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Abstract. The speed of pulled fronts for parabolic fractional-reaction-dispersal equations is derived and
analyzed. From the continuous-time random walk theory we derive these equations by considering long-
tailed distributions for waiting times and dispersal distances. For both cases we obtain the corresponding
Hamilton-Jacobi equation and show that the selected front speed obeys the minimum action principle. We
impose physical restrictions on the speeds and obtain the corresponding conditions between a dimensionless
number and the fractional indexes.

PACS. 05.40.Fb Random walks and Levy flights – 05.60.Cd Classical transport – 82.40.-g Chemical
kinetics and reactions: special regimes and techniques

1 Introduction

Fractional diffusion has been extensively presented as a
useful approach for the description of transport dynamics
in complex systems [1]. When fractional diffusion couples
to reaction process wave fronts may exist. In such cases
the number of particles or individuals grow at the same
time that jump. Recently, some works have dealt with
this topic. For anomalous waiting-time distributions the
speed of fronts have been derived [2] and the conditions
for the existence of diffusion-driven instability has been
also studied [3]. For Lévy flights distributions, a fractional
reaction-diffusion equation shows the existence of asym-
metric fronts [4], that is, an accelerated front propagating
to the right and a front propagating to the left with uni-
form speed.

In this work we present the mesoscopic Continuous-
Time Random Walk (CTRW) as a phenomenological
model to obtain temporal and spatial fractional reaction-
diffusion equations. By calculating the Hamilton-Jacobi
equation for each model we compute the front speed. Some
of our results have been already published but we present
them here as obtained from a single model in a simple
and natural way. In particular, we obtain first a reaction-
diffusion equation with a temporal fractional derivative
by considering a fractal waiting-time probability distribu-
tion function (PDF) and classical spatial diffusion. This
equation was previously obtained in [3], and its corre-
sponding front speed in [2]. Secondly, we assume a classi-
cal (exponential) waiting-time PDF and a symmetric Lévy
flight PDF to get a reaction-diffusion equation with a spa-
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tial fractional derivative. In [4], this equation was con-
sidered ad hoc, and its front speed obtained. Finally, we
notice that those front speeds present an unphysical be-
haviour when the reaction-diffusion dimensionless number
(the quotient between the characteristics waiting and reac-
tion times) is sufficiently large. This constitutes the main
result of this work.

2 Anomalous reaction-dispersal equations

We derive first fractional reaction-dispersal equations
(FRD) according by using the CTRW theory and con-
sidering the reaction process in a phenomenological way.
The quantity which defines the motion is the probability
distribution Ψ(x, t) of the particle performing a jump of
length x after waiting a time t at its starting point. If
P (x, t) is the number density of particles arriving at point
x at time t and ρ(x, t) is the number density of particles
being at point x at time t, we have

P (x, t) =
∫

R

dx′
∫ t

0

dt′Ψ(x − x′, t − t′)P (x′, t′)

+P (x, t = 0)δ(t) + g(x, t) (1)

ρ(x, t) =
∫ t

0

dt′φ(t − t′)P (x, t′) (2)

where φ(t) is the probability of remaining at least a time
t on the point before proceeding with another jump,
P (x, t = 0) is the initial distribution of particles and
g(x, t) is the number density of new particles created or
generated at point x at time t > 0. If ϕ(t) =

∫
dxΨ(x, t)



504 The European Physical Journal B

is defined as the waiting time PDF, by the definition of
φ(t) one has

φ(t) =
∫ ∞

t

dt′ϕ(t′). (3)

The Fourier-Laplace transform of (2) is

P (k, s) = Ψ(k, s)P (k, s) + P (k, 0) + g(k, s)
ρ(k, s) = P (k, s)φ(s)

so that

ρ(k, s) =
1 − ϕ(s)

s

f(k, s)
1 − Ψ(k, s)

(4)

where f(k, s) ≡ P (k, 0) + g(k, s) is the number density of
new particles generated at time t ≥ 0 and sφ(s) = 1−ϕ(s)
according to the Laplace transform of (3).

If the jump length and waiting time are independent
random variables one finds the decoupled form Ψ(x, t) =
Φ(x)ϕ(t) where Φ(x) =

∫ ∞
0

dtΨ(x, t) is the jump length
PDF. Inverting (4) by Fourier-Laplace we get a closed
form for (2)

ρ(x, t) =
∫ t

0

dt′ϕ(t′)
∫

R

dx′Φ(x′)ρ(x − x′, t − t′)

+
∫ t

0

dt′φ(t′)f(x, t − t′). (5)

In reaction-diffusion the local growth function f depends
explicitly on ρ as a nonlinear function and we will consider
that it is of the F-KPP (Fisher-Kolmogorov-Petrovskii-
Piskunov) type [5,6] f = rρ(1−ρ) where r is the constant
growth rate.

We consider now the specific waiting times PDF widely
employed in fractional diffusion [1] in the Laplace space

ϕ(s) = e−(sτ)γ � 1 − (sτ)γ , for 0 < γ ≤ 1 (6)

for t � τ and the gaussian jump length PDF

Φ(k) = e−σ2k2 � 1 − σ2k2 (7)

for |x| � σ. The PDF in (6) is equivalent to a long-
tailed waiting-time PDF with the asymptotic behavior
ϕ(t) ∼ (τ/t)1+γ and may be considered as a generalization
of ϕ(s) = e−sτ corresponding to the case where there ex-
ists only an unique waiting time τ, that is ϕ(t) = δ(t− τ).

Introducing (6) and (7) into (4) one has
[
s + σ2k2s(sτ)−γ

]
ρ(k, s) = f(k, s)

which could be obtained also taking ϕ(s) = [1 + (sτ)γ ]−1

exactly. Inverting by Fourier-Laplace and using [1]

L
[
0D1−γ

t ρ(x, t)
]

= s1−γρ(x, s)

one obtains

∂tρ =
σ2

τγ 0 D1−γ
t

(
∂2

xρ
)

+ f(ρ) (8)

where the Riemann-Liouville fractional derivative is de-
fined by [1,8]

0 D1−γ
t ρ(x, t) =

1
Γ (γ)

∂t

∫ t

0

dt′
ρ(x, t′)

(t − t′)1−γ , for 0 < γ ≤ 1.

(9)
When reaction is absent (f = 0) then (8) describes a sub-
diffusive transport with

〈
x2

〉 ∼ tγ .
Let us to consider now the classical waiting time PDF

ϕ(t) = δ(t − τ) with t � τ and a jump PDF describing
symmetric Lévy flights with Φ(x) ∼ σ2α |x|−1−2α for |x| �
σ . Inserting

ϕ(s) = e−sτ � 1 − sτ (10)

Φ(k) = e−(σ|k|)2α � 1 − (σ |k|)2α for
1
2
≤ α ≤ 1 (11)

into (4) one has
[
sτ + σ2α |k|2α

]
ρ(k, s) = τf(k, s)

which may be inverted by Fourier-Laplace to yield the
fractional reaction-Lévy equation

∂tρ =
σ2α

τ
∇2αρ + f(ρ) (12)

where F [∇2αρ(x, s)
]

= − |k|2α
ρ(k, s) and the Riesz op-

erator ∇2α reads [7,8]

∇2αρ(x, t) =
d2αρ(x, t)

d |x|2α = − 1
2 cos(απ)

(
I−2α
+ + I−2α

−
)

(13)
where

I2α
+ ρ(x, t) =

1
Γ (2α)

∫ x

−∞
(x − y)2α−1

ρ(y, t)dy

I2α
− ρ(x, t) =

1
Γ (2α)

∫ +∞

x

(y − x)2α−1
ρ(y, t)dy

for 0 < α ≤ 1.
Note that in absence of reaction, equation (12) de-

scribes a superdiffusive transport where the pseudo mean
squared displacement [1] is

[
x2

] ∼ t1/α at large times (the
mean squared displacement in the strict sense is divergent
for the Lévy distribution).

3 Speed of fronts

Let us now illustrate how the speed of fronts may be de-
rived for the fractional reaction-dispersal equation (8). As
the growth function f is of F-KPP type the method we
employ here has to allow us to obtain the linear speed
selected by the front. We use the Hamilton-Jacobi for-
malism [6] but it is equivalent to use the marginal stabil-
ity analysis. The starting point is the hyperbolic scaling
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x → x/ε and t → t/ε and the redefinition of the field
ρε(x, t) = ρ(x/ε, t/ε). Thus, equation (5) takes the form

ρε(x, t) =
∫ t/ε

0

dt′ϕ(t′)
∫

R

dx′Φ(x′)ρε(x − εx′, t − εt′)

+
∫ t/ε

0

dt′φ(t′)ρε(x, t − εt′) [1 − ρε(x, t − εt′)] .

(14)

The rescaled number density of particles is, in the WKB
form

ρε(x, t) = exp
(
−Gε(x, t)

ε

)
, Gε(x, t) ≥ 0, (15)

where the action functional Gε(x, t) has to be found.
From (15) as long as G(x, t) = limε→0 Gε(x, t) is posi-
tive then ρε(x, t) → 0 as ε → 0. The boundary of the
set where Gε(x, t) > 0 yields the position of the front. To
ensure an evolution with the minimal propagation speed
we take the initial condition ρ(x, 0) = 1 for x ≤ 0 and 0
for x > 0. Substitution of equation (15) into equation (14)
and taking the limit ε → 0 one gets the Hamilton-Jacobi
equation [2]

ϕ−1(Hτ) − Φ(p) =
a

Hτ

[
ϕ−1(Hτ) − 1

]
(16)

where

ϕ(Hτ) ≡
∫ ∞

0

dtϕ(t)e−Ht = ϕ(s = H)

Φ(p) ≡
∫ ∞

−∞
dxΦ(x)epx = Φ(k = −ip) (17)

and have defined the Hamiltonian H = −∂tG and the
generalized momentum p = ∂xG. Finally, the front speed
is computed from three equations: equation (16) and

v =
∂H

∂p
, pv = H(p). (18)

It is important to stress that the Hamilton-Jacobi
equation (16) is equivalent to the dispersal relation if the
speed was obtained from the marginal stability analysis.

4 Speed of temporal FRD fronts

In this section we compute the speed of fronts emerging
from equation (8). From equations (17) and (6, 7) one
obtains ϕ−1(Hτ) � 1 + (Hτ)γ and Φ(p) � 1 + σ2p2 and
inserting them into (16) one has

Hγ − rHγ−1 =
σ2

τγ
p2. (19)

Taking the derivative ∂p of (19) one has

τ∂pH
[
γ(τH)γ−1 − rτ(γ − 1)(τH)γ−2

]
= 2σ2p

Table 1. Comparison between theoretical and numerical re-
sults for the quotient vγ/v1. It has been found a maximum
deviation of 42% between theoretical and numerical results.

γ a
vγ

v1
theor

vγ

v1
num

0.1
0.3
0.5
0.7

0.811
1.317
1.813

0.723
0.911
1.050

0.5
0.3
0.5
0.7

0.940
1.379
1.775

0.847
0.960
1.037

0.9
0.3
0.5
0.7

1.066
1.412
1.700

0.967
0.993
1.011

and from (19) one obtains H = r(3− γ)/(2− γ) and from
(18) the linear speed selected by the front is

vγ =
σ

τ
(rτ)1−

γ
2 (3 − γ)

3−γ
2 (2 − γ)−1+ γ

2 . (20)

Let us now to explore the interesting properties of this
speed. The classical diffusion is recovered for γ = 1 and
therefore the front travels with the Fisher speed

v1 = 2σ
√

r/τ .

In Table 1 we collect the values of the dimensionless speed
vγ/v1 for different values of the reaction-dispersal dimen-
sionless number a ≡ rτ, which is nothing but the quotient
between the characteristic waiting time and the character-
istic growth time. Theoretical values obtained from (20)
have been compared to the numerical solutions directly
performed on equation (8) with f(ρ) = rρ(1 − ρ). The
Riemann-Liouville operator (9) is not the best starting
point to get the discrete version of the fractional time
derivative which will let us to perform numerical integra-
tion on equation (8). We use an alternative and equiva-
lent definition of this derivative, namely the Grünwald-
Letnikov operator [8] that is more suitable in numerical
calculations. In order to get the numerical solution of
equation (8) we use the algorithm in reference [11] joint
to a classical finite difference scheme for the spatial sec-
ond derivative. A relatively good agreement between nu-
merical and theoretical results is observed: the maximum
deviation found between theoretical and numerical results
is 42%.

The theoretical result found in (20) has to fullfil simul-
taneously some physical restrictions over the subdiffusive
range 0 < γ ≤ 1. The first one (R1) is that vγ has to be
an increasing function of the reaction rate r and, in conse-
quence, of a. The second one (R2) is that vγ has to be an
increasing function of γ, ranging from 0 to 1, because the
transport is faster as γ tends to 1− and is slower as it tends
to 0+. The third one (R3) is that vγ < v1, because a diffu-
sive transport cannot lead to a front traveling with a speed
faster than the corresponding to the classical diffusion v1.
It is easy to check that R1 is always fulfilled. From (20),
R2 is fulfilled only if 0 < a ≤ 2/3. In particular, we find
that if 0 < a ≤ 1/2, then vγ is always monotonically in-
creasing with γ for any γ. However, if 1/2 ≤ a ≤ 2/3, then
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Fig. 1. Plot of the critical curves a∗(γ) and ac(γ). It is clear
from this figure the results of the physical restriction presented
in Table 2. It is observed that R3 is a stronger condition than
R2. For 16/27 < a < 2/3, R2 is fulfilled if a < a∗(γ) but R3 is
always violated. For a > 2/3 both R2 and R3 are violated.

Table 2. Restrictions for the values of a and γ obtained from
the three physical restrictions. It is assumed that the transport
is always subdiffusive, that is, 0 < γ ≤ 1.

Restriction Allowed values of a and γ

R1
(

∂vγ

∂a
> 0

)
any a and any γ

R2
(

∂vγ

∂γ
> 0

) 0 < a ≤ 1
2

for any γ
1
2

< a ≤ 2
3

if a < a∗(γ)

R3 (vγ < v1)
0 < a ≤ 1

2
for any γ

1
2

< a ≤ 16
27

if a < ac(γ)

a and γ have to fulfill the restriction a < a∗(γ) where

a∗(γ) =
2 − γ

3 − γ
. (21)

If a > 2/3 then R2 is never fulfilled. Finally, from (20),
R3 is fulfilled only if 0 < a ≤ 16/27 and in particular, if
0 < a ≤ 1/2 R3 is fulfilled for any γ but if 1/2 ≤ a ≤ 16/27
then a and γ have to fulfill the restriction a < ac(γ) where

ac(γ) =
[
4(2 − γ)2−γ

(3 − γ)3−γ

] 1
1−γ

. (22)

If a > 16/27 then R3 is never fulfilled. In Figure 1 we
depict the curves a∗(γ) and ac(γ) and may be observed
that if R3 is fulfilled then R2 is also automatically fulfilled.
In Table 2 we collect the results imposed by the above
physical restrictions.

5 Speed of spatial FRD fronts

We compute now the speed of fronts emerging from
equation (12). Inserting equations (10) and (11) into (16)
one obtains

H =
σ2α

τ
p2α + r. (23)

Table 3. Comparison between theoretical and numerical re-
sults for the quotient vα/v1. It has been found a maximum
deviation of 15% between theoretical and numerical results.

α a vα
v1

theor vα
v1

num

0.6
0.1
0.5
1

1.69
0.99
0.79

1.91
1.02
0.84

0.75
0.1
0.5
1

1.39
1.06
0.95

1.47
1.05
0.93

0.9
0.1
0.5
1

1.13
1.03
0.99

1.16
1.07
1.03

From (18) we find H = 2rα/(2α − 1) and the front

vα = 2
σ

τ
α

(
a

2α − 1

)1− 1
2α

if α ≥ 1/2. (24)

Equation (24) has been recently obtained in reference [4]
where the authors have used a linear analysis around the
unstable state. Note that the restriction for the existence
of a linear speed selected is α ≥ 1/2. For α = 1/2 one
has v1/2 = σ/τ. This is not a surprising result because
in this case the transport is driven by advection with a
velocity given precisely by σ/τ (see Eq. (12)) and the
front travels with the advective velocity. In Table 3 we
collect theoretical (computed from (24)) and numerical
values of vα/v1 for some values of α and a. Numerical so-
lutions have been performed on (12). Discretization of spa-
tial fractional derivative have mainly been made following
the methods in reference [12]. As we can see, there are two
different algorithms (they call them L2 and L2C) to get
the discrete version of the fractional derivative. Moreover,
their accuracy depends on the values of the fractional in-
dex α. We always have chosen the more accurate one, i.e.,
L2C method for small values of α and L2 for the large
ones. The maximum deviation found, between theoretical
and numerical results for the front speed is 15%. So, a
good agreement is found.

The three physical restrictions imposed in the previous
case, for temporal FRD fronts, may be also considered
here in the superdiffusive range 1/2 ≤ α ≤ 1. R1 is the
same as before: vα has to be increasing with a. R2 requires
that vα has to be decreasing with α because the transport
is faster as α → 1/2+ (advective limit) and slower as α →
1− (classical diffusion limit). As in the previous case, R1
is always fulfilled for any α lying in the range (1

2 , 1). R2
is fulfilled if α and a are such that a < a∗(α), where

a∗(α) = e2α(2α − 1). (25)

R3 requires that the front speed vα has to be faster than
the speed in the classical diffusion limit, v1. R3 is fulfilled
if 0 ≤ a ≤ 1. In particular, if 0 ≤ a ≤ 1/4 then R3 is
always fulfilled, but if 1/4 ≤ a ≤ 1 then a and α has to
obey the condition a < ac(α), where

ac(α) =
[

α2α

(2α − 1)2α−1

] 1
1−α

. (26)
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Fig. 2. Plot of the critical curves a∗(γ) and ac(γ). It is clear
from this figure the results of the physical restriction presented
in Table 4. It is observed that R2 is a stronger condition than
R3 if 1

2
≤ α ≤ 0.568 and R3 is stronger than R2 if 0.568 ≤

α ≤ 1. For 1 < a < e2, R2 is fulfilled if a < a∗(α) but R3 is
always violated while for a > e2 both R2 and R3 are violated.

Table 4. Restrictions for the values of a and α obtained from
the three physical restrictions. It is assumed that the transport
is always superdiffusive, that is, 1

2
< α ≤ 1.

Restriction Allowed values of a and α

R1
(

∂vα
∂a

> 0
)

any a and any γ

R2
(

∂vα
∂α

< 0
)

a < a∗(α) for any α

R3 (vα > v1)
0 < a ≤ 1

4
for any α

1
4

< a ≤ 1 if a < ac(α)

In Figure 2 we depict the curves a∗(α) and ac(α) and may
be observed that if 1/2≤ α ≤ 0.568 then R2 implies R3
and if 0.568 ≤ α ≤ 1 then R3 implies automatically R2.
In Table 4 we collect the results imposed by the physical
restrictions.

6 Conclusions

In this work we have proposed the CTRW as a phe-
nomenological model to deal with temporal and spa-
tial anomalous reaction-diffusion equations. We have ob-
tained in a very natural way two different parabolic frac-
tional reaction-dispersal equations that describe anoma-
lous diffusion together with reaction processes. The first
one (temporal FRD model) is derived assuming a fractal
waiting-time PDF and classical spatial diffusion. The sec-
ond one (spatial FRD model) assumes a classical waiting-
time PDF but a symmetric Lévy flight PDF. Making use
of Hamilton-Jacobi analysis, we have been recovered an-
alytic expressions of the linear uniform speed selected for
pulled wave fronts, already published. For the first one,
the linear speed selection always holds but it fails for the
second one if fractional exponent α is lower than 1/2.
In both cases we have also checked the validity of our

mesoscopic model by means of numerical integrations of
the respective equations. We have noticed here that in
both cases, the front speed may present a counterintu-
itive behaviour if reaction-diffusion dimensionless number
a is large enough. This is done by requiring that the front
speed has to fulfill simultaneously three physical restric-
tions: R1 (the front speed has to be an increasing function
of a), R2 (the front speed has to be an increasing function
of γ and a decreasing function of α) and R3 (the front
speed vγ has to be lower than the corresponding to the
classical diffusion v1 and vα has to be higher than v1).
As a result, we have obtained the corresponding restric-
tions for values of a, in terms of the fractional indexes γ
and α. However, there is still an open question: why do
FRD equations, derived within the CTRW scheme, lead
to front speeds with unphysical meaning for large a? Some
authors have recently detected that this phenomenological
description is not adequate to deal with anomalous diffu-
sion with reaction processes [13], although it holds when
the waiting-time and spatial PDFs have all the moments
finite. They propose new alternative FRD equations but
it is not shown if their corresponding front speeds are in
agreement with our physical restrictions R1, R2 and R3.
On the other hand, it is worthy to note that our numeri-
cal results have tested our mesoscopic model but are not
able to account for the underlying microscopic processes.
Stochastic simulations could be useful to check our results,
but this will be the subject of future work.
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