for the marginal
probability density functions (PDFs), stationary distributions,
and MSDs along all three axes. We also confirm the analytical
results by numerical simulations by employing a Langevin
equation approach for comb structure. Excellent agreement
has been shown. Diffusion in a three-dimensional comb with

exponential resetting to the backbone is considered in Sec. III
and the corresponding PDFs and MSDs are also found. In
Sec. IV, exponential resetting to the fingers is analyzed. We
also discuss the resetting mechanisms in two-dimensional
comb structures in Sec. V. In Sec. VI, we give detailed expla-
nation of the topological constraint of the transport properties
of both two- and three-dimensional comb structures. The
summary is provided in Sec. VII.

II. GLOBAL RESETTING

A. Analytical results

We start our analysis by considering diffusion in a three-
dimensional comb with global resetting, represented by the
equation

∂

∂t
P(x, y, z, t |x0, 0, 0)

= LFPP(x, y, z, t |x0, 0, 0) − rP(x, y, z, t |x0, 0, 0)

+ rδ(x − x0)δ(y)δ(z), (3)

with the initial position P(x, y, z, t = 0|x0) = δ(x − x0)
δ(y)δ(z). This equation can also be interpreted in terms of a
renewal process: Each resetting event to the initial position
(x0, y0, z0) = (x0, 0, 0) renews the process at a rate r. Between
two consecutive renewal events, the particle undergoes diffu-
sion on the xyz comb structure.

To find the solution of Eq. (3), we apply the Fourier
transformations1 with respect to x, y, and z, and the Laplace
transformation2 with respect to t . Therefore, for the PDF in
the Fourier-Laplace domain we obtain, see Sec. 1 from the
Supplemental Material [36] for details of calculations:

P̂(kx, ky, kz, s|x0, 0, 0)

= 1

s
× (s + r)1/4

(s + r)1/4 + Dx

2
√

2Dy
√
Dz

k2
x

× (s + r)1/2

(s + r)1/2 + Dy

2
√
Dz

k2
y

× (s + r)

(s + r) + Dzk2
z

× eıkxx0 .

(4)

B. Marginal PDFs

To analyze the motion along all three directions, we ana-
lyze the marginal PDFs,

p1(x, t |x0) =
∫ ∞

−∞

∫ ∞

−∞
P(x, y, z, t |x0, 0, 0) dy dz, (5)

p2(y, t |0) =
∫ ∞

−∞

∫ ∞

−∞
P(x, y, z, t |x0, 0, 0) dx dz, (6)

p3(z, t |0) =
∫ ∞

−∞

∫ ∞

−∞
P(x, y, z, t |x0, 0, 0) dx dy. (7)

1The Fourier transform of a function f (ξ ) is given by f (k) =
F [ f (x)](k) = ∫ ∞

−∞ f (ξ ) eıkξ dξ . The inverse Fourier transform then
reads f (ξ ) = F−1[ f (k)](x) = 1

2π

∫ ∞
−∞ f (k) e−ıkξ dk.

2The Laplace transform of a function f (t ) reads f̂ (s) =
L[ f (t )](s) = ∫ ∞

0 f (t ) e−st dt .
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In the Fourier-Laplace space, the marginal PDFs are

p̂1(kx, s|x0) = P̂(kx, ky = 0, kz = 0, s|x0, 0, 0), (8)

p̂2(ky, s|0) = P̂(kx = 0, ky, kz = 0, s|x0, 0, 0), (9)

p̂3(kz, s|0) = P̂(kx = 0, ky = 0, kz, s|x0, 0, 0). (10)

Therefore, from Eqs. (4) and (8), for the marginal PDF
along the backbone, we have

p̂1(kx, s|x0) = s−1(s + r)1/4

(s + r)1/4 + D1 k2
x

eıkxx0 , (11)

where D1 = Dx

2
√

2Dy
√
Dz

. By applying the inverse Fourier

transform we obtain

p̂1(x, s|x0) = 1

2
√
D1

s−1(s + r)1/8e
− (s+r)1/8√

D1
|x−x0|

. (12)

From Eq. (11), by inverse Fourier-Laplace transforms we
arrive at the generalized (non-Markovian) diffusion equation
along the backbone∫ t

0
γ (t − t ′)

∂

∂t ′ p1(x, t ′|x0) dt ′ = D1
∂2

∂x2
p1(x, t |x0), (13)

where

γ (t ) = t−1/4E−1/4
1,3/4 (−r t ). (14)

Here,

E δ
α,β (z) =

∞∑
k=0

(δ)k

	(αk + β )

zk

k!
(15)

is the three-parameter Mittag-Leffler function [40]3 and
(δ)k = 	(δ + k)/	(δ) is the Pochhammer symbol. The initial
condition is p1(x, t = 0|x0) = δ(x − x0). The equation can
also be written in the form

CD1/4,1/4
1,−r,0+ p1(x, t |x0) = D1

∂2

∂x2
p1(x, t |x0), (16)

where

CDδ,μ
ρ,−ν,0+ f (t ) =

∫ t

0
(t − t ′)−μE−δ

ρ,1−μ(−νtρ )
df (t ′)

dt ′ dt ′, (17)

is a so-called regularized Prabhakar derivative [41], which has
many applications nowadays [42–44]. Here we note that the
diffusion equation can be represented in an equivalent form
by using an integral operator with a memory kernel from the
right-hand side of the diffusion equation [45]. The stationary

3The Laplace transform of the three-parameter Mittag-Leffler func-
tion reads [40]

L
[
tβ−1E δ

α,β (±atα )
]
(s) = sαδ−β

(sα ∓ a)δ
, �(s) > |a|1/α.

Its asymptotic behaviors are given by [38,39]

E γ

α,β (−zα ) �
{

1
	(β ) exp(−γ

	(β )
	(α+β ) zα ), z 	 1

z−αγ

	(β−αγ ) , z 
 1.

PDF along the backbone, obtained in the long-time limit,
becomes

p1,st (x|x0) = 1√
4D1/

4
√

r
e
− |x−x0 |√

D1/ 4√r . (18)

From Eqs. (4) and (9), for the PDF along the fingers, we
find

p̂2(ky, s|0) = s−1(s + r)1/2

(s + r)1/2 + D2 k2
y

, (19)

where D2 = Dy

2
√
Dz

. From here, by applying the inverse Fourier
transform, we obtain

p̂2(y, s|0) = (s + r)1/4

2s
√
D2

e
− (s+r)1/4√

D2
|y|

. (20)

The marginal PDF p2(y, t |0) provides the transport equation
along the main finger and is governed by the equation∫ t

0
ζ (t − t ′)

∂

∂t ′ p2(y, t ′|0) dt ′ = D2
∂2

∂y2
p2(y, t |0), (21)

with the initial condition p2(y, t = 0|0) = δ(y). Here the
kernel ζ (t ) is

ζ (t ) = t−1/2E−1/2
1,1/2 (−rt ) = 1√

πt
e−rt + √

r erf (
√

rt ). (22)

Equation (21) can also be presented by means of the regular-
ized Prabhakar derivative Eq. (17). It reads

CD1/2,1/2
1,−r,0+ p2(y, t |0) = D2

∂2

∂y2
p2(y, t |0) (23)

or, equivalently,

TCD1/2
r p2(y, t |0) = D2

∂2

∂y2
p2(y, t |0)

− √
r
∫ t

0
erf (

√
r(t − t ′))

∂

∂t ′ p2(y, t ′|0) dt ′,

(24)

where erf (z) = 2√
π

∫ z
0 e−t2

dt is the error function, while

TCDα
b f (t ) = 1

	(1 − α)

∫ t

0
e−b(t−t ′ )(t − t ′)−α d

dt ′ f (t ′) dt ′

(25)

is the tempered Caputo derivative with the exponential trunca-
tion, where b > 0 is the truncation parameter [37,42]. For the
stationary PDF along the y direction, we find

p2,st (y|0) = 1√
4D2/

√
r

e
− |y|√

D2/
√

r . (26)

For the z direction, we have

p̂3(kz, s|0) = s−1(s + r)

(s + r) + Dzk2
z

, (27)

that yields

p̂3(z, s|0) = 1

2
√
Dz

s−1(s + r)1/2e
− (s+r)1/2√

D3
|z|

, (28)
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where D3 = Dz. The corresponding equation for the transport
along secondary fingers reads∫ t

0
ξ (t − t ′)

∂

∂t ′ p3(z, t ′|0) dt ′ = D3
∂2

∂z2
p3(z, t |0), (29)

where

ξ (t ) = δ(t ) + r, (30)

and it can be rewritten in the equivalent form

∂

∂t
p3(z, t |0) = D3

∂2

∂z2
p3(z, t |0) − r p3(z, t |0) + rδ(z), (31)

which is a standard diffusion equation with stochastic reset-
ting. The stationary PDF along the z direction is

p3,st (z|0) = 1√
4D3/r

e
− |z|√

D3/r . (32)

It is interesting to note that the obtained stationary PDFs along
each axis are exponential functions, so the global resetting
does not modify the stationary state with respect to the case
of standard diffusion in one dimension under resetting, see
Eq. (2). The global resetting affects the transient dynamics
toward the stationary state only. For a given value of D for
all three components, the width of the PDF varies. This can
be seen from the analytical formulas, in which the width
of the exponential stationary PDF depends on r for the z
component, on

√
r for the y component, and on 4

√
r for the

x component, see Eqs. (18), (26), and (32). The obtained
analytical results are verified by stochastic simulations with
the Langevin equation approach, see Sec. II D.

C. Mean-squared displacements

In this section, we analyze the MSDs along all three
directions,

〈x2(t )〉 =
∫ ∞

−∞
x2 p1(x, t |x0) dx,

〈y2(t )〉 =
∫ ∞

−∞
y2 p2(y, t |0) dy,

〈z2(t )〉 =
∫ ∞

−∞
z2 p3(z, t |0) dz.

Taking into account corresponding solutions for the marginal
PDFs, we have

〈x2(t )〉 = x2
0 + 2D1 t1/4E1/4

1,5/4(−rt )

= x2
0 + 2D1 t1/4

[
1

4
√

rt
− E3/4(rt )

	(1/4)

]
, (33)

where En(z) = ∫ ∞
1

e−zt

t n dt is the exponential integral func-
tion. This corresponds to the transition from subdiffusion to
localization

〈x2(t )〉 ∼ x2
0 + 2D1

⎧⎪⎨
⎪⎩

t1/4

	(5/4) , rt 	 1

1
4√r

, rt 
 1.

For the y fingers, we have

〈y2(t )〉 = 2D2
erf (

√
rt )√

r
, (34)

that corresponds to the transition from subdiffusion to local-
ization as well:

〈y2(t )〉 ∼ 2D2

⎧⎪⎨
⎪⎩

t1/2

	(3/2) , rt 	 1

1√
r
, rt 
 1.

Eventually, the MSD for z fingers reads

〈z2(t )〉 = 2D3
1 − e−rt

r
, (35)

that corresponds to saturation in the long-time limit:

〈z2(t )〉 ∼ 2D3

⎧⎨
⎩

t, rt 	 1

1
r , rt 
 1.

Therefore, unlike an initial transient behavior, all the MSDs
saturate toward a constant value (exhibiting stochastic local-
ization) as in the scenario of one-dimensional diffusion with
resets. This confirms the existence of a nonequilibrium sta-
tionary state, which has been recently observed for many dif-
ferent dynamics under constant-rate resets [23]. This variety
of cases has been also obtained from stochastic simulations
of the process based on a Langevin equation approach, see
Sec. II D.

D. Langevin equation approach: Numerical simulations

To verify the analytical solution obtained in the previous
section, we perform numerical calculations, considering a
system of Langevin equations [46,47], and where resets, as
a renewal process, can be easily performed, see Ref. [9]. The
system of coupled Langevin equations reads

x(t + t ) =
{

x(0), with prob. r t

x(t ) + β1A(y)B(z)ηx(t ), with prob. (1 − r t ),

(36a)

y(t + t ) =
{

y(0), with prob. r t

y(t ) + β2B(z)ηy(t ), with prob. (1 − r t ),

(36b)

z(t + t ) =
{

z(0), with prob. r t

z(t ) + β3ηz(t ), with prob. (1 − r t ),
(36c)

where β1, β2, β3 are constants related to the diffusion co-
efficients D1, D2, D3, ηx(t ), ηy(t ), ηz(t ) are zero mean
Gaussian noises (〈ηx(t )〉 = 0, 〈ηy(t )〉 = 0, 〈ηz(t )〉 = 0), A(y)
and B(z) are functions introduced to mimic δ functions (see
Refs. [46,48]), and r is the parameter of the Poisson process.
To replicate the Dirac δ function, diffusion across the x and
y directions is permitted in a narrow band of thickness 2ε

along the x and y axes. As a result, the noise in Eqs. (36a) and
(36b) is multiplicative, however in Refs. [47,48] the authors
verified that the value ε has no influence in the diffusive
process, as long as ε and the noise amplitudes β1, β2, β3 are
of the same order of magnitude. In our simulations, we have

033027-4



STOCHASTIC RESETTING ON COMBLIKE STRUCTURES PHYSICAL REVIEW RESEARCH 2, 033027 (2020)

FIG. 2. Trajectory along individual axes with global stochastic resetting to the initial position (x0, y0, z0) = (0, 0, 0) with rate r = 0.0005
obtained from a Langevin simulation of the process. The resetting events are represented by black dots. Dashed regions are introduced for
these resetting events to be more visible.

set ε = βx = βy = βz = 0.1. The noises ηx(t ), ηy(t ), ηz(t ),
were sampled from a Gaussian distribution N (0,t ). The
time evolution of the diffusive particle is a renewal process,
where each resetting event to (x0, y0, z0) renews the process at
a Poisson rate r.

This effect of stochastic resetting is modeled by sampling a
resetting time from an exponential distribution with parameter
r representing the time between two events in a Poisson point
process. During this resetting time, the particle undergoes dif-
fusion on the three-dimensional comb and resets at (x0, y0, z0)
afterward. A graphical representation of the simulations of
particle trajectories along all directions is given in Fig. 2.

Regarding the simulation of marginal PDFs and temporal
evolution of the variance, ensembles of 5×104 particle posi-
tions were simulated considering a time step of t = 1 across
a time span of 105 to observe convergence of the processes,
with the MSD being calculated for each of the ensembles
along all three directions: σ 2

x (t ) = 〈(x(t ) − 〈x(t )〉)2〉, σ 2
y (t ) =

〈(y(t ) − 〈y(t )〉)2〉, σ 2
z (t ) = 〈(z(t ) − 〈z(t )〉)2〉. In Fig. 3, we

give comparison of the analytical and simulation results
for the marginal PDFs, where we use that βi = √

2Di, i =
{1, 2, 3}, with t = 1, see Refs. [9,46]. In Fig. 4, we show the
simulated time evolution of the MSDs in the three directions.
From the simulation results, one can verify that they are in a

FIG. 3. Comparison of the analytical (solid lines) and simulation
(symbols) results for the marginal PDFs for global resetting with r =
0.002 at t = 100. More specifically, we show p1(x, t |0) (blue line
with circles), p2(y, t |0) (green line with triangles), and p3(z, t |0) (red
line with diamonds) for D1 = D1 = D3 = 0.005 and x0 = 0.

very good agreement with analytical results. In the short-time
limit, the MSDs in the case of resetting (solid lines) behave as
the corresponding MSDs in case of no resetting (dashed lines),
while in the long-time limit, the MSDs reach the saturation
values obtained analytically (if one uses 2Di = β2

i in the
analytical results). For more results on the corresponding
PDFs obtained by the numerical simulations, we refer to
Sec. 1 from the Supplemental Material [36].

III. RESETTING TO THE BACKBONE

Global resetting takes the particle to a particular position of
the comb [with the coordinates (x0, 0, 0) in Eq. (3)]. However,
it is only one of many possible mechanisms of resetting. Here,
we proceed with a slightly softer resetting procedure, which
takes the particle to the backbone. This resetting is applied to
the y and z directions only, taking a walker being at (x, y, z) to
the point (x, 0, 0). In this case, the governing equation reads

∂

∂t
P(x, y, z, t |x0, 0, 0)

= LFPP(x, y, z, t |x0, 0, 0) + rδ(y)δ(z)
∫ ∞

−∞
dy′

×
∫ ∞

−∞
dz′P(x, y′, z′, t |x0, 0, 0), (37)

FIG. 4. MSDs along all three axes for global resetting with rate
r = 0.05 (solid lines); without resetting (dashed lines). The axes are
represented by x (blue circles), y (green triangles), z (red diamonds).
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which differs from Eq. (3) in the last term only. This difference
results from the difference between the global resetting and
resetting to the backbone. In the former case, the particle
is taken at the particular position (x0, 0, 0) as stated by the
δ(x − x0)δ(y)δ(z) term in Eq. (3). However, in the latter case
considered here, the particle appears at y = 0, z = 0 but the x
position is not modified. Mathematically, it can be written as
the marginal distribution, the double integral term in Eq. (37).
From the Fourier-Laplace transformations, we arrive at the
following PDF in the Fourier-Laplace space, see Sec. 2 from
the Supplemental Material [36] for details of calculations:

P̂(kx, ky, kz, s|x0, 0, 0)

= 1

s
× s (s + r)−3/4

s (s + r)−3/4 + D1 k2
x

eikxx0

× (s + r)1/2

(s + r)1/2 + D2 k2
y

× s + r

s + r + D3 k2
z

. (38)

From this equation, the marginal PDFs for the three axes can
be straightforwardly obtained as done in the previous section:

p̂1(kx, s) = (s + r)−3/4

s (s + r)−3/4 + D1 k2
x

eikxx0 , (39)

p̂2(ky, s) = s−1 (s + r)1/2

(s + r)1/2 + D2 k2
y

, (40)

p̂3(kz, s) = s−1 (s + r)

(s + r) + D3 k2
z

. (41)

Here we note that the corresponding equations, Eqs. (40) and
(41), for the marginal PDFs along the y and z directions are
the same as in the case of global resetting, Eqs. (20) and (27),
respectively. Along the backbone, the PDF is

p̂1(x, s) = 1

2
√
D1

s−1/2(s + r)−3/8 e
− s1/2 (s+r)−3/8√

D1
|x−x0|

, (42)

which is governed by the equation

TCD1/4
r p1(x, t |x0) = D1

∂2

∂x2
p1(x, t |x0), (43)

where TCDα
b f (t ) is the tempered fractional derivative Eq. (25)

of order 1/4.
The corresponding MSDs along the y and z axes are the

same as those for the case of global resetting, since the effect
of the resetting in these two dimensions is equivalent for

both scenarios. However, the dynamics on the x axis change
substantially as reflected in the MSD:

〈x2(t )〉 = x2
0 + 2D1 t1/4E−3/4

1,5/4 (−r t ). (44)

Its asymptotes read

〈x2(t )〉 ∼ x2
0 + 2D1

⎧⎨
⎩

t1/4

	(5/4) , rt 	 1

r3/4 t, rt 
 1.

(45)

The resetting mechanism studied in this section enhances the
transport since it returns particles to the x axis. Consequently,
instead of the saturation of a stationary value for the MSD, one
can see from Eq. (51) that in the long-time limit, 〈x2(t )〉 ∼
t , i.e., it scales diffusively. The short-time limit scales as
〈x2(t )〉 ∼ t1/4, as in the case of global resetting. This means
that we observe accelerating transport along the backbone,
ranging from subdiffusion to normal diffusion.

The numerical simulations of particle trajectories along all
three directions, by using the Langevin equations approach,
are shown in Fig. 5. We see that while in the y and z axes
we observe recurrent returns to the origin, in the x axis the
motion does not return. Instead, it freely moves away from
the origin. In Fig. 6, we give comparison of the analytical
and simulation results for the marginal PDFs from where one
observes excellent agreement between both approaches. Same
parameters for ε, βi, and Di as in the case of global resetting
are used. The analytical results have also been confirmed by
simulation results of the MSDs given in Fig. 7, where the y
and z components of the MSDs in the short-time limit behave
as the corresponding MSDs in case of no resetting as it should
be, while in the long-time limit the MSDs reach stationary val-
ues. The numerical simulations of the MSD in the x direction
show characteristic crossover from subdiffusion [〈x2(t )〉 ∼
t1/4] to normal diffusion, which is also in agreement with the
analytical results found above. More simulation results for the
PDFs are given in Sec. 2 of the Supplemental Material [36].

IV. RESETTING TO THE MAIN FINGERS

Finally, we study the dynamics of the system when the
resetting applies to a particle located at any secondary finger
along the z axis and moves to the main finger (axis y in Fig. 1).
In this case, the governing equation reads

∂

∂t
P(x, y, z, t |x0, 0, 0) = LFPP(x, y, z, t |x0, 0, 0) − rP(x, y, z, t |x0, 0, 0) + rδ(z)

∫ ∞

−∞
dz′P(x, y, z′, t |x0, 0, 0), (46)

where the last term is now the marginal distribution in the variables x and y. In the Fourier-Laplace space, the solution of the
equation reads, see Sec. 3 from the Supplemental Material [36] for details of calculations:

P̂(kx, ky, kz, s|x0, 0, 0) = 1

s
× s1/2 (s + r)−1/4

s1/2 (s + r)−1/4 + D1 k2
x

eikxx0 × s (s + r)−1/2

s (s + r)−1/2 + D2 k2
y

× s + r

s + r + D3 k2
z

. (47)
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FIG. 5. Trajectory along individual axes with stochastic resetting to the backbone with rate r = 0.0005 obtained from a Langevin
simulation of the process. The resetting events are represented by black dots. Note that there is no resetting along x axis but the dashed
regions are given only for indication when the resetting events along y and z axes occur.

This also yields the images of the marginal PDFs for the
different axes. Eventually, we have

p̂1(kx, s) = s−1/2 (s + r)−1/4

s1/2 (s + r)−1/4 + D1 k2
x

eikxx0 , (48)

p̂2(ky, s) = (s + r)−1/2

s (s + r)−1/2 + D2 k2
y

, (49)

p̂3(kz, s) = s−1 (s + r)

(s + r) + D3 k2
z

. (50)

From these expressions, one obtains the corresponding
MSDs, which are

〈x2(t )〉 = x2
0 + 2D1 t1/4E−1/4

1,5/4 (−r t ), (51)

〈y2(t )〉 = 2D2 t1/2E−1/2
1,3/2 (−r t )

= 2D2

[
e−rt t1/2

	(1/2)
+ 2rt + 1

2
√

r
erf (

√
rt )

]
, (52)

FIG. 6. Comparison of the analytical (solid lines) and simulation
(symbols) results for the marginal PDFs for resetting to the backbone
with r = 0.002 at t = 100. We show p1(x, t |0) (blue line with
circles), p2(y, t |0) (green line with triangles), and p3(z, t |0) (red line
with diamonds) for D1 = D2 = D3 = 0.005 and x0 = 0.

and the MSD along the z axis is the same as in the previous
cases. Their asymptotes read

〈x2(t )〉 ∼ x2
0 + 2D1

⎧⎪⎨
⎪⎩

t1/4

	(5/4) , rt 	 1

r1/4 t1/2

	(3/2) , rt 
 1,

(53)

〈y2(t )〉 ∼ 2D2

⎧⎨
⎩

t1/2

	(3/2) , rt 	 1

r1/2 t, rt 
 1.

(54)

In this case, the MSD along the x axis behaves subdiffusively
with 〈x2(t )〉 ∼ t1/4 as in the case with no resetting, and
then it turns to 〈x2(t )〉 ∼ t1/2, which means an accelerating
subdiffusive transport. Along the y axis, the MSD scales as
〈y2(t )〉 ∼ t1/2 in the short-time limit, and then it turns to linear
dependence in time 〈y2(t )〉 ∼ t . Along the z axis, the MSD
from the normal diffusive behavior reaches a stationary value
in the long-time limit.

We also performed numerical simulations by using the
Langevin equations approach. The same parameters for ε,
βi, and Di are used as previously. The simulation results
show very good agreement with the analytical results, see
Figs. 8–10. The same characteristic crossover dynamics of the

FIG. 7. MSDs along all three axes for resetting to the backbone
with rate r = 0.05 (solid lines); without resetting (dashed line). The
axes are represented by x (blue circles), y (green triangles), z (red
diamonds).
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FIG. 8. Trajectory along individual axes with stochastic resetting to the fingers with rate r = 0.0005 obtained from a Langevin simulation
of the process. The resetting events are represented by black dots. Note that there is no resetting along x and y axes but the dashed regions are
given only for indication when the resetting events along z axis occur.

MSDs as obtained by the analytical results above is observed.
For more details on analytical computation and simulation
results, see also Sec. 3 from the Supplemental Material [36].

V. REMARKS ON TWO-DIMENSIONAL COMB

Here we note that the results obtained for the three-
dimensional xyz comb can be used for the two-dimensional
xy comb. The y and z axes in the three-dimensional comb
would correspond to the x and y axes in the two-dimensional
comb. Therefore, the results obtained for the y and z di-
rections in the three-dimensional comb with resetting in
the backbone correspond to the results for the x and y
directions in the two-dimensional comb with global reset-
ting [14]. Furthermore, the results obtained for the y and z
directions in the three-dimensional comb with resetting in
the main fingers correspond to the results for the x and y
directions in the two-dimensional comb with resetting in the
backbone.

VI. REMARKS ON THREE-DIMENSIONAL
COMB GEOMETRY

The topological (comb) constraint of the transport prop-
erties of both two- and three-dimensional combs should be
discussed as well. To that end, let us understand the role
of the δ(y) and δ(z) functions in the highly inhomogeneous
diffusion coefficients in Eq. (1). One should recognize that the
singularity of the x and y components of the diffusion tensor
is the intrinsic transport property of the comb model Eq. (1).
Note that this singularity of the diffusion coefficients relates
to a nonzero flux along the x backbone and y fingers, and for
the two-dimensional case it was discussed in Refs. [49–52].
Here, we extend the arguments of Refs. [51,52] for the three-
dimensional case of Eq. (1). Let us consider the Liouville
equation,

∂

∂t
P + div j = 0, (55)

where the three-dimensional current j = ( jx, jy, jz ) describes
Markov processes in Eq. (1). In this case, the three-
dimensional current reads

jx = −Dx(y, z)
∂

∂x
P(x, y, z, t ), (56a)

jy = −Dy(z)
∂

∂y
P(x, y, z, t ), (56b)

jz = −Dz
∂

∂z
P(x, y, z, t ). (56c)

Here, we take a general diffusivity function in the x and
y directions Dx(y, z) and Dy(z), respectively [instead of
Dx δ(y)δ(z) and Dy δ(z) in Eq. (1)]. Therefore, Eq. (55)
together with Eqs. (56), can be regarded as the three-
dimensional non-Markovian master equation.

Integrating Eq. (55) with respect to y and z from −ε/2
to ε/2:

∫ ε/2
−ε/2 dy . . . and

∫ ε/2
−ε/2 dz . . . , after application of the

middle point theorem, one obtains for the left-hand side of
the equation ε2 ∂

∂t P(x, y = 0, z = 0, t ), which is exact in the
limit ε → 0. This term can be neglected in this limit ε → 0.
Considering integration of the right-hand side of the equation,
one should bear in mind that this procedure is artificial and
its implementation needs some care. First, we consider the
currents outside of the ε vicinity of the x backbone. In this
case, according to the comb geometry, jx = 0 and we con-
sider a two-dimensional y − z comb. Therefore, we perform
integration with respect to z only. From Eq. (56c), we obtain
that this term responsible for the transport in the z direction
reads

Dz
[
P′(x, y, z, t )|z= ε

2
− P′(x, y, z, t )|z=− ε

2

]
,

where prime means derivative with respect to z. This corre-
sponds to the two outgoing fluxes from the y fingers in the ±z
directions: Fz(+) + Fz(−). The transport in the y direction,
after integration, is

ε Dy(z → 0) ∂2
y P(x, y, z = 0, t ) ≡ Fy .

It should be stressed that the second derivative over y, pre-
sented in the form

ε
∂2

∂y2
P =

[
∂

∂y
P(y + ε/2) − ∂

∂y
P(y − ε/2)

]
,

ensures both incoming and outgoing fluxes for Fy along
the y direction at a point y. Following Kirchhoff’s law, we
have Fy + Fz(+) + Fz(−) = 0 for every point y and at z = 0.
Function Fy contains both incoming and outgoing fluxes of
the probability, while Fz(+) and Fz(−) are both outgoing
probability fluxes. If the latter outgoing fluxes are not zero,
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FIG. 9. Comparison of the analytical (solid lines) and simulation
(symbols) results for the marginal PDFs for resetting to the fingers
with r = 0.002 at t = 100. We show p1(x, t |0) (blue line with
circles), p2(y, t |0) (green line with triangles), and p3(z, t |0) (red line
with diamonds) for Dx = Dy = Dz = 1 and x0 = 0.

the flux Fy has to be nonzero as well: Fy �= 0, as containing an
incoming flux. Therefore, ε Dy(z → 0) �= 0. Taking Dy(z) =
1
π

εDy

y2+ε2 , one obtains in the limit ε → 0 a nonzero flux Fy with
Dy(z) = Dy δ(z), which is the diffusion coefficient in the y
direction in Eq. (55).

Now we perform integration in the ε vicinity of the x
backbone, where we take into account the singularity of the
y component of the diffusion coefficient, which is Dy δ(z). We
also admit that integration of the jz current in Eq. (56c) with
respect to y yields zero. Therefore, integration with respect
to y and z yields from Eq. (56b) the term responsible for the
transport in the y direction as follows:

Dy
[
P′(x, y, z = 0, t )|y= ε

2
− P′(x, y, z = 0, t )|y=− ε

2

]
.

Here prime means derivative with respect to y. This cor-
responds to the two outgoing fluxes from the backbone in
the ±y directions: Fy(+) + Fy(−). The transport along the x

FIG. 10. MSDs along all three axes for resetting to the fingers
with rate r = 0.05 (solid lines); without resetting (dashed line). The
axes are represented by x (blue circles), y (green triangles), z (red
diamonds).

direction, after integration of Eq. (56a), is

ε2 D(y → 0, z → 0)
∂2

∂x2
P(x, y = 0, z = 0, t )

= Fx(x + ε) + Fx(x − ε).

In complete analogy with the y coordinate, the second deriva-
tive with respect to x, presented in the form

ε
∂2

∂x2
P =

[
∂

∂x
P(x + ε/2) − ∂

∂x
P(x − ε/2)

]

as ε → 0, ensures both incoming and outgoing fluxes for Fx

along the x direction, at a point x. Again, after the integration,
the Liouville equation is a kind of Kirchhoff’s law: Fx(+) +
Fx(−) + Fy(+) + Fy(−) = 0 for each point x and at y = 0.
Note, that the flax in the z direction is zero due to the inte-
gration with respect to y. Since outgoing fluxes are not zero,
jx �= 0 and, correspondingly, the flux Fx ≡ Fx(+) + Fx(−)
has to be nonzero as well: Fx(±) �= 0. Therefore, ε2 D(y →
0, z → 0) �= 0. Now, taking the diffusion coefficient in the
form D(y, z) = 1

π
εD

y2+ε2 · 1
π

εD
z2+ε2 , one obtains in the limit ε → 0

a nonzero flux Fx with D(y, z) = Dxδ(y)δ(z), which is the
diffusion coefficient in the x direction in Eqs. (1), (55), and
(56a).

VII. SUMMARY

We have studied the dynamics of a particle, which diffus-
ing in a three-dimensional heterogeneous comblike structure
performs different types of resets. The hierarchical structure
of the three-dimensional comb allows us to study different
resetting mechanisms that generate a wide variety of dynam-
ics depending on the strength of the resetting mechanism. In
particular, we considered three types of resets in the three-
dimensional comb and their influence on the dynamics of the
MSD and we found that at the short time there is no influence
on the transport exponents, which remain the same as in the
case without resetting. However, at the long-time limit, the
system is strongly affected by the resetting process which
leads a change in the transport exponents.

We studied three kinds of resetting: global resetting of
a particle from any point on the comb to a fixed point at
(x, y, z) = (x0, 0, 0) and two kinds of softer resetting, where
two coordinates (y = 0, z = 0) and one coordinate (z = 0)
are fixed. When resets are global, the MSDs in x, y, and z
directions reach constant values exhibiting stochastic local-
ization, i.e., a nonequilibrium steady state is reached. This
result is in complete agreement with the results observed for
the dynamics of walkers with constant rate resetting recently
studied in the literature [4,23]. For a softer version of resetting
consisting of two fixed coordinates, the walker returns to any
positions at the backbone. It means that if the position of the
walker before the resetting is (x, y, z), then after the reset it
is (x, 0, 0). In this case, the dynamics for the y and z axes
remains the same as in the global resetting case, since the
effect of the resetting to these two coordinates is the same.
However, in the x direction, the resetting enhances the motion:
It becomes subdiffusive 〈x2(t )〉 ∼ t1/4 for short times and then
normal diffusion takes place for the long-time scale. The latter
regime results from the fact that the mean waiting time to stay
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in (y, z) fingers becomes finite due to resetting. Indeed, the
reset time PDF now plays the role of a waiting time PDF
for the motion along the backbone (x direction). Since the
reset time PDF is exponential (i.e., constant rate resetting or
Markovian resetting process), the motion in the x direction be-
comes diffusive in the long-time limit. For the softer resetting
with one fixed z coordinate, a stationary regime takes place
in the z fingers only. In the x and y directions, the transport is
enhanced with MSDs behaving as 〈x2(t )〉 ∼ t1/2 and 〈y2(t )〉 ∼
t . The obtained diffusion equations for the marginal PDFs

shed light on the physical relevance of usage of the Prabhakar
derivative in diffusion theory. They could describe diffusion
processes on comb structures with stochastic resetting.

ACKNOWLEDGMENTS

This research was partially supported by Grant No.
CGL2016-78156-C2-2-R (V.M. and A.M.). T.S. was sup-
ported by the Alexander von Humboldt Foundation.

V.D. and A.M.-P. contributed equally to this work.

[1] A. Iomin, V. Méndez, and W. Horsthemke, Fractional Dynamics
in Comb-like Structures (World Scientific, Singapore, 2018).

[2] V. Méndez and A. Iomin, Chaos, Solitons & Fractals 53, 46
(2013).

[3] A. Iomin and V. Méndez, Chaos, Solitons & Fractals 82, 142
(2016).

[4] M. R. Evans and S. N. Majumdar, Phys. Rev. Lett. 106, 160601
(2011).

[5] M. R. Evans and S. N. Majumdar, J. Phys. A: Math. Theor. 44,
435001 (2011).

[6] M. R. Evans and S. N. Majumdar, J. Phys. A: Math. Theor. 47,
285001 (2014).

[7] S. Gupta, S. N. Majumdar, and G. Schehr, Phys. Rev. Lett. 112,
220601 (2014).

[8] X. Durang, M. Henkel, and H. Parl, J. Phys. A: Math. Theor.
47, 045002 (2014).

[9] A. Pal, Phys. Rev. E 91, 012113 (2015).
[10] C. Christou and A. Schadschneider, J. Phys. A: Math. Theor.

48, 285003 (2015).
[11] J. Masoliver, Phys. Rev. E 99, 012121 (2019).
[12] D. Gupta, J. Stat. Mech. (2019) 033212.
[13] A. A. Tateishi, H. V. Ribeiro, and E. K. Lenzi, Front. Phys. 5,

52 (2017).
[14] A. A. Tateishi, H. V. Ribeiro, T. Sandev, I. Petreska, and E. K.

Lenzi, Phys. Rev. E 101, 022135 (2020).
[15] M. Montero and J. Villarroel, Phys. Rev. E 87, 012116 (2013).
[16] V. Méndez and D. Campos, Phys. Rev. E 93, 022106

(2016).
[17] A. Pal, A. Kundu, and M. R. Evans, J. Phys. A: Math. Theor.

49, 225001 (2016).
[18] A. Nagar and S. Gupta, Phys. Rev. E 93, 060102(R) (2016).
[19] S. Eule and J. J. Metzger, New J. Phys. 18, 033006 (2016).
[20] M. Montero, A. Masó-Puigdellosas, and J. Villarroel,

Eur. Phys. J. B 90, 176 (2017).
[21] V. P. Shkilev, Phys. Rev. E 96, 012126 (2017).
[22] M. R. Evans and S. N. Majumdar, J. Phys. A: Math. Theor. 52,

01LT01 (2018).
[23] A. Masó-Puigdellosas, D. Campos, and V. Méndez, Phys. Rev.

E 99, 012141 (2019).
[24] A. Masó-Puigdellosas, D. Campos, and V. Méndez, J. Stat.

Mech. (2019) 033201.
[25] A. S. Bodrova, A. V. Chechkin, and I. M. Sokolov, Phys. Rev.

E 100, 012119 (2019).
[26] A. S. Bodrova, A. V. Chechkin, and I. M. Sokolov, Phys. Rev.

E 100, 012120 (2019).

[27] A. Masó-Puigdellosas, D. Campos, and V. Méndez, Front. Phys.
7, 00112 (2019).

[28] A. Masó-Puigdellosas, D. Campos, and V. Méndez, Phys.
Rev. E 100, 042104 (2019).

[29] D. Campos and V. Méndez, Phys. Rev. E 92, 062115 (2015).
[30] S. Reuveni, Phys. Rev. Lett. 116, 170601 (2016).
[31] A. Pal and S. Reuveni, Phys. Rev. Lett. 118, 030603 (2017).
[32] A. Chechkin and I. M. Sokolov, Phys. Rev. Lett. 121, 050601

(2018).
[33] U. Basu, A. Kundu, and A. Pal, Phys. Rev. E 100, 032136

(2019); A. Pal and V. V. Prasad, ibid. 99, 032123 (2019).
[34] J. Masoliver and M. Montero, Phys. Rev. E 100, 042103

(2019).
[35] A. Pal and V. V. Prasad, Phys. Rev. Res. 1, 032001 (2019).
[36] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevResearch.2.033027 for details of the solution
of the diffusion equation on the three-dimensional comb in
the presence of three different resetting mechanisms: global
resetting, resetting to the backbone, and resetting to the main
fingers. Exact results for the mean-squared displacements along
all directions (x, y, and z) for all three types of resetting. Plots
for the probability density functions are obtained by numerical
simulations are provided as well.

[37] T. Sandev, A. Chechkin, H. Kantz, and R. Metzler, Fract. Calc.
Appl. Anal. 18, 1006 (2015).

[38] R. Garra and R. Garrappa, Commun. Nonlin. Sci. Numer.
Simul. 56, 314 (2018).

[39] T. Sandev, A. V. Chechkin, N. Korabel, H. Kantz, I. M. Sokolov,
and R. Metzler, Phys. Rev. E 92, 042117 (2015).

[40] T. R. Prabhakar, Yokohama Math. J. 19, 7 (1971).
[41] M. D’Ovidio and F. Polito, Theory Probab. Appl. 62,

552 (2018); arXiv:1307.1696; R. Garra, R. Gorenflo, F.
Polito, and Z. Tomovski, Appl. Math. Comput. 242, 576
(2014).

[42] T. Sandev, Mathematics 5, 66 (2017); J. Phys. A: Math. Theor.
51, 405002 (2018); T. Sandev and Z. Tomovski, Fractional
Equations and Models: Theory and Applications (Springer,
Cham, 2019).

[43] T. Sandev and A. Iomin, Europhys. Lett. 124, 20005 (2018).
[44] A. Stanislavsky and A. Weron, Phys. Rev. Res. 1, 023006

(2019); J. Chem. Phys. 149, 044107 (2018).
[45] T. Sandev, R. Metzler, and A. Chechkin, Fract. Calc. Appl.

Anal. 21, 10 (2018).
[46] V. Méndez, A. Iomin, W. Horsthemke, and D. Campos, J. Stat.

Mech. (2017) 063205.

033027-10

https://doi.org/10.1016/j.chaos.2013.05.002
https://doi.org/10.1016/j.chaos.2015.11.017
https://doi.org/10.1103/PhysRevLett.106.160601
https://doi.org/10.1088/1751-8113/44/43/435001
https://doi.org/10.1088/1751-8113/47/28/285001
https://doi.org/10.1103/PhysRevLett.112.220601
https://doi.org/10.1088/1751-8113/47/4/045002
https://doi.org/10.1103/PhysRevE.91.012113
https://doi.org/10.1088/1751-8113/48/28/285003
https://doi.org/10.1103/PhysRevE.99.012121
https://doi.org/10.1088/1742-5468/ab054a
https://doi.org/10.3389/fphy.2017.00052
https://doi.org/10.1103/PhysRevE.101.022135
https://doi.org/10.1103/PhysRevE.87.012116
https://doi.org/10.1103/PhysRevE.93.022106
https://doi.org/10.1088/1751-8113/49/22/225001
https://doi.org/10.1103/PhysRevE.93.060102
https://doi.org/10.1088/1367-2630/18/3/033006
https://doi.org/10.1140/epjb/e2017-80348-4
https://doi.org/10.1103/PhysRevE.96.012126
https://doi.org/10.1088/1751-8121/aaf080
https://doi.org/10.1103/PhysRevE.99.012141
https://doi.org/10.1088/1742-5468/ab02f3
https://doi.org/10.1103/PhysRevE.100.012119
https://doi.org/10.1103/PhysRevE.100.012120
https://doi.org/10.3389/fphy.2019.00112
https://doi.org/10.1103/PhysRevE.100.042104
https://doi.org/10.1103/PhysRevE.92.062115
https://doi.org/10.1103/PhysRevLett.116.170601
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1103/PhysRevLett.121.050601
https://doi.org/10.1103/PhysRevE.100.032136
https://doi.org/10.1103/PhysRevE.99.032123
https://doi.org/10.1103/PhysRevE.100.042103
https://doi.org/10.1103/PhysRevResearch.1.032001
http://link.aps.org/supplemental/10.1103/PhysRevResearch.2.033027
https://doi.org/10.1515/fca-2015-0059
https://doi.org/10.1016/j.cnsns.2017.08.018
https://doi.org/10.1103/PhysRevE.92.042117
https://doi.org/10.1137/S0040585X97T988812
http://arxiv.org/abs/arXiv:1307.1696
https://doi.org/10.3390/math5040066
https://doi.org/10.1088/1751-8121/aad8c9
https://doi.org/10.1209/0295-5075/124/20005
https://doi.org/10.1103/PhysRevResearch.1.023006
https://doi.org/10.1063/1.5042075
https://doi.org/10.1515/fca-2018-0002
https://doi.org/10.1088/1742-5468/aa6bc6


STOCHASTIC RESETTING ON COMBLIKE STRUCTURES PHYSICAL REVIEW RESEARCH 2, 033027 (2020)

[47] H. V. Ribeiro, A. A. Tateishi, L. G. A. Alves, R. S. Zola, and
E. K. Lenzi, New J. Phys. 16, 093050 (2014).

[48] E. K. Lenzi, T. Sandev, H. V. Ribeiro, P. Jovanovski, A. Iomin,
and L. Kocarev, J. Stat. Mech. (2020) 053203.

[49] O. A. Dvoretskaya, P. S. Kondratenko, and L. V. Matveev,
J. Exp. Theor. Phys. 110, 58 (2010).

[50] I. A. Lubashevskii and A. A. Zemlyanov, J. Exp. Theor. Phys.
87, 700 (1998).

[51] A. Iomin, V. Zaburdaev and T. Pfohl, Chaos, Solitons & Fractals
92, 115 (2016).

[52] T. Sandev, A. Iomin, and V. Méndez, J. Phys. A: Math. Theor.
49, 355001 (2016).

033027-11

https://doi.org/10.1088/1367-2630/16/9/093050
https://doi.org/10.1088/1742-5468/ab7af4
https://doi.org/10.1134/S1063776110010085
https://doi.org/10.1134/1.558712
https://doi.org/10.1016/j.chaos.2016.09.011
https://doi.org/10.1088/1751-8113/49/35/355001

