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Epidemic models with an infected-infectious period
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The introduction of an infective-infectious period on the geographic spread of epidemics is considered in
two different models. The classical evolution equations arising in the literature are generalized and the exis-
tence of epidemic wave fronts is revised. The asymptotic speed is obtained and improves previous results for
the Black Death plague.@S1063-651X~98!01403-2#
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I. INTRODUCTION

Geographic spread of epidemics was studied by a pion
ing work of Noble@1#, but it is less understood and less we
studied than its temporal evolution. However, recent wo
such as@2# and @3#, for instance, propose new approach
taking into account the role of cross-diffusion or a variab
population size. Here we consider a simple SI~susceptible-
infectious! model that leads to a very good velocity of spre
of epidemics in accordance with the experimental results
tained for the Black Death catastrophic plague pandem
This model is compared with a model of three species.

Our main assumption is to consider a characteristic timt
of delay in the appearance of the infectious members, wh
measures the period between the infected-infectious tra
tion. When a susceptible population is infected, there i
time t.0 during which the infectious agents develop with
the susceptible individual organisms and it is only after t
time that the infected population becomes itself infectio
~or infective!. The corresponding model mechanisms for t
development and spatial spread of the disease are phe
enologically derived. The traveling wave analysis of t
model is carried out and the asymptotic velocity for an
fectious solitary wave is found and it is compared with t
older results of Noble.

II. THE FIRST MODEL

The SI model consists of only two populations, infectio
I (x,t) and susceptibleS(x,t), which interact. We model the
spatial dispersal of the density of infectious individualsI and
the density of susceptible individualsS by simple diffusion
and consider the infectious and susceptible populations t
described by the same diffusion coefficientD . We consider
the transition rate from susceptible to infected to be prop
tional to rSI, wherer is a constant parameter. This mea
that rS is the number of susceptible individuals who cat
the disease from each infectious unit. The susceptible m
bers who catch the disease become infected members
intermediate stage between susceptible and infectious. A
a periodt, infected members become infectious and m
transmit the disease. The parameterr measures the transmis
sion efficiency of the disease from infectious to suscept
571063-651X/98/57~3!/3622~3!/$15.00
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individuals. We assume that the infectious members hav
disease-induced mortality rateaI , where 1/a is the life ex-
pectancy. The evolution equations for the susceptible
infectious populations take the form

]U

]t
5D

]2U

]x2
1f,

whereU5(S,I )T, andf5( f s , f I) is given by

f s52rS~x,t !I ~x,t !,

f I5rS~x,t2t!I ~x,t2t!2aI ~x,t !.

Introducing the dimensionless variables

I * 5I /S0 , S* 5S/S0 , t* 5rS0t, and x* 5ArS0

D
x,

~1!

whereS0 is a representative population, the evolution equ
tion system is

]S

]t
52I ~x,t !S~x,t !1

]2S

]x2
,

]I

]t
5

]2I

]x2
1S~x,t2a!I ~x,t2a!2lI , ~2!

wherea5trS0 and we have omitted the asterisks for no
tional simplicity. The dimensionless parameterl is given by

l[
a

rS0
.

We look for traveling wave solutions, in the usual way b
settingz5x2ct in Eq. ~2! wherec is the wave speed, which
must be determined. This will represent a wave of const
shape traveling in the positivex direction. Substituting this
into Eq. ~2! yields the ordinary differential system forI (z)
andS(z),

S91cS82IS50, ~3!
3622 © 1998 The American Physical Society
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I 91cI82lI 1S (
n50

`
~ca!n

n!

dnI

dznD S (
n50

`
~ca!n

n!

dnS

dzn D 50,

where we have expanded in Taylor series the te
S(x,t2a) and I (x,t2a) by assumingS and I infinitely de-
rivable. The only homogeneous steady state is (0,Ŝ) whereŜ
may be any positive real value. The problem consists of fi
ing the range of values ofl such that a solution exists wit
positive wave speedc and non-negativeI andS such that@1#

I ~2`!5I ~`!50 and 0<S~2`!,S~`!51.

By linearizing Eq. ~3! about the steady state and setti
Ŝ5S(`)51 we obtain

v91cv82u50,
~4!

u91cu82lu1 (
n50

`
~ca!n

n!

dnI

dzn
50,

whereu[I andv[S2Ŝ. The second equation for Eq.~4! is
uncoupled fromv and may be analyzed separately. Its ch
acteristic equation is

m21cm2l1emca50. ~5!

Since we requireI (z)→0 with I (z).0, I (z) cannot oscillate
aboutI 50, otherwiseI (z),0 for somez and therefore we
must have real values form. In order to have two real solu
tions for Eq.~5! it is necessary that the restriction

e2c2a/2,l1
c2

4
~6!

be fulfilled.

Application to the Black Death plague

In dimensional terms, the speed of the traveling wavesV
say, is given by

Vmin52ArS0Dc. ~7!

In order to apply our model to the experimental results,
must know the value oft. This value could be related to th
incubation period of the disease but we have not yet es
lished a direct correspondence.

In order to analyze our results we take the same appr
mate values for the parameters used by Noble. The sus
tible population density is assumed to beS0'50/miles2, the
diffusion coefficient isD'104 miles2/yr, the transmission
coefficient is r'0.4 miles2/yr, and the life expectancy is
about 3.5 weeks, soa'15/yr. With these parameters w
obtain that the speed for the classical case (a50) is 447.2
miles/yr, somewhat greater than the experimental result
200–400 miles/yr quoted by Langer@4#. If we take the
infected-infectious period of two weeks (a50.822), which
seems to be reasonable, the asymptotic speed isVmin , where
c fulfills the equality in Eq.~6! as may be shown by usin
the steepest descent method of Kolmogorov. This yields,
ter numerical calculation, 281.7 miles/yr, which lies entire
within the experimental range.
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III. THE SECOND MODEL

A second model which takes into account the infecte
infectious period may be developed by including a third s
cies. LetS(x,t) be the number density of susceptible me
bers, Î (x,t) the number density of infected members, a
I (x,t) the number density of infectious members. We a
sume in this section that the infected members have an
fectious transition rateÎ /t wheret is the characteristic time
of transition from infected to infectious or the infecte
infectious period and assume that all the susceptible m
bers who catch the disease become infected members
assuming Ficks’s law for the diffusive spread of membe
we get the following set of equations:

]S

]t
5D

]2S

]x2
2rSI,

] Î

]t
5D

]2Î

]x2
1rSI2

1

t
Î , ~8!

]I

]t
5D

]2I

]x2
2aI 1

1

t
Î .

Using now the dimensionless variables~1! we obtain ~we
omit asterisks for notational simplicity!

]S

]t
5

]2S

]x2
2SI,

] Î

]t
5

]2Î

]x2
1rSI2

1

a
Î , ~9!

]I

]t
5

]2I

]x2
2lI 1

1

a
Î .

If we fix the reference frame onto the moving front by usi
the transformationz5x2ct, we obtain

S91cS82IS50, ~10!

Î 91cÎ82
1

a
Î 1SÎ50,

~11!

I 91cI82lI 1
1

a
Î 50.

Analogously to the previous model the homogeneous ste
state is (Ss , Î s ,I s)5(1,0,0). Defining the new variable

v[S21, w[ Î , and u[I and linearizing about the stead
state, one obtains

v91cv82u50,

w91cw82
1

a
w1u50, ~12!
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u91cu82lu1
1

a
w50.

We define now the vectorU5(v,w,u…

T so that Eq.~12! can
be rewritten in the form

U91cI•U81A•U50, ~13!

whereI is the unity matrix and

A4S 0 0 21

0 2
1

a
1

0
1

a
2l

D .

By linearizingA we obtain the following characteristic poly
nomial

mFm21mS l1
1

aD1
1

a
~l21!G50. ~14!

In order to have real values in Eq.~13! it is necessary that

c.A2FAS l2
1

aD 2

1
4

a
2l2

1

aG1/2

,

with l,1. Note that the constraintl,1 is recovered both
from Noble’s work and from the first model.
Application to the Black Death plague

In dimensional units the asymptotic velocity has the fo

V5A2rS0DFAS a

rS0
2

1

trS0
D 2

1
4

trS0
2

a

rS0
2

1

trS0
G1/2

.

Taking the same characteristic values of Noble and assum
t52 weeks, we getV5339.5 miles/yr which lies entirely in
the experimental range 200–400 miles/yr.

We have shown with these two models that the introd
tion of an infected-infectious periodt, which is reasonable
from the practical point of view, of two weeks, leads us to
speed of the disease propagation which lies entirely in
experimental range. In both models the speed of the dise
is lower than in the classical model (t50) due to the
infected-infectious period. Murray@5# excuses the bad theo
retical result by arguing that the classical model (a50) is
extremely simple and does not take into account the n
uniformity in population density, the stochastic elemen
and so on. The fact is that, with a simple extension of
classical model, we are able to obtain two better results
ing into account the infective-infectious period, which is al
invoked in a recent work@6#.

ACKNOWLEDGMENTS

I thank Professor Jose´ Casas-Va´zquez. I also wish to ex-
press my gratitude to J. Camacho, A. Compte, and Profe
J. E. Llebot and Professor D. Jou for useful discussions
for their interest in this work. I acknowledge the support
the program Formacio´n de Personal Investigador und
Grant No. CLI95-1867. Financial support from the DGICY
of the Spanish Ministry of Education under Grant No. PB9
0718 is acknowledged as well.
@1# J. V. Noble, Nature~London! 250, 726 ~1974!.
@2# V. Capasso and A. Di Liddo, J. Math. Biol.32, 453

~1994!.
@3# H. W. Hethcote and P. van den Driessche, J. Math. Biol.34,

177 ~1995!.
@4# W. L. Langer, Sci. Am.210, 114 ~1964!.
@5# J. D. Murray,Mathematical Biology~Springer-Verlag, Berlin,

1989!.
@6# E. Beretta and Y. Takeuchi, J. Math. Biol.33, 250 ~1995!.


