
PHYSICAL REVIEW E 103, 052109 (2021)
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Excited random walks represent a convenient model to study food intake in a media which is progressively
depleted by the walker. Trajectories in the model alternate between (i) feeding and (ii) escape (when food is
missed and so it must be found again) periods, each governed by different movement rules. Here, we explore the
case where the escape dynamics is adaptive, so at short times an area-restricted search is carried out, and a switch
to extensive or ballistic motion occurs later if necessary. We derive for this case explicit analytical expressions
of the mean escape time and the asymptotic growth of the depleted region in one dimension. These, together
with numerical results in two dimensions, provide surprising evidence that ballistic searches are detrimental in
such scenarios, a result which could explain why ballistic movement is barely observed in animal searches at
microscopic and millimetric scales, therefore providing significant implications for biological foraging.
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I. INTRODUCTION

Identifying the strategies which minimize the time of a
random walk to reach one or a set of targets represents a
problem of wide interest that can be used to study search
algorithms on networks [1,2], the control of robotic units
and/or microswimmers [3,4], or binding processes on fold-
ing polymers [5], to name a few applications. Many authors,
however, put a special focus on the implications on biologi-
cal foraging [6]. Then one implicitly assumes that searching
efficiently could represent a significant evolutionary force for
living organisms, so those optimal strategies would have been
probably selected and should be then experimentally observed
in biological movement patterns. The Lévy foraging hypoth-
esis, which has stimulated a great debate both in biology and
in physics [7–10], is a paradigmatic example, but one can find
many others as in the optimal tumbling frequencies of E. coli
[11,12], the pollination flights of bumblebees [13,14], or the
optimal soaring of birds through thermal winds [15].

That a ballistic strategy (that is, moving straightforward in
a random direction until hitting the target) is optimal under
many conditions is a widely rooted idea in the field [16,17].
This stems from (i) the intuitive idea that such a strategy
minimizes path overlap, and (ii) the fact that the mean first-
passage time through the boundary of a finite domain, if the
walk consists of a random sequence of flights of character-
istic duration τ , decreases monotonically with τ (see, e.g.,
Ref. [18]). However, ballistic search patterns under uncer-
tainty are rare in nature and very few organisms seem to adopt
such a strategy. Reference books in ecology [19,20] claim
that most animal searches rather combine two phases: (i) an
area-restricted process in which the organism wanders around
in its immediate vicinity looking for nearby resources, and (ii)
an extensive phase in which larger and larger motion scales

are subsequently introduced to reach further regions. Both
phases are used alternatively in higher organisms as a result of
information acquisition, which has been modeled in the past
through intermittent random walks, Lévy flights, or similar
approaches [21,22]. Alternatively, optimization mechanisms
based on the idea of restarting the search from the original
point have also been discussed in the literature (see, e.g.,
Refs. [23–27]. For simpler (microscopic or millimetric) or-
ganisms, however, the search mechanisms are less flexible and
are mainly regulated by biochemical or neuronal responses
to food deprivation that get progressively activated [28,29],
leading to nonstationary patterns [30]. In particular, for the
well-studied case of the nematode C. elegans it is observed
[31] that an initial area-restricted search (if food was available
until recently) leads progressively to a more extensive explo-
ration as food deprivation persists.

On the other hand, signals or cues (as chemical gradients,
visual or mechanical signals, or even cognitive maps) repre-
sent the main force driving animal foraging. A random search
often represents just a temporary process that finishes (or
fades out) as soon as those signals are detected. A rough (but
meaningful) approach to this is given by the excited random
walk (ERW) model [32,33]. In its original formulation, the
walker moves in a discrete media of cells containing food,
which is consumed by the walker as it reaches there. The
walker then moves to the nearest-neighbor cell containing
food with a probability p > 1/2, leaving an empty path be-
hind. However, with probability 1 − p the walker will turn
back to the empty region. Then it will start an escape pro-
cess driven by a homogenous (p = 1/2) rule until food is
reached again, and then feeding starts again. As long as food is
depleted, a growing empty region of size l (t ) will be dynam-
ically generated, making the escape process more and more
difficult.
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FIG. 1. Schematic picture of the ERW dynamics considered.
(a) The 1D domain is initially full of food (upper panel) and is
depleted through successive feeding periods at speed v f separated by
escape periods. (b) Time dynamics of l (t ), which grows uniformly
for feeding (marked as f ) and stays constant during the escape
(marked as the e phase).

Previous works on the ERW have revealed some of the
properties of this depletion process (see Refs. [34,35] for a
review). The mean number of depleted cells is known to grow
asymptotically as ∼√

t in one dimension (1D), and as ∼t for
two and higher dimensions [36–38]. The shape of the time dis-
tribution to reach a given cell has been provided in Ref. [39].
Alternatively, extensions of the model to the continuous case
[40], or assuming that food is only partially depleted and/or
it can be renewed [41], have been explored. Finally, recent
works [42–47] have studied the properties of the food intake if
assuming that the excursions through the empty region involve
a risk to die for the walker.

In the present paper we extend the ERW framework to
the case where the escape rule followed by the walker is
not merely a classical isotropic walk (or Brownian motion,
its continuous counterpart), but the individual is able to im-
plement an adaptive strategy to escape. Our main focus will
be then on asking how the escape strategy can be optimized
to increase the food intake, determined by l (t ). In Sec. II
we present our general ERW framework and prove that it
can be formally derived within a continuous-time random
walk (CTRW) framework. In Sec. III we describe the escape
strategies that are considered in the present work, which are
aimed at testing the convenience of ballistic searches within
the context presented. In Sec. IV we derive the mean escape
time for such a family of strategies and prove that, contrary
to the intuitive belief, ballistic movement is not necessarily
a good escape strategy. This argument is further supported
by the dynamics of the empty region l (t ) left by the walker
both in 1D (for which an asymptotic analytical expression is
provided) and 2D (numerical results), as reported in Sec. V.
Section VI, finally, contains the summary and the conclusions
of our findings.

II. GENERAL FRAMEWORK

Specifically, we consider a continuous (both in time and
space) model (see Fig. 1) in which the walker feeds at a
constant speed v f until food is missed and the process is
interrupted, which happens at a rate γ . Then an escape process
from the empty region occurs that will be governed by p(l, t ),
which is the distribution of escape times from an empty region

of size l , if starting at a small distance x0 from the boundary,
given a particular escape strategy. The feeding dynamics is
then driven by the set of master equations

∂ρ f

∂t
= −v f

∂ρ f

∂l
− γ ρ f +

∫ t

0
γ p(l, t − t ′)ρ f (l, t ′)dt ′,

∂ρe

∂t
= γ ρ f −

∫ t

0
γ p(l, t − t ′)ρ f (l, t ′)dt ′. (1)

Here, ρ f (l, t ) represents the probability density of the walker
being in the feeding phase at time t , provided that the empty
region has size l . Equivalently, ρe(l, t ) is the probability den-
sity of the walker being in the empty region at time t , given
l . Hence, they satisfy

∫ ∞
0 (ρ f + ρe)dl = 1 for any t , and the

initial conditions read ρ f (l, t = 0) = δ(l ), ρe(l, t = 0) = 0.
The advective term in the first equation stands for the uniform
growth of l at speed v f during feeding, and the other terms
correspond to the switching between feeding and escape. The
statistics of l (t ) can be easily obtained from the solution of
(1); for instance, its nth moment will read 〈ln〉 = ∫ ∞

0 ln(ρ f +
ρe)dl .

A. Derivation of Eqs. (1)

While the meaning of all the terms in (1) is rather intuitive,
we now show for the sake of completeness that this set of
equations can be formally derived from a CTRW scheme.
Apart from the probability densities ρ f (l, t ) and ρe(l, t )
above, we then need to introduce j f (l, t ) and je(l, t ) as the
probabilities that the walker switches to the feeding or to the
escape phase exactly at time t .

For the feeding phase we impose that the walker makes the
size l increase at a constant speed v f , and such a process will
terminate only when the signal is missed, which happens at a
constant rate γ . Then we can write

ρ f (l, t ) =
∫ t

0
j f (l − v f t

′, t − t ′)e−γ t ′
dt ′, (2)

where the exponential term e−γ t ′
represents the probability

that the depletion period, which started at time t − t ′, has not
finished yet at time t . Similarly we can write an equivalent
expression for the escape state:

ρe(l, t ) =
∫ t

0
je(l, t − t ′)g(l, t ′)dt ′. (3)

In this expression g(l, t ′) represents the probability that the
individual has not been able to escape from the empty region
after a time t ′ trying, so it is related to the escape time distri-
bution p(l, t ) through g(l, t ) = ∫ ∞

t p(l, t ′)dt ′.
Finally, we can write the transition equations that deter-

mine how the individual switches from the escape to the
depletion state once the escape is completed, and how it
switches from depletion to escape when an error in the signal
detection occurs. These two equations read, respectively,

j f (l, t ) =
∫ t

0
je(l, t − t ′)p(l, t ′)dt ′ + δ(t )δ(l ) (4)

and

je(l, t ) =
∫ t

0
j f (l − v f t

′, t − t ′)γ e−γ t ′
dt ′, (5)
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where we have introduced the initial condition in the last term
of (4), assuming that initially l = 0 and the individual starts
in the depletion state.

The system of equations (2)–(5) can be simplified if we use
a Laplace transform in time and a Fourier transform in l space.
To keep the notation simple, we will identify whether func-
tions are in real space or in Laplace and Fourier space simply
by writing explicitly their arguments (l, t in real space, or k, s
in Fourier and Laplace space, respectively). By applying both
transforms in (2) and (5) we obtain

je(k, s) = γ ρ f (k, s) = γ j f (k, s)

s + γ + ikv f
, (6)

which after rearranging terms and inverting only the Fourier
transform leads to

(s + γ ) je(l, s) = γ (s + γ )ρ f (l, s)

= −v f
∂ je(l, s)

∂l
+ γ j f (l, s). (7)

On the other side, applying the Laplace transform in (3) and
(4) we have

ρe(l, s) = je(l, s)
1 − p(l, s)

s
, (8)

j f (l, s) = je(l, s)p(l, s) + δ(l ). (9)

Now, it is easy to check that combining (7) and (9) one obtains

sρ f (l, s) − δ(l ) = −v f
∂ρ f (l, s)

∂l
− γ ρ f (l, s)

+ γ p(l, s)ρ f (l, s), (10)

which is the Laplace transform of the first equation in (1).
Similarly, combining (6) and (8) we find the Laplace trans-
form of the second equation in there,

sρe(l, s) = γ ρ f (l, s) − γ p(l, s)ρ f (l, s). (11)

This shows that the CTRW scheme is formally equivalent to
the framework presented above.

III. ADAPTIVE ESCAPE DYNAMICS

The information about the escape strategy is then contained
within p(l, t ). For simplicity, here we restrict our study to a
simple family of two-stage strategies. When the walker misses
food and enters into the empty region (stage 1) it will carry
out flights of speed ve and random directions whose duration
is determined by a termination rate α1. This rule for stage 1
is intended to represent an intensive (area-restricted) search.
Finally, at a given rate w the walker decides to switch its
strategy to a new one (stage 2) based on longer flights (thus
governed by a termination rate α2 � α1) also in random direc-
tions at speed ve. Actually, to keep our discussion simple, we
will focus on the limit case α2 → 0, so in practice a ballistic
motion rule is implemented after the area-restricted search of
stage 1 is left. Our main interest lies then in exploring whether
there is an optimal switching rate w from stage 1 to stage
2 that maximizes food intake by the walker. Obviously, the
cases w → 0 and w → ∞ correspond to the extreme cases
of an area-restricted (Brownian-like) strategy and a ballistic
strategy, respectively.

Finding p(l, t ) requires solving the escape (or first-
passage) problem from a finite interval of size l (at least in
1D) for the case of a particle initially at a small distance from
the boundary, that is, x0 → 0. As far as we know, this specific
problem has yet to be explored for the two-stage strategies
described, though similar cases have been reported in the liter-
ature. For example, the case of intermittent searches has been
analyzed in Refs. [21,48–50]. Here, we will adapt the method
in Ref. [50] to our case. Since all the processes involved in
the escape strategy (flight terminations and switching from
stage 1 to 2) are Markovian and so they are governed by
constant rates, we are allowed to write renewal equations for
the functions p1(l, t ) and p2(l, t ), which correspond to the
escape time distributions while the particle is at stage 1 or
2, respectively [thus p1(l, t ) + p2(l, t ) = p(l, t )]. These two
renewal equations read

q1(l, t |x0) = p1(l, t ) +
∫ t

0
p1(l, t − t ′)q1(l, t ′|l )dt ′, (12)

q2(l, t |x0) = p2(l, t ) +
∫ t

0
p2(l, t − t ′)q2(l, t ′|l )dt ′

+
∫ t

0
p1(l, t − t ′)q12(l, t ′|l )dt ′. (13)

Here, q1(l, t ′|x0) and q2(l, t ′|x0) represent the probability den-
sity of being at the boundaries of the interval for a walker
moving according to the rules in stage 1 and stage 2, respec-
tively, given the initial position x0. On its turn, q12(l, t ′|x0) is
the probability density of being at the boundary provided that
the motion started from x0 at stage 1 and it has subsequently
switched to stage 2. In consequence, the meaning of Eq. (12)
is as follows: The probability of reaching the boundary while
being at stage 1 corresponds to those trajectories that hit the
boundary then for the first time [first term on the right-hand
side (rhs)] plus those that hit it at a previous time t − t ′ and
then follow its path from the boundary (second term on the
rhs). In Eq. (13) an extra term appears on the rhs; this is
because we need to separate the trajectories contributing to
q2(l, t |x0) that hit the boundary for the first time at a previous
time t − t ′ while being already in stage 2 (second term on the
rhs) from those that hit it while still being at stage 1 (third
term on the rhs).

Taking into account that both stages 1 and 2 are assumed,
as described above, to satisfy the telegrapher’s processes
with different termination rates α1 and α2, the corresponding
probability densities will satisfy the telegrapher’s equations
coupled through a switching from stage 1 to 2:

∂q1

∂t
+ 1

α1

∂2q1

∂t2
= v2

e

α1

∂2q1

∂x2
− wq1, (14)

∂q12

∂t
+ 1

α2

∂2q12

∂t2
= v2

e

α2

∂2q12

∂x2
+ wq1. (15)

So, the functions q1 and q12 in (12) and (13) are the solution
of the system (14) and (15) for x = l , when computed within
the interval (0, l ) with periodic boundary conditions and an
initial condition x0 at stage 1. Finally, the case of q2(t |x0) will
correspond to the solution of (15) but removing the coupling
(that is, the last term on the rhs) and imposing instead the
initial condition x0 for stage 2.
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IV. MEAN ESCAPE TIME FROM THE EMPTY REGION

An explicit analytical solution to the problem (12)–(15) can
be found in Laplace space. In particular, Eqs. (12) and (13) can
be written as

p(l, s) = q1(l, s|x0)

1 + q1(l, s|l )
+ q1(l, s|x0)

1 + q2(l, s|l )

− q1(l, s|x0)q12(l, s|l )

[1 + q1(l, s|l )][1 + q2(l, s|l )]
, (16)

where we identify whether a function is written in Laplace
space just by explicitly indicating its Laplace argument s
instead of time t . The exact expression for p(l, s) reached
in this specific case is too long to be reproduced here (see
Appendix A). Instead, we can compute the mean hitting time
as 〈T 〉 = ∂ p(l, s)/∂s|s=0, which yields (for α2 = 0)

〈T 〉 =
[

l

2ve
+ α1 + w

α1w

]

×
[

1 +
√

α1 + wh(l − x0)√
w[h(l ) − 2] − √

α1 + wh(l )

]
. (17)

This expression [where we have defined h(x) ≡ 1 +
e−√

w(α1+w)x/ve ] represents the first main result of the present
work, since it already provides valuable information about the
starting questions posed. We note that in the limit w → 0
this mean escape time reduces, after some simplifications,
to 〈T 〉 = l/2ve + α1x0(L − x0)/v2

e , which is the well-known
result for the case of a simple telegrapher’s process [18]. On
the other side, w → ∞ leads to 〈T 〉 = l/2ve, the expected
solution for a ballistic search path.

Also, the escape probability P∞ of the walker, provided we
introduce a constant death rate r while being in the escape
phase, can be computed from our results above. This will be
simply given by P∞ = p(l, s = r), in agreement with recent
works (see Refs. [51,52]).

If we plot the mean escape time in (17) as a function
of w for different values of x0 and l (Fig. 2), we observe
that for x0/l small enough, there is an intermediate w which
minimizes 〈T 〉. For a search process on an interval of a fixed
size starting from one extreme x0 = 0, it is well known that
such an optimal exists at w = 2ve/l [53]. However, it is not
trivial how this translates into a system where l grows with
time, since then the optimal w decreases with time, too. For
this reason, it is particularly interesting to see that the range of
w values for which 〈T 〉 lies below l/2ve (which is the ballistic
limit) becomes larger as l increases. This is rather surprising
since one normally expects ballistic strategies to outperform
Brownian-like strategies. However, we observe that when both
strategies are combined sequentially, then it is beneficial to
postpone the transition to ballistic movement up to very long
times in order to optimize the escape process.

We can also plot the results for P∞ to confirm that view.
This is done in the inset of Fig. 2, which shows P∞ for the
same parameters as in the main figure, with r = ve/l . As can
be seen, the probability to escape before dying is larger for
smaller w provided that x0/l is small enough. These results
also recover the limits limw→0 P∞ = exp(−√

rα1x0/ve) and
limw→∞ P∞ = exp(−rx0/ve)/2 expected for a mortal ran-
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FIG. 2. Nondimensional mean escape time as a function of the
switching rate w for different values of the ratio x0/l as follows: (1)
x0/l = 10−1, (2) x0/l = 10−2, (3) x0/l = 10−3, (4) x0/l = 10−4. In
all cases we use l = 100, ve = α1 = γ = 1. Inset: Survival proba-
bility of the walker in the escape phase for a constant mortality rate
r = ve/l . The values of the parameters are the same as those used for
the main figure.

dom walk in the diffusive and the ballistic limit, respectively
[51,52].

V. DYNAMICS OF FOOD INTAKE

Taking into account the previous results, we expect that
as long as food is consumed and therefore l becomes larger,
then ballistic strategies should be progressively postponed or
avoided for maximizing the food intake. To compute this,
we can introduce the expression for p(l, s) into (1) in order
to reveal the statistical properties of l (t ). While an exact
and general expression is unattainable, we can focus on the
long-time (and so small-s and large-l) regime. Then, one can
expand p(l, s) for s small and a simple expression for the
mean size of the empty region is reached (the details are given
in Appendix B) in the form

〈l〉 ≈
√

2v f ve

γ

(
1 +

√
α1 + w

w

)
t . (18)

This expression, which represents our second main result,
recovers the expected scaling 〈l〉 ∼ t1/2 found in previous
works on the ERW. Moreover, it shows that as we approach
the ballistic limit (w → ∞) the food intake will be largely
independent of w, and it will depend only on the walker
speeds v f , ve, and the error rate γ . On the contrary, for
w → 0 we obtain the nontrivial scaling 〈l〉 ∼ w−1/4. This is
relevant since it confirms that asymptotically ballistic strate-
gies should be suppressed in order to maximize the average
intake. In Fig. 3 we provide a comparison of the result in
(18) (dotted lines) to the values obtained from simulations
for the random-walk realization of the ERW described above
(symbols), showing a perfect agreement in the asymptotic
regime. Also, the inset in Fig. 3 shows explicitly the exis-
tence of the optimal w for long times. Note that the specific
value of the optimal w is time dependent, such that it de-
creases with time and remarkably it goes to zero for t → ∞,
which is logical since this implies l → ∞ and then ballistic
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FIG. 3. Mean size of the depleted region as a function of time
for different values of the switching rate w, as follows: circles
(w = 10), triangles (w = 1), inverted triangles (w = 0.1), diamonds
(w = 0.01), pentagons (w = 0.001). The dotted lines correspond
to the corresponding asymptotic expression derived in (18). Inset:
Mean food intake relative to the ballistic escape case for long times
(t = 105 for solid symbols, t = 107 for open symbols) as a function
of w. In all cases we use v f = ve = α1 = γ = 1.

strategies become largely inefficient. For this reason, Fig. 3
shows for intermediate times that a fast switch to ballistic
motion (that is, a large w) can still maximize 〈l〉, but the
situation changes as the asymptotic regime l → ∞ is fully
reached.

We now pose the question of whether the conclusions
analytically obtained here in 1D can be extended to two
or higher dimensions, as topologically the problem becomes
rather different then. For dimensions higher than 1 the empty
region left by the individual is no longer a regular interval
with a characteristic size l but takes a complex (fractal-like,
in general) shape. So, to provide a fair comparison with the
1D case we implement the following numerical scheme in
2D. We assume food is initially located at every node of a
regular lattice of unit size, and then we allow the walker to
move according to the same rules as above, that is, movement
in a constant direction at speed v f while feeding such that with
rate γ the food is missed, and then a escape phase starts which
is governed by a double telegrapher’s process at speed ve, with
short flights at short times (stage 1) that switch irreversibly
(with rate w) to arbitrarily long flights (stage 2). The walker
will be able to detect the food located at the nearest node of the
lattice in case it has not been already depleted. In that case the
feeding phase is kept, or initiated, and the food is removed
from that site. Now, instead of l (t ) we rather compute the
number of depleted food nodes as a function of time N (t ) to
measure food intake.

The corresponding results (Fig. 4) confirm that ballistic
strategies (w → ∞) are also detrimental in 2D. This can be
justified by checking that the fractal-like regions left empty
with a ballistic strategy are more space filling (see the movies
provided in the Supplemental Material [54]). Then ballistic
flights often require traveling from one extreme of the empty
region to the other, which represents a significant waste of
time. In consequence, we find again that food intake does not
increase monotonically with w (see the inset in Fig. 4) but an

103
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∼ t
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/

N
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a
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FIG. 4. Food intake 〈N〉 in two dimensions (as defined in the
main text) as a function of time for different values of the switching
rate w, as follows: circles (w = 10), triangles (w = 1), inverted
triangles (w = 0.1), diamonds (w = 0.01), pentagons (w = 0.001).
Inset: Mean food consumed at long times relative to the ballistic
escape case, for long times (t = 105 for solid symbols, t = 107 for
open symbols) as a function of w. In all cases we use v f = ve = α1 =
γ = 1.

optimal switching rate is found, which slowly decays to zero
as time increases. In Fig. 4 one can see that for small w the
food intake approaches the asymptotic scaling N ∼ t , as in the
standard ERW, while for large w the scaling is eventually lost
and becomes sublinear. As the empty region grows, longer
and inefficient crossings through that region will dominate
the escape process, so N ∼ l ∼ √

t should be expected for
extremely long times (we have not been able to reach that limit
numerically, but up to t = 107 the sublinear behavior starts to
appear clearly).

VI. DISCUSSION

As a whole, the results from the two previous sections pro-
vide robust evidence that ballistic strategies are not convenient
in the context of spaces homogeneously filled with food, or
resources, that are progressively depleted by the walker. We
stress that this situation reflects a case that could be really
significant for smaller organisms in nature, since search mech-
anisms in those cases could be more focused on recovering a
lost signal than on starting a blind search in an empty space,
which is the scenario most typically studied in random search
theory.

Finally, one could wonder what is the role of Lévy flights
and other well-studied search strategies within the context
presented. The fact that Lévy flights optimize searches in the
limit x0/l → 0 for one-dimensional homogeneous domains
is well known. Then, since our escape-and-feeding process
is a sequence of many of these situations for increasing val-
ues of l , we expect that the Lévy flight will also represent
the global optimum, though an explicit expression for 〈l〉 is
probably unattainable in that case (actually, there is some
evidence that microscopic organisms could be able to exhibit
scale-invariant motion [55,56]). So, while the strategy pre-
sented here probably does not represent a global optimum
to the search problem, it has the power to explain why bal-
listic strategies are not observed in simple organisms, where

052109-5



CAMPOS, CRISTÍN, AND MÉNDEZ PHYSICAL REVIEW E 103, 052109 (2021)

correlated or persistent (often nonstationary) random walks
are rather the rule. Nevertheless, we note that our arguments
seem to remain valid still in 2D (Fig. 4), where the global
optimality of Lévy flights stops holding [57]. Moreover, it is
still likely that an adaptive (time-decreasing) value of w would
yield even higher food intakes, as the optimum w decays
progressively for t → ∞. Such an adaptive strategy proba-
bly should be able to outperform Lévy flights, as happens
for informed random walks (in which the walker has some

minimum information about the domain scales) [53]. These
and other questions remain to be explored in forthcoming
works in which the general ERW scheme presented here can
be satisfactorily applied.
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APPENDIX A: DERIVATION OF THE MEAN ESCAPE TIME 〈T〉
Expressions (14) and (15) can be transformed to Laplace space

s

(
s − δ(x0)

α1
+ 1

)
q1(x, s|x0) − δ(x0) = v2

α1

∂2q1(x, s|x0)

∂x2
− wq1(x, s|x0), (A1)

s
( s

α2
+ 1

)
q12(x, s|x0) = v2

α2

∂2q12(x, s|x0)

∂x2
− wq12(x, s|x0), (A2)

so they admit an explicit solution within the interval (0, l ) with periodic boundary conditions (see, e.g., Ref. [58]):

q1(l, s|x0) = 1

2

√
s + w + α1

s + w

cosh
[ (s+w)(s+w+α1 )

ve

(
l
2 − x0

)]
sinh

[ (s+w)(s+w+α1 )
ve

l
2

] , (A3)

q12(l, s|x0) = w

2ve

(
h1(s) cosh

[
s
ve

(
l
2 − x0

)]
sinh

[
s
ve

l
2

] + h2(s) cosh
[√

(s+w)(s+w+α1 )
ve

(
l
2 − x0

)]
sinh

[√
(s+w)(s+w+α1 )

ve

l
2

] + h3(s) cosh
[ s+α1

ve

(
l
2 − x0

)]
sinh

[ s+α1
ve

l
2

]
)

, (A4)

where we have already considered α2 = 0 for the sake of simplicity, and we have defined

h1(s) = (2s + w)(s + α1) + α2
1

(2s + α1)[s(α1 + 2w) + w(α1 + w)]
, (A5)

h2(s) = −α1(2s + w + α1)
√

s + w + α1√
s + w[s(2w + α1) + w(w + α1)][α1(s + α1) − w(2s + w + α1)]

, (A6)

h3(s) = s(2s + w + 2α1)

(2s + α1)[α1(s + α1) − w(2s + w + α1)]
. (A7)

Finally, we also need the explicit expression for q2(l, s|x0). As mentioned in the main text, this comes from the solution of the
equation

∂q2(x, t |x0)

∂t
+ 1

α2

∂2q2(x, t |x0)

∂t2
= v2

α2

∂2q2(x, t |x0)

∂x2
. (A8)

Transforming to the Laplace space, the explicit solution in the interval (0, l ) with periodic conditions reads (again in the limit
α2 → 0)

q2(l, s|x0) = cosh
[

s
v

(
l
2 − x0

)]
2 sinh

(
s
v

l
2

) . (A9)

Now, if one replaces expressions (A3), (A4), and (A9) into Eq. (16) of the main text, one reaches an exact (but lengthy) expression
for p(l, s) that contains all the statistical properties of the escape process.

APPENDIX B: DERIVATION OF 〈l〉
As mentioned in the main text, the long-time limit of the escape-and-depletion process necessarily implies that l will be large,

too, if compared to the characteristic scales of motion involved (that is, ve/γ , v/w, and v/α1).
Thus, the limits of s small and l large can be carried out together. Note from (A3), (A4), and (A9) that the dependence of f (l, s)

on l is always through functions of the type tanh [b(s)l/ve] (provided x0 → 0), with different forms of the function b(s). One can
thus approximate tanh [b(s)l/ve] ≈ 1 for l large [except when b(s) is such that lims→0 b(s) = 0, where this is expanded to first
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order in s → 0]. Applying this, the whole expression for p(l, s) simplifies, under these two limits, to p(l, s) ≈ a1(s) − a2(s)sl/ve,
where

a1(s) = 1 + α2
1 (w + α1) + (

2α3
1 − 6w2α1 − 3w3

)√
w(w + α1)

wα1
[
w + α1 + √

w(w + α1)
]
(w2 + wα1 − α2

1 )
s, (B1)

a2(s) = 1

2
(

1 +
√

w+α1
w

)[
1 − w + α1

wα1
s
]
, (B2)

where the required normalization condition a1(0) = 1 is satisfied.
These expressions are to be introduced into the system (1) once this is transformed to Laplace space, which reads

ρ f (l, s) − 1 = −v f
∂ρ f (l, s)

∂l
+ γ ρ f (l, s)[p(l, s) − 1],

ρe(l, s) = −γ ρ f (l, s)[p(l, s) − 1]. (B3)

Once the form of p(l, s) is explicitly introduced here and the Fourier transform (from l space to k space) is carried out, the mean
value of l can be computed from 〈l〉 = −i∂k[ρ f (k, s) + ρe(k, s)]k=0. By following these steps one finds

〈l〉 =
√

π iv f ve

2γ a2(s)s3
exp

[
− ive[−s + α1(a1(s) − 1)]2

2v f α1a2(s)s

]
erfc

[√
ve[−s + α1(a1(s) − 1)]√

2iv f α1a2(s)s

]
, (B4)

which, at first order in the long-time limit (s → 0), becomes expression (18) in the main text.
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