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We investigate the effects of Markovian resetting events on continuous time random walks where the
waiting times and the jump lengths are random variables distributed according to power-law probability density
functions. We prove the existence of a nonequilibrium stationary state and finite mean first arrival time. However,
the existence of an optimum reset rate is conditioned to a specific relationship between the exponents of both
power-law tails. We also investigate the search efficiency by finding the optimal random walk which minimizes
the mean first arrival time in terms of the reset rate, the distance of the initial position to the target, and the
characteristic transport exponents.

DOI: 10.1103/PhysRevE.103.022103

I. INTRODUCTION

Diffusion with stochastic resetting was originally proposed
some years ago [1]. In this paper a Brownian motion in
an infinite medium is interrupted by reset events, which in-
stantaneously returns the particle to the origin. The overall
phenomena consist of two random processes independent of
each other: the random motion of the particle and the resetting
mechanism. Resets happen randomly in time according to a
Poisson point process with definite intensity or constant rate.
This resetting process is Markovian, and the reset times are
exponentially distributed. Actually, the distribution of reset
times may be considered, in general, as a distribution with
finite moments where the first moment is precisely the in-
verse of the reset rate. The interest in this kind of problem
essentially resides on two rather remarkable facts. First, the
verification that resetting stabilizes the random walk process,
in the sense that a nonstationary process, as is the diffu-
sion in an infinite medium, becomes stationary when it is
affected by the Markovian resetting mechanism. Second, the
fact that Markovian resetting may significantly reduce the
mean first-passage time which, in turn, may yield a process
with infinite first-passage time to reach the target in a finite
time. Many generalizations of the random walk, beyond the
Brownian dynamics, have been proposed considering Marko-
vian resets. For example, random walks in bounded domains
[2–4], subdiffusion, or superdiffusion in continuous space
[5–7], superdiffusion in discrete space [8], telegraphic ran-
dom walks [9], noninstantaneous returns [10–15], residence
waiting times after resetting [16], or diffusion in a potential
landscape [17]. Other generalizations have been proposed by
non-Markovian resetting events which may destroy the two
interesting properties mentioned above. Indeed, power-law

distribution of reset times have proved the nonexistence of
neither stationary state nor finite mean first-passage time [5].
Other works deal with spatial [18] or temporal [19,20] depen-
dence of the resetting process.

Here we explore another generalization of diffusion with
Markovian resetting, wherein the diffusive process between
resets is substituted with a process generated through the
continuous time random walk (CTRW) scheme. In contrast
to recent works that combine Markovian resets with CTRW
with finite-moment waiting times and power-law distributions
for jump lengths [6], power law distributed waiting times,
and jump lengths with finite moments [7,21] or finite-moment
waiting times and power-law distributions with drift [22], we
assume that both waiting time and jump length probability
density functions (PDFs) are distributed according to power
laws.

Unlike for superdiffusive transport, it is known that there is
no optimum reset rate for the mean first arrival time (MFAT)
of subdiffusive transport [5]. Due to the long tails of the wait-
ing time PDF in subdiffusive transport the resetting process
always increases the MFAT, and an optimum reset rate is never
found. However, the resetting process always helps the long
tails in superdiffusive transport to reduce the MFAT and get
an optimum reset rate.

Due to the trade-off between both heavy tails, the existence
of an optimum reset rate is not obvious which minimizes
the MFAT. We find the existence conditions and how the
optimum reset rate and the optimum MFAT scale with the
initial distance to the target. We find an exact analytic solution
to the nonequilibrium stationary state (NESS) and the scaling
property that its tail follows. The most efficient random walk
(the random walk which minimizes the MFAT) is also studied
in terms of the initial distance to the target.
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The paper is organized as follows. In Sec. II, we present
the CTRW formalism and derive a general expression for
the survival probability of arriving at a given position. In
Sec. III, we consider resetting on the motion described by the
CTRW model and calculate the NESS, the MFAT, and study
its optimality. We conclude the paper in Sec. IV.

II. CTRW AND SURVIVAL PROBABILITY

We consider a particle performing a random walk in con-
tinuous time. The particle starts the motion from an initial
position x0 jumping instantaneously to a new position where
it waits for a time before proceeding with the next jump.
Jump lengths and waiting times are independently identi-
cally distributed random variables distributed according to
the PDFs �(z) and ϕ(t ), respectively. The PDF P(x, t ) for
the particle position at time t is given by the Montroll-Weiss
equation [23],

P(k, s) = p0(k)[1 − ϕ̂(s)]

s[1 − ϕ̂(s)�(k)]
, (2.1)

where

P(k, s) =
∫ ∞

−∞
eikx

∫ ∞

0
e−st P(x, t )dx dt

is the Fourier-Laplace transform of P(x, t ) and

p0(k) =
∫ ∞

−∞
eikxP(x, t = 0)dx

is the Fourier transform of the initial condition, and ϕ̂(s) and
�(k) are the Laplace and Fourier transforms,

ϕ̂(s) = L[ϕ(t )](s) =
∫ ∞

0
e−stϕ(t )dt,

�(k) = F[�(x)](k) =
∫ ∞

−∞
eikx�(x)dx,

of the waiting time and jump length PDFs, respectively. Rear-
ranging Eq. (2.1) in the form

s

[
1

ϕ̂(s)
− �(k)

]
P(k, s) = p0(k)

[
1

ϕ̂(s)
− 1

]
, (2.2)

after straightforward algebraic manipulations, we can rewrite
Eq. (2.2) as

sP(k, s) − p0(k) = K (s)[�(k) − 1]P(k, s), (2.3)

where we have defined the memory kernel,

K̂ (s) = sϕ̂(s)

1 − ϕ̂(s)
. (2.4)

By inverting Eq. (2.3) in Fourier-Laplace we obtain the so
called generalized CTRW master equation [24],

∂P

∂t
=

∫ t

0
K (t − t ′)

[∫ ∞

−∞
P(x − z, t ′)�(z)dz − P(x, t ′)

]
dt ′.

(2.5)

We are interested in power-law PDFs for waiting time ϕ(t ) ∼
t−(1+γ ) and jump lengths �(x) ∼ |x|−(1+α) which in the
Laplace and Fourier spaces read

ϕ̂(s) = 1

1 + (sτ )γ
, (2.6)

with 0 < γ < 1 and

�(k) � 1 − σα|k|α, (2.7)

with 1 < α < 2, respectively. Then K̂ (s) = s1−γ /τ γ , and
Eq. (2.2) takes the form

τ γ sγ P(k, s) − τ γ sγ−1 p0(k) = −σα|k|αP(k, s). (2.8)

By inverting in Fourier-Laplace we find the following
fractional transport equation (by defining the generalized dif-
fusion coefficient D = σα/τγ ):

∂γ P

∂tγ
= D

∂αP

∂|x|α , (2.9)

where the Laplace transform of the Caputo fractional deriva-
tive,

L
[
∂γ P(x, t )

∂tγ

]
(s) = sγ P(x, s) − sγ−1P(x, t = 0),

and the Fourier transform of the Riesz fractional derivative,

F
[
∂αP(x, t )

∂|x|α
]

(k) = −|k|αP(k, s)

are introduced. The mean squared displacement that charac-
terizes the transport regime scales with time as 〈x2(t )〉 ∼ t2γ /α

[25] exhibiting normal diffusion (2γ /α = 1) and superdiffu-
sion (2γ /α > 1) of subdiffusion (2γ /α < 1).

Here we note that the waiting time (2.6) in the time domain
has the form [26,27]

ϕ(t ) = L−1

[
1

1 + (sτ )γ

]
= 1

τ

( t

τ

)γ−1

Eγ ,γ (−[t/τ ]γ ),

(2.10)
where Eμ,β (z) = ∑∞

n=0
zn


(μn+β ) is the two parameter Mittag-
Leffler function [28], which the Laplace transform reads

L[tβ−1Eμ,β (−ωtμ)] = sμ−β

sμ + ω
. (2.11)

By using the asymptotic expansion of the two parameter
Mittag-Leffler function for z > 1, see, for example [29],

Eμ,β (−z) ∼ −
∞∑

n=1

(−z)−n


(β − μn)
, (2.12)

we find that ϕ(t ) ∼ t−γ−1 for t/τ � 1. Moreover, for t/τ 	
1 the waiting time behaves as ϕ(t ) ∼ tγ−1. The non-negativity
of the waiting time can be shown from Eq. (2.6) by using
the Bernstein theorem [30]. Moreover, one can show that
the waiting time (2.10) is completely a monotone function
since eμ,β (t ) = tβ−1Eμ,β (−tμ) is completely monotone for
0 < μ � β � 1 with 0 < μ � 1, see Refs. [29,31].

Regarding the jump length PDF (2.7), which is a jump
length PDF for Lévy flights, we consider only the case with
1 < α � 2 since the first arrival density for a Lévy search
for a point target, for example, the origin, vanishes for 0 < α

� 1 [32].
To compute the MFAT under Markovian resetting it is nec-

essary first to find the survival probability Qx0 (t ) up to time t
of the transport process. In particular, Qx0 (t ) is the probability
of not having reached the origin (x = 0) in the first trip, which
ends at a random time t ′, when the particle starts the motion
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at position x0. Then the first arrival time probability density
fa(x0, t ) at the origin at a time t for a particle that starts its
motion at position x0 and the survival probability are related
to each other via

Qx0 (t ) = 1 −
∫ t

0
fa(x0, t ′)dt ′, (2.13)

or equivalently by fa(x0, t ) = −∂Qx0 (t )/∂t . We follow the
method in Ref. [32] since it has the advantage of being simpler
than the traditional procedure of solving the equation for the
propagator with an absorbing boundary at x0. Furthermore, it
has been shown to be valid even for Lévy flights [32,33]. We
make use of the generalized master equation, which is written
as a rate equation for the probability with a δ sink of a strength
fa(x0, t ),

∂P(x, t )

∂t
=

∫ t

0
K (t − t ′)

[∫ ∞

−∞
P(x−z, t ′)�(z)dz−P(x, t ′)

]
dt ′

− fa(x0, t )δ(x), (2.14)

where P(x, t ) is now a non-normalized probability. We as-
sume that at t = 0 the particle is placed at x = x0, i.e.,
P(x, t = 0) = p0(x) = δ(x − x0). Taking the Fourier-Laplace
transform of Eq. (2.14) and p0(k) = eikx0 one gets

P(k, s) = eikx0

s + K̂ (s)[1 − �(k)]

− fa(x0, s)
1

s + K̂ (s)[1 − �(k)]
. (2.15)

Since fa(x0, t ) measures the first arrival time at the origin, we
have taken into account the δ sink in Eq. (2.14), i.e., the origin
is a perfectly absorbing boundary and P(x = 0, t ) = 0. We
can exploit this property by arguing that the inverse Fourier

transform of P(k, s) is

P(x, s) = F−1[P(k, s)](x) = 1

2π

∫ ∞

−∞
e−ikxP(k, s)dk,

(2.16)
and taking x = 0 we have∫ ∞

−∞
P(k, s)dk = 0. (2.17)

Integrating Eq. (2.15) and taking into account Eq. (2.17) we
obtain

Q̂x0 (s) = 1

s
[1 − fa(s)]

= 1

s

[
1 − P(x = 0, s; x0)

P(x = 0, s; 0)

]
, (2.18)

once we have transformed Eq. (2.13) by Laplace. Note that
the propagator P(x, s; x0) is given from Eq. (2.8) by

P(x, s; x0) = 1

2π

∫ ∞

−∞

e−ik(x−x0 )

s + K̂ (s)[1 − �(k)]
dk. (2.19)

Considering (2.6) and (2.7) in (2.19), the propagator reads

P(x, s; x0) = 1

π

∫ ∞

0

cos[k(x − x0)]dk

s + s1−γ τ−γ (σk)α
,

which inserted in (2.18) allows to find

Q̂x0 (s) = ασ sin
(

π
α

)
π (sτ )γ /α

∫ ∞

0

1 − cos(kx0)

s + s1−γ τ−γ (σk)α
dk, (2.20)

where we made use of the result,∫ ∞

0

dk

(sτ )γ /σα + kα
= πσα−1

α sin(π/α)
(sτ )γ [(1/α)−1]. (2.21)

Inverting Eq. (2.20) by Laplace we find

Qx0 (t ) = 1 − ασ sin
(

π
α

)
π

(t/τ )γ /α

∫ ∞

0
cos(kx0)Eγ ,1+(γ /α)

(
−σαkα tγ

τ γ

)
dk

= 1 − sin
(π

α

)
H2,1

3,3

[
|x0|/σ

(t/τ )γ /α

∣∣∣∣∣
(

α−1
α

, 1
α

) (
1,

γ

α

) (
1
2 , 1

2

)
(0, 1)

(
α−1
α

, 1
α

) (
1
2 , 1

2

)
]
, (2.22)

where Hm,n
p,q (z) is the Fox-H function [34]. Known particular

cases may be recovered from (2.22). For γ = 1 and α = 2, the
transport process corresponds to normal diffusion. Inserting
these values in (2.22) and taking into account that in this case,

E1,3/2(z) = ez

√
z

erf (
√

z),

the integral in (2.22) can be straightforwardly computed to get

Qx0 (t ) = erf

( |x0|
2σ

√
τ

t

)
= erf

( |x0|√
4Dt

)
, (2.23)

which corresponds to the known result in Ref. [35] by con-
sidering D = σ 2/τ . If we set γ = 1 in (2.22) we recover the
result found in Ref. [32] for Lévy flights. The large time
behavior of Qx0 (t ) can be found by using the series expansion
of the Fox function in Eq. (2.19) for t → ∞ (small argument

expansion of the Fox function), to get [34]

Qx0 (t ) ≈ α
√

π

2α
( α
2 )
( 1+α

2 )

( |x0|
σ

)α−1 (t/τ )−(γ /α)(α−1)


(1 − γ + γ

α
)

∼ 1

t (γ /α)(α−1)
. (2.24)

Introducing α = 2 in (2.24) with 0 < γ < 1 (subdiffusion)
and γ = 1 with 1 < α < 2 (Lévy flights) we recover the
known results Qx0 (t ) ∼ t−γ /2 [36] and Qx0 (t ) ∼ t−1+1/α [32],
respectively. From Eq. (2.13) the long term behavior of the
first arrival time PDFs in these two cases are fa(x0, t ) ∼
t−γ /2−1 and fa(x0, t ) ∼ t−2+1/α , respectively. For comput-
ing purposes it is interesting to express the Fox function in
Eq. (2.22) as a power series. By using Ref. [34] we find after
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some simplifications,

Qx0 (t ) = sin
(π

α

)[ ∞∑
n=1

(−1)n+1 sin
(

π (1+n)
2

)( |x0|
σ

)n

n! sin
(

π (1+n)
α

)



(
1 − γ n

α

)(
t
τ

)γ n/α

+ α√
π

∞∑
n=1

2−αn(−1)n

(

1−nα
2

)( |x0|
σ

)nα−1



(

nα
2

)



(
1 + γ

α
− γ n

)(
t
τ

)(γ /α)(nα−1)

]
.

(2.25)

This is where the general expressions (2.22) and (2.25) and
the scaling (2.24) have been reported in such a general form.

III. CTRW AND MARKOVIAN RESETTING

When resetting is taken into account the particle moves ac-
cording to the CTRW propagator (2.1) during a period called
the reset time and then the particle jumps instantaneously to
the initial position x = x0 to start its motion again. Then the
incorporation of the resetting process to the transport process
results in a sequence of transport periods and instantaneous
resets to x0. The time spent between two consecutive resets is
the reset time and is a random variable distributed according
to the PDF ϕR(t ). A general formulation for the combination
of a general transport with resetting has been recently studied
[5] where the NESS and the MFAT have been obtained for any
transport propagator and for any resetting PDF.

The propagator ρ(x, t ; x0) of the joint process (transport
and resetting to the initial position x0) is given by the renewal
equation [5],

ρ(x, t ; x0) = ϕ∗
R(t )P(x, t ; x0) +

∫ t

0
ϕR(t ′)ρ(x, t − t ′; x0)dt ′,

(3.1)
where ϕ∗

R(t ) = ∫ ∞
t ϕR(t ′)dt ′ is the probability of the first reset

happening after time t . In the Laplace space this equation has
the form

ρ(x, s; x0) = L[ϕ∗
R(t )P(x, t ; x0)](s)

1 − ϕ̂R(s)
. (3.2)

The survival probability Sx0 (t ) of the joint process (trans-
port and resetting) is given by the renewal equation,

Sx0 (t ) = ϕ∗
R(t )Qx0 (t ) +

∫ t

0
ϕR(t ′)Qx0 (t ′)Sx0 (t − t ′)dt ′, (3.3)

where Qx0 (t ) is the survival probability of the transport pro-
cess and is given by Eq. (2.18). Equation (3.3) can be solved
in the Laplace space,

Ŝx0 (s) = L[ϕ∗
R(t )Qx0 (t )](s)

1 − L[ϕR(t )Qx0 (t )]
. (3.4)

The total (transport and resetting) first arrival time prob-
ability density at origin Fa(x0, t ) is obtained in terms of
Sx0 (t ): Fa(x0, t ) = −∂Sx0 (t )/∂t . Then the MFAT is given by

T (x0) =
∫ ∞

0
tFa(x0, t )dt = lim

s→0
Ŝx0 (s)

=

∫ ∞

0
ϕ∗

R(t )Qx0 (t )dt

1 −
∫ ∞

0
ϕR(t )Qx0 (t )dt

. (3.5)

Equation (3.5) then provides the mean time that a particle
needs to arrive for the first time at the origin x = 0 where a
target is located. Likewise, |x0| is the initial distance between
the particle and the target. The particle, which starts its mo-
tion at x = x0 [whose survival probability is Qx0 (t )] is reset
to x = x0 after a random time distributed according to the
PDF ϕR(t ). Then, the MFAT in Eq. (3.5) is a measure of the
search efficiency when the particle movement is described by
a CTRW under a resetting mechanism.

To obtain specific results for the NESS and the MFAT we
need to consider particular expressions for ϕR(t ). Throughout
this paper we consider that resetting is a Markovian process,
i.e., the reset rate is exponentially distributed

ϕR(t ) = re−rt . (3.6)

Below we apply these results to the CTRW propagator in
Eq. (2.1). Considering Eqs. (3.5) and (3.6) it is found

T (x0) = Qx0 (s = r)

1 − rQx0 (s = r)
, (3.7)

where Qx0 (s = r) is found from Eq. (2.20).

A. NESS

Applying the Fourier transform to Eq. (3.2) and introduc-
ing the propagator in (2.19) and (3.6), one can obtain the
propagator of the joint process in the Fourier-Laplace space
to be

ρ(k, s; x0) = 1

2πs

∫ ∞

−∞

(r + s)e−ik(x−x0 )dk

s + r + K (s + r)[1 − �(k)]
. (3.8)

To obtain the stationary solution of the joint process we take
the limit s → 0 to Eq. (3.8) and inserting Eqs. (2.6) and (2.7)
we finally get the exact expression for the NESS,

ρ(x, x0)

= 1

π

∫ ∞

0

cos[k(x − x0)]

1 + (rτ )−γ σ αkα
dk

= 1

π

∫ ∞

0
cos[k(x − x0)]H1,1

1,1

[
σαkα

(rτ )γ

∣∣∣∣∣(0, 1)
(0, 1)

]
dk

= 1

|x − x0|H2,1
2,3

[
(rτ )γ |x − x0|α

σ α

∣∣∣∣∣(1, 1)
(
1, α

2

)
(1, α) (1, 1)

(
1, α

2

)
]
.

(3.9)

In Fig. 1 we show a comparison of the NESS obtained in
(3.9) with numerical simulations sampling dispersal distances
from a Lévy PDF [�(k) = e−σα |k|α ]. It is noticeable that to get
analytic results we have considered actually an approximation
to the Lévy PDF for large dispersal distances in Eq. (2.7)
[�(k) = e−σα |k|α ≈ 1 − σα|k|α]. For this reason the agree-
ment between numerical and theoretical results fails close to
x = 0 (not shown). In panel (a) we show the case of γ = 0.25
(in red) and γ = 0.75 (in blue) for fixed α = 1.25. We see
how the exponent γ modifies the shape of the NESS. In
panel (b) we consider γ = 0.25 and the cases of α = 1.25
(in red) and α = 1.75 (in blue). The tail decays faster with
x as α increases as we also show, in turn, analytically. The
Fox function admits series expansion for |x − x0| � σ [34].
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FIG. 1. NESS for different values of α and γ with σ = r =
1, τ = 0.1, x0 = 0. In panel (a) we fix α = 1.25. The cases of
γ = 0.25 and γ = 0.75 are drawn in red and blue, respectively. In
panel (b) we fix γ = 0.25. The cases of α = 1.25 and α = 1.75 are
drawn in red and blue, respectively. The analytical solution is com-
puted from Eq. (3.9) and shown with solid curves whereas symbols
correspond to numerical simulations.

Taking the lowest order we obtain the following scaling for
the tail of the NESS:

ρs(x, x0) ∼ σα+1

|x − x0|α+1
. (3.10)

It is interesting to note that this scaling behavior is not affected
by the waiting time PDF tail, i.e., the tail of the NESS is
controlled by the jump length PDF only.

B. MFAT

The MFAT is found by introducing Eq. (2.20) into Eq. (3.7)
to get after some manipulations,

T (x0) = 1

r

[
π (rτ )γ /α

ασ sin
(

π
α

)
I (x0, r)

− 1

]
, (3.11)

where

I (x0, r) =
∫ ∞

0

cos(kx0)

1 + (rτ )−γ σ αkα
dk (3.12)

is defined.
This expression may be evaluated analytically by using

Ref. [34],

I (x0, r) =
∫ ∞

0
cos(kx0)H1,1

1,1

[
σαkα

(rτ )γ

∣∣∣∣∣(0, 1)
(0, 1)

]
dk

(3.13)

= π

α|x0|H2,1
2,3

[
(rτ )(γ /α)|x0|

σ

∣∣∣∣∣
(
1, 1

α

) (
1, 1

2

)
(1, 1)

(
1, 1

α

) (
1, 1

2

)
]
.

From (3.11) and (3.13) the MFAT takes finally the form

T (x0)=1

r

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|x0|
σ

(rτ )γ /α
[
sin

(
π
α

)]−1

H2,1
2,3

[
(rτ )γ /α |x0|

σ

∣∣∣∣∣
(
1, 1

α

) (
1, 1

2

)
(1, 1)

(
1, 1

α

) (
1, 1

2

)
] − 1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(3.14)

Since there is no additional convergence restriction in calcu-
lating the integral in Eq. (3.13) we can assert that the MFAT is
finite for any set of parameters γ and α, i.e., for any specific
transport process. Equation (3.14) holds for any Markovian re-
setting (i.e., for a resetting time PDF with finite moments since
r is nothing but the inverse of the first moment) with a gen-
eral CTRW since the expressions for the PDFs in Eqs. (2.6)
and (2.7) may lead to subdiffusive, superdiffusive, or normal
transports [25]. Making use of the power expansions of the
Fox functions [34] we can approximate (3.11) in the limits
rτ 	 1 (small reset rate) and rτ � 1 (large reset rate). For
rτ 	 1 the leading terms in Eq. (3.13) are

I (x0, r) � 
(1 − 1/α)
(1/α)
(rτ )γ /α

ασ

+ π
(1 − α)


(α/2)
(1 − α/2)

(rτ )γ |x0|α−1

σα
, (3.15)

which can be inserted in (3.11) to get

T (x0) ≈ τα
(2 − α) sin
(

π
α

)
sin

(
πα
2

)
π (α − 1)(rτ )γ [(1/α)−1]+1

( |x0|
σ

)α−1

. (3.16)

Analogously, for rτ � 1 the leading terms in Eq. (3.13) are

I (x0, r) � 
(1 + α) sin(πα/2)σα

(rτ )γ |x0|α+1
, (3.17)

which leads us to

T (x0) ≈ τπ (rτ )γ [1+(1/α)]−1

α sin
(

π
α

)
sin

(
πα
2

)

(1 + α)

( |x0|
σ

)1+α

. (3.18)

C. Optimal reset rate

The question is now to find the condition whether there
is an optimal MFAT and more specifically, what is the set
of values of parameters (γ , α) for which there is a reset rate
that optimizes the MFAT. To this end we analyze the behavior
of T (x0) in the limits r → 0+ and r → ∞. For fixed x0, the
MFAT in the limit r → 0+ is given in Eq. (3.16), that is,
T (x0) ∼ rγ [1−(1/α)]−1. Since γ ∈ (0, 1) and α ∈ (1, 2) the ex-
ponent is such that γ (1 − 1/α) < 1, i.e., it is always negative.
In consequence, T (x0) → ∞ as r → 0+. In addition, T (x0) is
a decreasing function with r when r takes small values. On
the other hand, when r takes large values the MFAT is given
in Eq. (3.18), i.e., T (x0) ∼ rγ /α+γ−1, which is an increasing
function of r only if γ > γc with

γc = α

α + 1
. (3.19)

Moreover, T (x0) is a monotonically decreasing function of r
when r is large if γ < γc, which means that even if there is a
local minimum for a given r since it is still decreasing with r,
then the minimum MFAT is T (x0) = 0. In consequence, there
exists a nonzero minimum MFAT if γ � γc. Note that when
γ = γc two different situations could happen: The minimum
is either attained at r → ∞ or for a specific value of r. Since
T (x0) is a decreasing function of r for small r and it tends to
a constant value as r → ∞, if ∂T (x0)/∂r < 0 the minimum
MFAT is attained asymptotically at r → ∞. Contrarily, if
∂T (x0)/∂r > 0 for large r the minimum MFAT is attained at

022103-5



VICENÇ MÉNDEZ et al. PHYSICAL REVIEW E 103, 022103 (2021)

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60

γ = 0.63

γ = 0.55

γ = 0.7

T
(x

0)

r

FIG. 2. MFAT computed from Eq. (3.14) for different val-
ues of γ . Parameters values are x0 = τ = σ = 1 and α = 1.75.

γc = 0.636.

a given r. To uncover which is the actual situation we take
γ = γc in (3.18) to get

T (x0) ≈ πτ (|x0|/σ )1+α

α sin(π/α)
(1 + α) sin(πα/2)
− 1

r
.

It is easy to check that ∂T (x0)/∂r ≈ 1/r2 > 0 so that a lo-
cal minimum is attained when γ = γc. Therefore, we can
conclude that there exists an optimum reset rate r which
minimizes T (x0) if and only if,

γ � γc.

This is one of the main results of this paper. In Fig. 2
we plot the MFAT given by (3.14) for different values of γ

above, below, and at γ = γc. As can be seen for γ = γc there
is a local minimum for the MFAT. The optimal reset rate is
obtained by solving numerically the equation ∂T (x0)/∂r = 0.
Taking the derivative of (3.14) and using the properties of the
derivatives of the Fox functions [34] one finds, after some
simplifications, that the optimal reset rate r∗ is given by

r∗ = 1

τ

[
σ

|x0| z(α, γ )

]α/γ

, (3.20)

where z = z(α, γ ) is the solution to the equation,

1 − γ

α
+

H2,1
2,3

[
z

∣∣∣∣∣
(
0, 1

α

) (
1, 1

2

)
(1, 1)

(
1, 1

α

) (
1, 1

2

)
]

H2,1
2,3

[
z

∣∣∣∣∣
(
1, 1

α

) (
1, 1

2

)
(1, 1)

(
1, 1

α

) (
1, 1

2

)
]

= sin(π/α)

z
H2,1

2,3

[
z

∣∣∣∣∣
(
1, 1

α

) (
1, 1

2

)
(1, 1)

(
1, 1

α

) (
1, 1

2

)
]
.

(3.21)

From (3.20) it is found the scaling dependence r∗ ∼
|x0|−α/γ which generalizes recent results obtained for any α

and γ = 1 [6]. If (3.20) is introduced in Eq. (3.14) then the

optimum MFAT obeys the scaling relation,

T ∗(x0) =
( |x0|

σ

)α/γ

T ∗(σ ), (3.22)

which is again a generalization of the scaling found in Ref. [6].
Here, T ∗(x0) grows with x0 faster than for γ = 1 due to the
effect of the heavy tailed waiting time PDF which slows down
the search process of reaching the target at the origin.

D. Optimal random walk

Analogously, fixing the value of the reset rate r, the optimal
random walk [characterized by the values of the exponents
(γ , α)] which minimizes the MFAT, depends on the distance
between the initial position of the random walker x0 and the
target point x = 0. Let us consider two limiting situations: x0

small and large. We assume x0 > 0 for simplicity, otherwise,
we should replace x0 by |x0| from now on. As can be seen from
(3.14) the limit for small x0 is equivalent to consider rτ 	 1.
So that, when x0 is small the MFAT is given by (3.16).

As can be checked numerically, the minimum value of
T (x0) is attained when α = 2 for the other parameters fixed,
so the Brownian motion is the most effective random walk
when the particle starts the motion close to the resetting point.
The optimal value is

T ∗(x0) ≈ τ (|x0|/σ )(rτ )−1+γ /2,

and is decreasing with r. This means that when the initial
position of the particle is close to the target, the search process
is more efficient when the particle motion has a short-tailed
jump length distribution, being Brownian when γ = 1.

Analogously, the limit for large x0 is equivalent to consider
rτ � 1, and the MFAT is given by (3.18). For fixed r, x0, and
γ , this expression has a minimum for a given value of the ex-
ponent α within the interval (1,2) which means that Lévy-like
jumps are optimal when the initial position of the particle x0

is far from the target position. Although the prefactors depend
explicitly on γ , the scalings in (3.16) and (3.18) of T (x0) on
x0 only depend on the exponent α as in Ref. [7].

However, as can be shown numerically, the MFAT given in
(3.18) has a minimum for a given value of α which depends on
x0, r, and γ . Let αopt (r, x0, γ ) denote the value of α at which
the MFAT is minimum. If the minimum MFAT is attained at
αopt ∈ [1, 2) then long-tailed jump distributions are optimal
for the search strategy, but if it is attained at αopt = 2 then
short-tailed jump distributions are the optimal. In order to
gain a deeper understanding we can draw a phase diagram
for the optimality regions by inspecting the minimum MFAT
numerically. More specifically, we have computed Eq. (3.5)
for σ = τ = 1 and γ = 0.5 and different values of x0 and
r as shown in Fig. 3. For each set of parameters, we have
determined whether the MFAT has a minimum between at
αopt ∈ [1, 2) or at αopt = 2 and have depicted the frontier.

For parameter values below the critical curve, the MFAT
has a minimum at αopt = 2, i.e., short-tailed jump distribu-
tions are optimal. For parameter values above the critical
curve the minimum MFAT is attained for a value of α between
1 and 2 and, therefore, long-tailed jump distributions attain the
optimal MFAT. This, in the particular γ = 1 case, shows that,
on one hand, Brownian motion would be the optimal strategy
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FIG. 3. Optimality regions in the parameter space. We take σ =
τ = 1 and γ = 0.5 and vary x0 and r.

to find a target near the origin. On the other hand, when the
target is far from the origin, Lévy flights become the optimal
strategy to find it.

IV. CONCLUSIONS

In this paper we considered a random walk with waiting
times and jump lengths distributed according to power laws
and interrupted by a Markovian resetting process. The walker
starts the motion at point x0, and a target is assumed to be

located at x = 0. First we found the exact solution and the
scaling in the long time limit for the survival probability of
not having reached the target in the first trip in absence of
resetting. Second, we obtained exact analytic solutions to the
NESS and the MFAT in the presence of Markovian resetting.
Due to the opposite effect of the heavy tails of the waiting
times and jump length PDfs, there is a critical value of the
waiting time exponent γ for the existence of an optimum
MFAT. We have obtained the critical exponent γ and have
found the parameter regions for optimal MFAT. We have
also determined which type of motion strategy (diffusion or
Lévy flight) is optimal depending on the distance x0 between
the target and the resetting positions. Despite the widespread
belief that Lévy flight is the optimal strategy for large x0 we
have found that the optimality between Brownian or Lévy
strategies not only depends on x0, but also depends on the
reset rate r. For example, if r is large the Lévy strategy could
be the optimal strategy even for small x0. We have also found
that for any reset rate r, one always finds a transition between
optimal Brownian motion and optimal Lévy flight at a critical
value of x0. This transition is also shown to exist for any
choice of the waiting time distribution of the form in Eq. (2.6),
including long-tailed waiting times. Therefore, depending on
the environmental (x0, r) and the internal (γ , τ, σ ) parame-
ters of the walker, any type of motion from subdiffusion to
superdiffusion could be optimal to find the target.
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