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a b s t r a c t

In a recentwork [D. Campos, J.E. Llebot, V.Méndez, Theor. Popul. Biol. 74 (2009) 16]wehave
introduced a biological version of the Evolutionary Minority Game that tries to reproduce
the intraspecific competition for limited resources in an ecosystem. In comparison with
the complex decision-making mechanisms used in standard Minority Games, only two
extremely simple strategies (juveniles and adults) are accessible to the agents. Complexity
is introduced instead through an evolutionary learning rule that allows younger agents to
learn taking better decisions. We find that this game shows many of the typical properties
found for Evolutionary Minority Games, like self-segregation behavior or the existence of
an oscillation phase for a certain range of the parameter values. However, an analytical
treatment becomes much easier in our case, taking advantage of the simple strategies
considered. Using a model consisting of a simple dynamical system, the phase diagram of
the game (which differentiates three phases: adults crowd, juveniles crowd and oscillations)
is reproduced.

© 2010 Elsevier B.V. All rights reserved.

1. Minority rules with evolutionary learning

In the last years,the properties of the so-called Minority Games (MGs) have been explored exhaustively [1–3]. Though
many different versions of the original game [4] have been proposed, the common element in all of them is the existence
of a Minority Rule which is repeated again and again. This rule reads ‘a set of agents are offered to choose between different
options; after all of them have made their choice those in the less crowded option will be considered the game winners’. The
Minority Rule tries to implement the idea that in systemswhere the agents compete for limited resources, being inminority
is an advantage since you have less competitors to deal with. This idea applies in a very intuitive way, for example, to traffic
jams [5,6], where drivers have to predict what is the best route to get point A from point B (or what is the best time to take
the car) without prior knowledge of the other drivers’ decision. However, most works on MGs have just focused on their
applications to financial markets [3], probably due to the availability of accurate data series which facilitates comparison
with the results obtained. In that case, the agents are considered as traders that have to choose between selling or buying
an option or an asset; so, being in the minority (majority) group will represent a benefit (loss) for them.
Surprisingly, there have been few efforts to bring the MGs into a biological context, albeit the idea of competition for

limited resources is of fundamental importance in population ecology. A few exceptions to this are Refs. [7–9], while other
works [10,11] have also explored the ecological motivations of these games. We think that this is in part due to the fact
that MGs were formulated from the very beginning into a financial context. The first versions of the game were based on
the idea that the agents had a pool of many different strategies available, and they decided to choose one or the other by
analyzing the history of the game and checkingwhich strategies had performed better for similar situations in the past. Such
a complicated decision-making mechanism can be rather appropriate to describe how a trader decides on buying or selling
an option, but it is not, for instance, for an animal which has to decide what is the best place to set up its burrow.
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According to these ideas, we proposed recently [12] a new model called the Evolutionary Learning Game (ELG) which
implements aMinority Rule to describe competition for resources, but where the decision-makingmechanism of individual
agents is adapted to a more biological situation. In this model, there are N agents which have to choose repeatedly between
two options (A or B) according to the following rules:

(i) One of the two options (in the following, option B) will be the a priori best option; this idea is introduced through a
Minority Rule with an arbitrary cutoff L [13] (with 0 < L < N/2). This parameter Lwould represent the total quantity
of resources available for the agents in option A, while agents choosing B have a quantity of N − L resources to share.
Hence, if the number of agents choosing A is higher than L the resources per capita in option A will be smaller than in
option B, and so B will be the winning option. Instead, if the number of agents choosing A is lower than L, the contrary
will happen and the a priori best option (that with a higher quantity of resources) will not be the winning one.

(ii) At each time step, the winner agents are rewarded with the possibility of reproduction. With probability r each winner
will generate a newborn agent. This newborn will replace an existing agent chosen at random, so both winners and
losers have the same probability to be eliminated. This process introduces a birth–death mechanismwhich is absent in
standard MGs, where in general the agents go on playing indefinitely as long as they keep winning.

(iii) Decision-making in the ELG is based on very primary mechanisms in order to implement the idea that biological
individuals are basically driven by their instinct. Only two strategies are allowed: younger agents (termed as juveniles)
take their decisions randomly, while adults are experienced agents able to predict what is the a priori best option, so
they will always choose option B.

(iv) The key ingredient in the game is a learning rule that determines when juveniles become adults. This is governed by a
learning probability ppk characteristic of each individual, where pp stands for phenotypic plasticity (defined biologically
as the capacity of an individual to get adapted to its environment). After each time step, the kth individual (if it is a
juvenile) is given the chance to become adult with probability ppk; if it does, it will behave as an adult permanently. So,
ppk is a measure of how fast each individual becomes experienced and is able to take wiser decisions.

(v) Following some experimental evidences from genetics studies [14,15], we will consider that phenotypic plasticity is an
heritable trait. So, the values of ppkwill be transmitted fromparents to newborns. Accordingly, when the kth agentwins
and generates a newborn agent k′, the latter will behave initially as a juvenile but will be assigned a learning parameter
ppk′ randomly chosen from an interval of width w centered at ppk. So, those agents performing best in the game will
generate newborns with similar learning capacities to them.

Apart from these rules, we have discussed in Ref. [12] that a realistic ecological model should take into account many other
details, e.g. the fact that the number of agents N should vary with time, birth–death mechanisms should be more realistic,
etc. These and other possibilities have been explored and will be in further works. The rules above are just those that allow
us to reduce the ELG to its simplest form but still keeping its basic features (see the following section).

2. General dynamics of the ELG

As stated above, the strategies available to the agents in the ELG are much simpler than in usual versions of the MG.
Instead, complexity is introduced here through a balance between a learning mechanism that leads the agents to choose
wiser decisions as their age increases, and a birth–death process that will eliminate even those agents performing best.
Despite these differences, the global dynamics of the ELG still keeps much of the properties usually found in Evolutionary
MGs [16], as we shall see. In Ref. [12] we already showed that the ELG is able to reproduce the most striking result found
in the Evolutionary MG, i.e. the emergence of self-segregated behavior [16,17]. This means that in the stationary situation,
reached after multiple iterations of the game, the distribution of ppk values tends to adopt an U shape (see Fig. 1 in Ref. [12]).
So, extreme values ppk → 1 (learning very fast) or ppk → 0 (not learning at all) are found to perform best in the game than
intermediate ppk values.
Also, oscillating behaviors are typically found in the game [12,17,18], which reflects that for some periods of time the a

priori best option (that is, B) is the winning one (especially when the number of adults in the game is small) but it is not for
other periods (if the number of adults grows too much, all of themwill choose option B and then it will be overcrowded). In
Fig. 1(b)–(e) we plot for different values of the parameters L, r andw (see figure caption and legends) the fraction of juveniles
in the game as a function of time; this shows someof the characteristic oscillations one finds in the ELG.However, oscillations
do not arise for the whole range of parameter values, but it is also possible to reach a stationary state where either option
B (Fig. 1(a)) or option A (Fig. 1(f)) is always the winning one. As a result, the system tends to a stable situation where the
number of juveniles remains approximately constant. In the case of Fig. 1(f), since the adults are all losing because option B
is overcrowded, we can define this situation as adults crowd, while the situation in Fig. 1(a) will be termed in consequence
juveniles crowd.
To understand in which situations any of the three possible outcomes of the gamewill arise, we define the average trend

of the game by 〈h〉 ≡ 1
T

∑T
i=1 δ(i), where δ(i) is a variable that takes the value ‘0’ if A is the winning option and the value

‘1’ otherwise, and the sum is performed over T consecutive iterations of the ELG. In Fig. 2 we plot 〈h〉 as a function of the
parameter L for T = 2000. Interestingly, we observe that the transition from oscillations to juveniles crowd or to adults
crowd is not smooth but follows a step-like behavior. This suggests that these three different outcomes could actually be
interpreted as three different phases of the game. This result reminds very much that found in Ref. [19] for the Evolutionary
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Fig. 1. General dynamics of the ELG. The plots show the fraction of juveniles as a function of time iteration once the stationary situation has far been
reached (note that the first time iteration shown is 500). The values of the parameters used are N = 2001, r = 0.3, w = 0.15, while the value of L is
changed (see legends).

Fig. 2. The average trend 〈h〉 of the ELG as a function of the parameter L, using the same parameter values as in Fig. 1. 〈h〉 = 1 reflects a situation of adults
crowd, 〈h〉 = 0 corresponds to juveniles crowd, while intermediate values of 〈h〉will then correspond to oscillations.
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Fig. 3. Phase diagram L/N vs r for the ELG, where the gray scale represents the values of 〈h〉 (see legend). The three different plots correspond, from the
left to the right, tow = 0.08,w = 0.15 andw = 0.25.

MG. There, this step-like behavior has also been observed (see Fig. 2 in Ref. [19]), which is also directly related to the agents
distributions analyzed recently in Ref. [20]. Despite these similarities, we stress that a complete analogy between thatmodel
and the ELG cannot be established. For example, the frozen states reported in Ref. [19] will not be found in the ELG. In those
states, the agents reach a situation where none of themmodify their strategies since they do not need it in order to keep on
winning in average. That situation is not possible in the ELG, since the birth–death mechanism makes that an evolutionary
element is always present in the game.
The phase diagram of the ELG is shown in Fig. 3. There we have plotted again the average trend 〈h〉 in a gray scale map.

Since there are three different parameters in the game, the phase diagram is shown for r versus L, and for different values
ofw. Fig. 3 confirms the behavior already observed in Fig. 2, that is, the three possible outcomes of the game correspond to
regions clearly differentiated. The black zone defines the parameter region for juveniles crowd and the white one for adults
crowd, while the intermediate gray zone corresponds to oscillations.

3. Analytical models

In the previous section, we have already checked that the results from the ELG are in consonancewithmany properties of
the Evolutionary MG. However, the strategies followed by the agents to take their decisions are much simpler in our model.
One of the main advantages of this is that it facilitates an analytical treatment. For standard MGs, an analytical treatment
is possible nowadays, but it has been reached only through extensive research during many years. The framework of the
statistical mechanics has been necessary to understand the complex transitions and dynamics observed in those games
[2,21,22]. Also, for the Evolutionary MG different analytical approaches (some of them semiempirical) have been proposed
[23–25], but they can reproduce only partially the properties of that game. Instead, we shall show in the following that the
results of the ELG presented in Section 2 can be reproduced by means of simple dynamic systems.

3.1. Basic model

Let us denote the number of juveniles and adults at the ith time step by Nj(i) and Na(i) respectively. The model consists
of two equations which accounts for the evolution of these two variables, whose general form will read

Nj(i+ 1) = Nj(i)+ b(i)−m(i)Nj(i)− α(i)Nj(i)

Na(i+ 1) = Na(i)−m(i)Na(i)+ α(i)Nj(i) (1)

where m(i) accounts for the mortality probability, b(i) is the number of births, and α(i) is an effective learning parameter
that determines the fraction of juveniles that become adults at the ith time step (so, α(i) can be interpreted as an ensemble
average of the ppk values).
According to the rules of the ELG, half of the juveniles are expected in average to choose option A and half of them are

expected to choose B, while all the adults will choose B always. So that, the condition Nj(i)/2 < L will lead to the option A
being the winning one at time step i, with Nj(i)/2 being be the number of winning agents. For Nj(i)/2 > L the contrary will
happen and the total number of winners will be Nj(i)/2 + Na(i). In general, the number of births b(i) corresponds to the
number of winning agents multiplied by the reproduction factor r . So that, we can write

b(i) =


rNj(i)
2

if Nj(i)/2 < L

r
(
Nj(i)
2
+ Na(i)

)
if Nj(i)/2 > L.

(2)
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Fig. 4. Phase diagram L/N vs r for the model (4), where the gray scale represents the values of 〈h〉 (see legend). The three different plots correspond, from
the left to the right, to α = 0.01, α = 0.03 and α = 0.1. The dashed lines correspond to the representation of the conditions in (5).

Since each newborn replaces an existing agent, the mortality term m(i) can also be written in a very similar way; the
probability that a given agent dies is just b(i)/N so it leads us to

m(i) =


rNj(i)
2N

if Nj(i)/2 < L

r
N

(
Nj(i)
2
+ Na(i)

)
if Nj(i)/2 > L.

(3)

Finally, the form of the learning parameter α(i) is more difficult to predict, so for the moment we will consider it a constant
(in the next section we will relax this assumption). So that, putting all together the model takes the form

Nj(i+ 1) = Nj(i)+
rNj(i)
2

(
1−

Nj(i)
N

)
− αNj(i) if Nj(i)/2 < L

Nj(i+ 1) = Nj(i)+ r
(
N −

Nj(i)
2

)(
1−

Nj(i)
N

)
− αNj(i) if Nj(i)/2 > L

(4)

where the variable Na(i) has been eliminated by using the conservation condition Nj(i)+ Na(i) = N .
Next, we analyze the steady states N∗j and their stability. Is is straightforward to find that the possible steady states are

Nj(i)/2 < L→


N∗j = 0

N∗j = N
(
1−

2α
r

)
Nj(i)/2 > L→ N∗j = ξN

where ξ represents the roots of the polynomial rξ 2 − (2α + 5r)ξ + 2r = 0. This polynomial has always one solution in
the interval 0 < ξ < 1 and another one in ξ > 1; the latter will be obviously discarded, since it is a non-realistic solution.
Also, from a linear stability analysis, it can be proved that the solution N∗j = N

(
1− 2α

r

)
is stable for 2α < r; this is exactly

the same condition that leads to the instability of the trivial state N∗j = 0. Likewise, the only realistic steady solution for the
case Nj(i)/2 > L is found to be always stable.
All this information serves us to understand the basic dynamics of the model (4). For 2α > r the system will approach

one of the stable solutions available, depending on the initial conditions introduced. If the trivial state N∗j = 0 is reached
then we have a situation of adults crowd, while for N∗j = ξN we will obtain juveniles crowd. In the case 2α < r the system
can reach in principle any of the two non-trivial steady solutions (obtaining again either adults crowd or juveniles crowd),
but also it can happen that the conditions

N
(
1−

2α
r

)
> 2L

ξN < 2L (5)

are satisfied. If this happens, none of the two stable states will ever be reached, since the system jumps from the case
Nj(i)/2 < L to Nj(i)/2 > L (and vice versa) before any of these steady values is reached. As a consequence, the conditions
in (5) determine the region of parameters where the system keeps jumping from one case to the other, that is, oscillating
behavior is obtained.
In Fig. 4we plot the values of 〈h〉 obtained numerically from (4) to build the phase diagram using the same gray scalemap

as in Fig. 3, and for different values of the effective learning parameter α. It can be observed that the similarities between
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Fig. 5. Fraction of juveniles Nj(i)/N as a function of the iteration number i. The values of the parameters used are N = 2001, r = 0.3, α = 0.03, while the
value of L is changed (see legends).

these diagrams and those found from the ELG are clear at a general level. However, the oscillations region is not so clearly
defined in these diagrams as in Fig. 3, and the specific shape of that region seems to be different, especially for L small. The
dashed lines in Fig. 4 represent the parameter conditions (5). As expected, these lines are in agreement with the boundaries
of the regions where oscillations are observed.
To complete our comparisonwith the results from the ELG,we show in Fig. 5 the evolution ofNj(i)/N as a function of time

for different values of the parameters. It can be checked that, although themodel can certainly give rise to either oscillations
or stable situations, the shape of the oscillations observed is rather simple compared to the behavior obtained in Fig. 1.

3.2. Model with two learning parameters

Though the model presented in the previous section can certainly capture most of the qualitative aspects of the ELG,
the shape of the oscillation region in the phase diagram and the shape of the oscillations themselves does not fit very well
the results obtained from the game simulations. These differences are mainly due to the assumption made above that the
effective learning parameter α is a constant. Instead, in the ELG it can be observed that the ensemble average of ppk is far
from being a constant when oscillation behavior is obtained (some examples of this are shown in Fig. 6). Trying to take
into account the whole dynamics of learning would require to define new functions Nj(α, i) and Na(α, i) for the number of
juveniles and adults with phenotypic plasticity α, so that Nj(i) =

∫ 1
0 Nj(α

′, i)dα′. Then Eqs. (1)–(3) should be replaced by

Nj(α, i+ 1) = Nj(α, i)+ b(α, i)−m(i)Nj(α, i)− αNj(α, i)

Na(α, i+ 1) = Na(α, i)−m(i)Na(α, i)+ αNj(α, i) (6)
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Fig. 6. Ensemble average of the learning parameter ppk in the ELG as a function of time (iteration number). The parameters used are the same as in Fig. 1,
except for the value of L (see legend).

b(α, i) =


∫ 1

0
W (α | α′)

Nj(α′, i)
2

dα′ if Nj(i)/2 < L∫ 1

0
W (α | α′)

(
Na(α′, i)+

Nj(α′, i)
2

)
dα′ if Nj(i)/2 > L

(7)

m(i) =


rNj(i)
2N

if Nj(i)/2 < L

r
N

(
N −

Nj(i)
2

)
if Nj(i)/2 > L

(8)

where W (α | α′) represents a transition distribution that determines the probability that an individual with plasticity α′
generates a newborn with plasticity α. According to the rule (v) of the ELG which determine how plasticities are inherited
(see Section 1) the system of Eqs. (6)–(8) should then be solved for

W (α | α′) =
H(α − α′ − w/2)− H(α − α′ + w/2)

2
(9)

with H(·) denoting the Heaviside function, and with appropriate boundary conditions at α = 0, 1. The corresponding
integro-difference system, however, is not analytically manageable due to the nonlinearities involved.
Instead, there is a much simpler generalization we can propose to improve the performance of the model in Section 3.1.

It consists of assuming two different populations in the model, each with a different learning parameter, α1 and α2. To
introduce this into the model, we will also need a new parameter f which tells us what is the probability that an agent with
a given learning parameterwill generate a newbornwith the same learning parameter (so it plays the role of the distribution
W (α | α′)).
Introducing these ideas into the derivation presented in the previous section, the equivalent to Eq. (1) would now read

Nj1(i+ 1) = Nj1(i)+ b1(i)−m(i)Nj1(i)− α1Nj1(i)
Nj2(i+ 1) = Nj2(i)+ b2(i)−m(i)Nj2(i)− α2Nj2(i)
Na1(i+ 1) = Na1(i)−m(i)Na1(i)+ α1Nj1(i)

Na2(i+ 1) = Na2(i)−m(i)Na2(i)+ α2Nj2(i) (10)

where Nj1, Nj2, Na1, Na2 represent the number of juveniles and adults with learning parameter α1 and α2, respectively.
Similarly, b1(i) and b2(i) represent the number of births with learning parameter α1 or α2.
The form of the parameters b1(i), b2(i) is obtained now using analogous arguments to those made for the basic model

above. Using Nj(i) = Nj1(i)+ Nj2(i) to denote the total number of juveniles, we find

b1(i) =


r
(
f
Nj1(i)
2
+ (1− f )

Nj2(i)
2

)
if Nj(i)/2 < L

r
(
f
(
Nj1(i)
2
+ Na1(i)

)
+ (1− f )

(
Nj2(i)
2
+ Na2(i)

))
if Nj(i)/2 > L

(11)
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Fig. 7. Phase diagram L/N vs r for themodel (13), (14), where the gray scale represents the values of 〈h〉 (see legend). The three different plots correspond,
from the left to the right, to α1 = 0.01, α1 = 0.03 and α1 = 0.05, while the rest of the parameter values used are N = 2001, α2 = 1, f = 0.9.

b2(i) =


r
(
(1− f )

Nj1(i)
2
+ f
Nj2(i)
2

)
if Nj(i)/2 < L

r
(
(1− f )

(
Nj1(i)
2
+ Na1(i)

)
+ f

(
Nj2(i)
2
+ Na2(i)

))
if Nj(i)/2 > L

(12)

while the mortalitym(i)will keep the same form as above in (3). All together, the model with two learning parameters can
be expressed by the system of equations

Nj1(i+ 1) = Nj1(i)+ r
(
f
Nj1(i)
2
+ (1− f )

Nj2(i)
2
− Nj1(i)

Nj1(i)+ Nj2(i)
2N

)
− α1Nj1(i)

Nj2(i+ 1) = Nj2(i)+ r
(
(1− f )

Nj1(i)
2
+ f
Nj2(i)
2
− Nj2(i)

Nj1(i)+ Nj2(i)
2N

)
− α2Nj2(i)

Na1(i+ 1) = Na1(i)−
rNj(i)
2N

Na1(i)+ α1Nj1(i) (13)

for the case Nj(i)/2 < L, and

Nj1(i+ 1) = Nj1(i)+ r
(
(1− f )N + (2f − 1)Na1(i)+

f − 1
2
Nj2(i)

+

(
3f
2
− 2+

Nj1(i)+ Nj2(i)
2N

)
Nj1(i)

)
− α1Nj1(i)

Nj2(i+ 1) = Nj2(i)+ r
(
fN + (1− 2f )Na1(i)+

(
1−

3f
2

)
Nj1(i)−

(
f
2
+ 1−

Nj1(i)+ Nj2(i)
2N

)
Nj2(i)

)
− α2Nj2(i)

Na1(i+ 1) = Na1(i)− r
(
1−

Nj1(i)+ Nj2(i)
2N

)
Na1(i)+ α1Nj1(i) (14)

for Nj(i)/2 > L. Again, the conservation condition N = Nj1(i) + Nj2(i) + Na1(i) + Na2(i) has been used to eliminate the
variable Na2(i).
The complete analysis of the steady solutions and the stability of the system (13), (14) is extremely lengthy so one rather

needs the help of some software to deal with it. Hence, we cannot reproduce the whole analysis here. It is enough to say
that one can find that the model (13), (14) behaves qualitatively in the same way as the basic model (4). If the condition

α1 >
r2(1− 2f )+ 2α2rf
2(2α2 − rf )

(15)

is fulfilled, then the system either tends to the trivial steady solution
(
N∗j1,N

∗

j2,N
∗

a1

)
=

(
0, 0, α1

α1+α2
N
)
or to a non-trivial

state obtained from the case Nj(i)/2 > L. The former reflects a situation of adults crowd, while the latter corresponds to
juveniles crowd. Instead, if condition (15) is not satisfied the system will either reach one of the two possible non-trivial
states available (one fromNj(i)/2 < L and one fromNj(i)/2 > L) or give rise to oscillations. The specific necessary conditions
for oscillating behavior, however, cannot be made explicit as in (5).
The phase diagrams one obtains for the model with two learning parameters are shown in Fig. 7 for different values of

α1, α2 and f . Compared to the results from the basic model (Fig. 4) it is clear that this model fits much better the oscillations
region obtained from the ELG. Also, the shape of the oscillations (Fig. 8) is found to exhibit a much similar behavior to those
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Fig. 8. Fraction of juveniles Nj(i)/N as a function of the iteration number i. The values of the parameters used are the same as in Fig. 7 with α1 = 0.03,
while the value of L is changed (see legends).

reported in Fig. 1. So that, the weaknesses detected for the basic model in Section 3.1 are strongly corrected by means of the
generalized version proposed. However, it must be stressed that the agreement cannot be considered perfect at all, since
themodel with two learning parameters represents still a toy approximation to the ELG. Obviously, considering three, four...
learning parameters would improve the agreement. However, this is clearly out of the scope of the present work and it is
not even necessary, since in most cases one is just interested in understanding the qualitative properties of these agent
models.

4. Discussion: ELG versus MGs

After checking that many of the properties of the ELG can be easily reproduced by such simple models, one may
immediately wonder why the same cannot be done for standard MGs. What are then the specific elements which have
been removed from the standard model? We have already mentioned throughout the text that this is due to the extremely
simple decision-making rules considered, but nowwewill elaborate on this idea. Basically, the ELG ismuch simpler because,
compared to standard MGs, the number of degrees of freedom in the game has been drastically reduced and memory effects
are absent. Note that, although the Minority Rule is the common feature in all these games, the levels of complexity found
in standard MGs are a consequence of many other elements there:

- First, the strategies assigned to each individual are different in those games, which makes individuals different or even
unique (in case the number of strategies available is of the same order or larger than the number of individuals). If the
kth individual has a set of S strategies available, it will choose the one with a higher valuation, where the specific values
pkj (j = 1, 2, . . . , S) of these valuations are updated according to the performance of each strategy during the game. If
S = 2, then the sign of the function qk ≡ pk1 − pk2 determines which is the strategy chosen by the kth individual. So,
we need to know qk for all the N individuals to determine the outcome of the game. At the end, these qk represent the
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Fig. 9. Efficiency levels for the ELG (left) and the Evolutionary MG (right) as a function of L/N for different values of r (ELG) and d (Evolutionary MG).
In both cases the values w = 0.15, N = 2001 have been used. In the Evolutionary MG we have taken M = 4 for the memory parameter and 1 for the
prize-to-fine ratio.

degrees of freedom of the game and define a phase space where the formalism of statistical mechanics applies [2]. In the
evolutionary version of MGs something similar happens, since each individual is assigned a valuation pk that measures
its performance during the game [16]. On the contrary, in the ELGwe just have two different behaviors or subpopulations
(adults and juveniles) whose behavior can be predicted (except for the stochastic fluctuations). So that, we just need to
know the number of juveniles, which is the only degree of freedom, to determine the outcome in the game.
- Second, the strategies used by the individuals are based on the past outcomes, which introduces amemory effect. Instead,
the ELG described above is clearly a Markovian model (as are the analytical approximations proposed in Section 3). Note
thatmemory is a basic feature of standardMGs; an individual playing in amemoryless version of the original gamewould
choose always the same option A or B repeatedly. The Evolutionary MG, instead, do admit a non-trivial memoryless
version which has been analyzed in Ref. [26].

Also, note that the Evolutionary MG introduces a stochastic component in the model. Stochasticity, combined with the role
of the Minority Rule, introduces some sort of complexity too. This level of complexity, however, is also present in the ELG
-note that the evolutionary learning rule used in the ELG is inspired on a similar rule used in the Evolutionary MG [16].
Do then these strong simplifications make the ELG an uninteresting model? We do not think so. We stress that the

phenomenology found in our model (summarized in Figs. 1–3 and the results reported in Ref. [12]) reproduces qualitatively
most of the characteristics of the Evolutionary MG. This suggests that the effects of stochasticity present in both models,
together with the Minority Rule, dominate over the effects due to memory or those due to the decision-making details.
So, inductive reasoning and other key concepts associated to decision mechanisms in MGs does not seem to change the
qualitative behavior of themodel in an evolutionary scenario, while it is expected that the quantitative differences are more
important. In order to evaluate this idea we can compare the average efficiency (which is a basic parameter in MGs) of the
ELG (primitive decision-making) and the Evolutionary MG (sophisticated decision-making). It does not exist an univocal
way to define efficiency within this context; however, an appropriate definition for our purposes can be the time-averaged
winning probability of the agents [17], which we denote by 〈Pwin〉. This is a direct measure of how fruitfully individuals use
the limited resources available in the system.
In Fig. 9 we plot the values found for the two games. For the Evolutionary MG (Fig. 9(b)) we have considered a memory

parameter M = 4, a prize-to fine ratio equal to 1 and different lower thresholds d leading to the removal of an agent (see
Ref. [16] for details). We can observe that efficiency levels in the ELG (Fig. 9(a)) are in general comparable to those in the
Evolutionary MG, despite primary decision-making mechanisms. To facilitate the comparison, we also plot in Fig. 9(a) and
(b) the efficiency corresponding to a system where individuals behave randomly (〈Pwin〉 = 1/2, dotted line) and the case of
optimum efficiency (〈Pwin〉 = 1− L/N , dotted lines). We can observe that primary behavior of individuals in the ELG make
this system less efficient than the random system for L large, specially if r is small (for r small very few newborns appear so
the number of adults grows too much and they perform worse in consequence). A possible interpretation of these results
is that the ELG cannot be expected to represent a realistic situation in systems where the two possible options A or B have
similar resources available (that is, for L large) since in that case random decision-making is more efficient. On the contrary,
in situations of strong asymmetry between the two options A and B, the evolutionary learning rule defined in the ELG seems
to perform quite well and leads to quite high efficiency levels, even above those found for the Evolutionary MG.

5. Conclusions

In summary, we have shown that the ELG, which was presented for the first time in Ref. [12], is not just able to reproduce
many of the properties of standard models based on a Minority Rule, but admits an easy analytical approximation in terms
of dynamical systems. So, although the original idea of the model was just to obtain a more biological version of MGs, the
availability of a simple analytical treatment can make the ELG or similar versions an attractive choice for the modelization
of many complex systems. Here, two analytical approximations to the ELG have been presented. The first one, which
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reproduces reasonably the results from the ELG at a qualitative level, can be reduced just to a single-species model, so a
complete analytical treatment results very easy. If a better agreement with the game dynamics wants to be achieved, a
slightly more sophisticated approximation (Section 3.2) can be used, at the price of turning the analytical resolution of the
model really cumbersome.
We stress that we still know relatively few about our model if compared with the extensive literature on standard MGs.

So that, we think that the futureworks should be focused on exploring precisely the similarities and differences between our
model and standard MGs. For this purpose, probably it would be convenient to carry out statistical mechanics approaches
similar to those for the MGs mentioned throughout the text. Also, we hope that the potential biological applications of
the model can be exploited in further works. This will require (i) to identify those real systems in nature where extreme
environmental constraints can lead to limited resource conditions as those required for a Minority Rule to hold, and (ii) to
explore more realistic and sophisticated versions of the model (specifically, regarding the birth–death mechanisms).
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