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a b s t r a c t

We determine the critical patch size below which extinction occurs for populations living in one-
dimensional habitats surrounded by completely hostile environments in the presence of environmental
fluctuations. The population dynamics is reformulated in terms of a stochastic reaction–diffusion equation
and is reduced to a deterministic equation that incorporates the systematic contributions of the noise.
We obtain bifurcation diagrams and relations for the mean population density at the stationary state,
the critical patch size, and the mean number of individuals in the habitat. The effect of the noise differs,
depending on whether it affects the net growth rate or the intraspecific competition term. Fluctuations
in the net growth rate decrease the critical patch size, whereas fluctuations in the competition term
do not change the critical patch size. We compare our analytical results with numerical solutions of
the stochastic partial differential equations and show that our procedure proves useful in dealing with
reaction–diffusion equations with multiplicative noise.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

A crucial problem in population ecology, both froma theoretical
point of view as well as for conservation and management
purposes, is to determine the risk of extinction. The latter depends
on the internal and external processes that affect the stochastic
dynamics of populations (Lande et al., 2003).
Awide variety ofmodels for temporal evolution have developed

that incorporate stochasticity to analyze its effects on the
probability of extinction and the characteristic time of extinction.
Some models treat time in a continuous fashion (Feldman and
Roughgarden, 1975; Tuckwell, 1974),while others consider time to
be discrete (Schwager et al., 2006; or see for examplemodels based
on the Ricker map such as Melbourne and Hastings, 2008, Gao
et al., 2007). In general, these models predict that environmental
heterogeneity or environmental stochasticity increases the risk of
extinction by increasing fluctuations in the population density.
There has also been a certain interest in studying the influence
of the colour, i.e., the temporal correlations, of the environmental
noise on the population dynamics (Kaitala and Ranta, 1996; Kaitala
et al., 1997; Ripa and Lundberg, 1996; Xu and Li, 2003; Kamenev
et al., 2008). The increase or decrease of the time to extinction as
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a function of the noise colour has been studied recently (Schwager
et al., 2006).
There are two main sources of stochasticity that modify the

risk of extinction: demographic and environmental. Demographic
stochasticity occurs in small populations and it increases the ex-
tinction risk due to the lack of coincidences in the fate of indi-
viduals (Roughgarden, 1975). Environmental stochasticity occurs
because external fluctuations introduce fluctuations in birth and
death rates (Roughgarden, 1975). While environmental stochas-
ticity introduces random fluctuations at the population level,
demographic stochasticity introduces these fluctuations at the in-
dividual level.
Most models employed for demographic and environmental

stochasticities consider only temporal evolution. However, natural
environments are variable not only in time but also in space, and
little attention has been paid to spatiotemporal models (Gao et al.,
2007). For this reasonwe study a spatially extendedmodel, namely
a stochastic reaction–diffusion equation. The model incorporates
environmental stochasticity via an external noise that displays
spatial correlations and is white in time. As a result of including
space explicitly in our model, we can deal with the problem
of extinction from a different perspective, rather than simply
finding the probability of extinction and its characteristic time.We
consider a linear finite habitat of size L. The threat of extinction
arises from the fact that the surroundings are completely hostile.
Although the assumption of completely hostile surroundings

represents an idealization, it has been employed traditionally in
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the literature not only in general theoretical studies (Skellam,
1951; Bradford and Philip, 1970), but also in models of specific
populations such as plankton blooms (Kierstead and Slobodkin,
1953), critical plankton filaments (Martin, 2000), fish populations
in marine protected areas (Malvadkar and Hastings, 2008), annual
plants (Latore et al., 1998) and bacterial colonies under ultraviolet
light (Shnerb, 2000). In mathematical language, this assumption
implies that the population density vanishes at the boundaries
(x = 0 and x = L), which corresponds to Dirichlet boundary
conditions. If individuals in the course of their diffusive motion
through the habitat reach the boundaries, they are absorbed,
killed or removed instantaneously. Hostile surroundings favour
population extinction. If the net growth rate is high enough
to compensate for the losses at the boundaries, persistence is
guaranteed. This depends critically on the habitat size. There exists
a critical habitat size Lc , such that if L > Lc the population survives,
but if L < Lc it goes to extinction (see e.g. Kot, 2003, for a
review). This problem is known in the literature as the critical
patch size and it has received much attention since the pioneering
work by Kierstead and Slobodkin (1953). Their study has been
extended in various directions. For example, systems with two or
more subpopulations or different boundary conditions have been
considered (Cantrell and Cosner, 2001; Cantrell et al., 2001; Kot
and Schaffer, 1986; Lutscher et al., 2007).
In a recent paper (Méndez and Campos, 2008), the survival

and extinction conditions for a population living in a habitat
surrounded by a completely hostile environment were investi-
gated for different models of population growth. In terms of re-
action–diffusion equations, it was observed that the population
survives for patch lengths larger than a critical value,whereas it be-
comes extinct for smaller habitats. Chaotic patterns have also been
reported and analytically studied (Méndez et al., 2010) for the case
where the population dynamics is described by a coupled logistic
map.
To investigate the effect of environmental stochasticity, we

consider an external noise that gives rise to fluctuations in either
the net reproductive rate or the competition term. This paper also
addresses the open problem of how to include stochasticity in an
analytically tractable model (Melbourne and Hastings, 2008).
As a result of our analysis, we derive analytically the systematic

population density profiles within the patch and conditions for
population survival. We show that environmental fluctuations in
the characteristic growth rate enhance the population survival
probability, while fluctuations in the competition term do not
affect this probability and lead directly to the results of the
classical, non-fluctuating, critical patch size model (Kot, 2003).

2. Equation for the systematic population density

Consider a population with density ρ(x, t). For simplicity, we
assume that the population lives in a one-dimensional (1D) system
and evolves dynamically according to the reaction–diffusion
equation

∂ρ(x, t)
∂t

= D
∂2ρ(x, t)
∂x2

+ F [ρ(x, t), t] . (1)

We consider logistic population growth, i.e.,

F(ρ, t) = r1ρ(x, t)− r2ρ(x, t)2, (2)

where r1 is the net growth rate at low densities and r2 is the
regulation rate of the population due to intraspecific competition
or struggle for resources. Traditionally, one writes r1 = r and
r2 = r/K , where K is the carrying capacity of the environment.
In general, we can consider r1(x, t) and r2(x, t) as functions of
space and time, though they are usually treated as constant in

the literature (Murray, 2003). Eq. (1) does not include fluctuations
explicitly; environmental fluctuations have been included via r
and K . Due to the stochastic character of the resulting parameters,
Eq. (1) under these conditions is a stochastic partial differential
equation (SPDE), and its solution will be a functional of the state
of the noise (San Miguel and Toral, 2000).
The presence of an external noise in parameters r1 or r2 turns

Eq. (1) into an SPDE equation of the general form

∂ρ

∂t
= D

∂2ρ

∂x2
+ F(ρ)+ ε1/2g(ρ)η(x, t), (3)

where η(x, t) represents the noise and ε measures the noise
strength. Note that the external noise appears in a multiplicative
way in Eq. (3) if g(ρ) 6≡ const. We consider the case that the noise
is Gaussian with zero mean, 〈η(x, t)〉 = 0, and has a correlation
function given by〈
η(x, t)η(x′, t ′)

〉
= 2C(

∣∣x− x′∣∣ /λ)δ(t − t ′). (4)

Here C(x) is the spatial correlation function of the noise and λ its
characteristic length. In the numerical simulations C(x) has been
chosen to be Gaussian with variance 1 and C(0) = 10. Since
the noise is white in time, the density is a Markovian stochastic
variable. The noise term g(ρ)η(x, t) has a non-vanishing mean
value if g(ρ) is not a constant, which gives rise to systematic
(i.e., non-zero mean value) contributions to the dynamics of the
density (García-Ojalvo and Sancho, 1999).
We can rewrite Eq. (3) in a form where the noise term has zero

mean,

∂ρ

∂t
= D

∂2ρ

∂x2
+ Feff(ρ)+ ε1/2ζ (ρ, x, t). (5)

The effective reaction term is defined as

Feff(ρ) = F(ρ)+ εC(0)
dg(ρ)
dρ

g(ρ), (6)

and the new noise is given by

ζ (ρ, x, t) = g(ρ)η(x, t)− ε1/2C(0)
dg(ρ)
dρ

g(ρ). (7)

Let us write the density as

ρ(x, t) = ρd(x, t)+
∑
n

εn/2ρn(x, t), (8)

where the subscript d stands for ‘‘deterministic’’ and denotes the
systematic contributions. This expansion represents an extension
of the standard small-noise expansion procedure that keeps the
relevant, systematic contribution of the multiplicative noise (see
Appendix A for details). It allows us to separate the systematic
or deterministic effects from the stochastic effects of the external
noise on the population density. We assume that the determinis-
tic contribution dominates, while the stochastic part plays only a
small role, and we analyze the extinction conditions for the deter-
ministic part of the population density.Wewill showby comparing
the exact results with numerical simulations that focusing solely
on the deterministic density is a good approximation. Substitution
of (8) into (5) yields, to lowest order, the equation for the system-
atic (deterministic) contribution,

∂ρd

∂t
= D

∂2ρd

∂x2
+ Feff(ρd). (9)

The equation for the next order (first stochastic contribution) is
given by

∂ρ1

∂t
= D

∂2ρ1

∂x2
+
dFeff(ρd)
dρd

ρ1 + ζ (ρd, x, t).

The mean value of the noise ζ (ρ, x, t) is zero by construction,
〈ζ (ρ, x, t)〉 = 0, see Eq. (7), and its correlation function can be
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obtained from Eqs. (26) and (7),〈
ζ (ρ, x, t)ζ (ρ, x′, t ′)

〉
= ρd(x′, t ′)ρd(x, t)

〈
η(x, t)η(x′, t ′)

〉
.

This way of rearranging the noise term has allowed us to sepa-
rate the systematic contributions of the noise (thosewith non-zero
mean value) from the stochastic contributions (those with zero
mean value). The equation for the systematic (deterministic) den-
sity, the dominant contribution, reads

∂ρ

∂t
= D

∂2ρ

∂x2
+ F(ρ)+ ε0

dg(ρ)
dρ

g(ρ), (10)

where ε0 ≡ εC(0), and we have omitted the subscript d for nota-
tional simplicity.
We investigate this equation explicitly for two cases: for

fluctuations in the net growth rate or in the carrying capacity.
Fluctuations in the intrinsic growth rate (Tuckwell, 1974) mean
that the difference between births and deaths changes with time,
oscillating around a mean value. Fluctuations in the competition
term can represent temporal variations in the availability of
resources (Feldman and Roughgarden, 1975).

2.1. Fluctuating intrinsic net growth rate

If the intrinsic growth rate fluctuates around a mean value rm,
we can write r1(t) = rm

[
1+ ε1/2η(x, t)

]
and r2 = rm/K , with rm

and K constants. Introducing the expression for the fluctuations of
the intrinsic growth rate into Eq. (1), we obtain the following SPDE:

∂ρ

∂t
= D

∂2ρ

∂x2
+ rmρ

(
1−

ρ

K

)
+ ε1/2rmρη(x, t). (11)

In this case, g(ρ) = rmρ, as can be seen by comparing Eqs. (11)
and (3). According to Eq. (10), the systematic density obeys the
reaction–diffusion equation

∂ρ

∂t
= D

∂2ρ

∂x2
+ rm(1+ rmε0)ρ −

rm
K
ρ2, (12)

where the systematic effects of the fluctuating net growth rate are
represented by the term r2mε0ρ. In the following, we will assume
that K = 1 for simplicity.

2.2. Fluctuating competition term

Consider now Eq. (1) with r2(t) = r
Km

[
1+ ε1/2η(x, t)

]
and

r1(t) = r . Eq. (1) turns into the SPDE

∂ρ

∂t
= D

∂2ρ

∂x2
+ rρ

(
1−

ρ

Km

)
−
r
Km
ε1/2ρ2η(x, t). (13)

In this case, g(ρ) = −rρ2/Km. Making use of Eq. (10), we obtain
the following equation for the systematic population density:

∂ρ

∂t
= D

∂2ρ

∂x2
+ rρ

(
1−

ρ

Km

)
+
2r2

K 2m
ε0ρ

3. (14)

Note that the systematic contributions of the noise in the compe-
tition term give rise to a cubic term in the effective reaction func-
tion. Consequently, the range of validity of Eq. (14) is restricted to
sufficiently small noise strengths or small densities, respectively.
This does not affect our studies, since we are interested in the con-
ditions for extinctions, i.e., situations where the density is indeed
small. At higher densities, the model needs to be modified to in-
clude higher-order saturation effects. In the following, we will as-
sume that Km = 1 for simplicity.

3. Extinction and survival conditions

In order to analyze the extinction of a population in a 1D habi-
tat, we consider a population with density ρ(x, t), growing and

Fig. 1. Critical patch size, Lc , as a function of the strength of the external noise,
ε, when the intrinsic net growth rate (circles) or the competition term (squares)
fluctuates. Parameter values: D = 1, rm = 0.1 and Km = 1.

dispersing according to Eq. (1) and living in a region of size L sur-
rounded by a completely hostile environment. The corresponding
boundary conditions are of Dirichlet type:

ρ(−L/2, t) = ρ(L/2, t) = 0, (15)

which represent the harshness of the hostile environment.

3.1. Critical patch size

One of the relevant questions is whether the population
becomes extinct or not as a function of the noise amplitude. The
critical patch size Lc is defined as theminimum patch size required
for survival when the environment is hostile. If the patch size
L is lower than Lc , the population goes to extinction; otherwise
it survives. We want to investigate the effect of the stochastic
environment on Lc . The analysis can be carried out by determining
the linear stability conditions of the extinction state (ρ = 0) or by
solving the differential equation for the steady state (Kot, 2003). It
can be shown that there exists a critical patch size, given by Lc ≡
π
√
D/a1, where a1 = F ′eff(0) > 0, i.e., for a population without

the Allee effect (Méndez and Campos, 2008) (the prime denotes
differentiation with respect to the argument). For a fluctuating
intrinsic growth rate, we obtain

Lc = π

√
D

rm(1+ rmε0)
. (16)

The critical patch size decreases in the presence of noise in the
intrinsic growth rate. The population can survive even in smaller
patches, which corresponds to a noise-induced survival. A fluctu-
ating competition term does not change the critical patch sizewith
respect the case without external noise:

Lc = π

√
D
r
. (17)

In Fig. 1 we plot Eqs. (16) and (17) in comparison with their corre-
sponding numerical results obtained by integrating Eqs. (11) and
(13), respectively (see Appendix B for details of the numerical al-
gorithm). The agreement is excellent. The critical patch size de-
creases algebraically with ε0 in the case of a fluctuating intrinsic
net growth rate (r1) and remains constant when the competition
term (r2) fluctuates. This result differs completely from the effect
of internal (demographic) fluctuations, where the population has
a non-zero probability of extinction for any patch size L (Escudero
et al., 2004).
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3.2. Spatial patterns

Suppose that the habitat size exceeds the critical patch size and
that the population grows. The question then is to evaluate how
large itwill grow. This can be answeredby considering steady-state
solutions (spatial patterns). To find exact analytical solutions to
the differential equation (12), we assume that the system evolves
from an initial condition and reaches the stationary-state solution
after a transient. The existence of a steady state reflects the non-
homogeneous equilibriumbetweennewborns inside the patch and
those individuals killed at the boundaries. The equation to solve is

d2ρss
dx2
+
rm
D

[
(1+ rmε0) ρss − ρ2ss

]
= 0,

ρss(−L/2) = ρss(L/2) = 0. (18)

A closed-form solution is given by (see details in Appendix C)

ρss(ξ) =
1+ rmε0
2

{
1−

1+ k2
√
1+ k4 − k2

+
3k2

√
1+ k4 − k2

cd2
[

ξL
√
rm(1+ rmε0)

2
√
D
(
1+ k4 − k2

)1/4 , k
]}

, (19)

where k is the solution to the transcendent equation

cd2
[

L
√
rm(1+ rmε0)

4
√
D
(
1+ k4 − k2

)1/4 , k
]
=
1+ k2 −

√
1+ k4 − k2

3k2
. (20)

Another interesting quantity is the maximum or central density
ρm = ρss(ξ = 0), which is straightforwardly calculated from (19):

ρm =
1+ rmε0
2

(
1−

1− 2k2
√
1+ k4 − k2

)
. (21)

The spatially homogeneous steady states can be found from (12)
considering ρ constant in space and time. Likewise, their stability
can be analyzed by considering the temporal part of (12). For
a fluctuating intrinsic growth rate, the spatially homogeneous
steady states are ρ0 = 0 (unstable) and ρ0 = 1 + rmε0 (stable).
Thismeans that when the system evolves from its initial condition,
a spatial pattern is formed if the critical patch size is exceeded. The
central density ρm tends to ρ0 = 1 + rmε0 as L → ∞. So, the
conditionρm < 1+rmε0must hold, and Eq. (21) implies that k < 1.
However, Eq. (20) hasmultiple solutions for k and different profiles
ρss(ξ) are mathematically possible. One must specify appropriate
criteria in order to choose the actual solution. The population
grows to reach the stable state ρ0 = 1 + rmε0 in the absence
of hostile conditions. Therefore, the actual profile is expected to
be that which maximizes the density ρ at any point of the lattice,
and specifically the one thatmaximizes ρm. This criterion, together
with the fact that (21) is an increasing function of k, leads us to
the conclusion that the actual k must be the largest possible. In
summary, the system is expected to choose the maximum k from
the condition (20), provided that k < 1 is satisfied. In Fig. 2, we plot
the density profile given by Eq. (19) (solid line) with themaximum
value of k allowed by (20), and compare it with the corresponding
numerical solution (symbols), the result of the integration of
Eq. (11).
For the case of a fluctuating competition term, it has not

been possible to obtain exact analytic solutions for the spatial
patterns and one has to resort to other methods such as Galerkin
truncation (Méndez and Campos, 2008). In this case, the spatially
homogeneous steady states are, from (14), ρ0 = 0 (unstable) and
two other states

ρ±0 =
1±
√
1− 8rε0
4rε0

,

Fig. 2. Density profile of the steady state for a fluctuating intrinsic net growth rate
for different values of the external noise strength, ε. Homogeneous steady states,
ρ0 , are represented by dotted lines. Parameter values: L = 40, D = 1, rm = 0.1,
K = 1, and initial condition: ρ(x) = 0.5 cos(πx/L).

withρ−0 stable andρ
+

0 unstable. If the critical patch size is exceeded
and the noise intensity is small enough (ε0 < 1/8r), the system
evolves towards a spatial pattern, whose central density tends
to ρ−0 when L → ∞. If the noise intensity is sufficiently high
(ε0 > 1/8r) and the critical patch size is exceeded, the states
ρ±0 do not exist and the population grows without bounds. As
discussed above, in this case Eq. (14) is no longer valid, and the
population explosion is an artefact of the model. These results are
illustrated in Fig. 3,whereweplot the density profile obtained from
the numerical integration of Eq. (13).

3.3. Bifurcation diagrams

We plot diagrams for population persistence/extinction for
both Eqs. (20) and (21). A very interesting limiting case is the
extinction region which begins when ρm → 0 and is equivalent
to the limit k → 0 in (21). Taking the limit k → 0 in (20), we
obtain cd

(√
a/4, 0

)
= 1/
√
2, where a = L2rm (1+ rmε0) /D. This

can be easily solved to yield
√
a = π , which is exactly the result

given in (16).
In Fig. 4, we show the bifurcation diagram, i.e., the maximum

(central) density of the pattern (ρm), for different values of the
patch size L, when the intrinsic growth rate fluctuates. For L <
Lc , the only stable solution is ρ = 0, whereas for L > Lc the
stable solution is the non-trivial one. This behavior corresponds
to a forward bifurcation. The bigger ε0, the smaller Lc and the
larger the regime with non-trivial stable solutions. In other words,
populations can survive in smaller environments if external noise
is present. In Fig. 4, we also compare the analytical solution from
Eqs. (20) and (21) (solid curves) with the numerical solutions of
Eq. (11).
When the competition term fluctuates, the bifurcation diagram

is qualitatively very similar to that of Fig. 4, because in both cases
the effective reaction term describes a compensatory growth. To
obtain an analytical expression for ρm versus L one has to make
use of approximation methods (Méndez and Campos, 2008).

3.4. Number of individuals

Another measure for the population is the number of individ-
uals per unit length, i.e., the mean density of individuals in the
habitat where they can survive. When the intrinsic growth rate
fluctuates, this quantity reads

N
L
=
1
L

∫ L/2

−L/2
ρss(x)dx
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Fig. 3. Density profile of the steady state at different times for a fluctuating competition term. (a) For ε0r = 0.12 < 1/8, a steady state exists, where the homogeneous
steady state is represented by a dotted line. (b) For ε0r = 0.13 > 1/8, the population density increases without reaching a steady state. The initial population profile is
included in both situations: ρ(x) = 0.5 cos(πx/L). Parameter values: L = 40, D = 1, r = 0.1 and Km = 1.

Fig. 4. Bifurcation diagram for a fluctuating intrinsic net growth rate. Symbols
correspond to numerical integrations of Eq. (3) for different values of the strength
of the noise, ε. The solid lines are the theoretical results, given by Eqs. (19) and (20).
Homogeneous steady states,ρ0 , are represented by dotted lines. Parameters:D = 1,
rm = 0.1 and K = 1.

=
1+ rmε0
2

{
1−

1+ k2
√
1+ k4 − k2

+
6k2

√
1+ k4 − k2

∫ 1/2

0
cd2

[
ξ
√
a

2
(
1+ k4 − k2

)1/4 , k
]
dξ

}
.

(22)
In Fig. 5, we compare the above result (solid curves) with the
numerical computations (symbols). This confirms the idea that a
fluctuating growth term favours population survival, in agreement
with the results for Lc found above and the general idea throughout
the present paper.

4. Discussion

Environmental stochasticity introduces noise at the population
level due to fluctuations in exogenous environmental factors such
as temperature or other climatic factors. Temporal models predict
an increase in extinction risk. We have proposed a continuous
model for a population living in a linear finite habitat surrounded
by a completely hostile environment. In addition, we consider
that environmental stochasticity affects either the net growth

Fig. 5. Mean density of individuals in a patch surrounded by a hostile environment
as a function of the noise strength, ε, for different patch sizes when the intrinsic net
growth rate fluctuates. Symbols correspond to numerical integrations of Eq. (3), and
lines are the theoretical results, Eq. (22). Parameter values: D = 1, rm = 0.1 and
K = 1.

rate or the carrying capacity. The risk of extinction is due to the
loss of individuals that cross the boundaries. Our results can be
summarized as follows.
(i) We have reduced the SPDE to an effective deterministic
equation that incorporates the systematic effects of the noise. If
the population grows logistically, the systematic contributions of
the external noise do not affect the compensatory character of the
effective reaction.
(ii) When the critical patch size is exceeded, the systematic
contribution to the density evolves to a stable spatial pattern at
random sampling time after the process has reached the stationary
state. For the case of a fluctuating net growth rate we have
obtained exact analytical solutions for the systematic population
density at the steady state, an exact bifurcation diagram for the
central density in terms of the habitat size, and the mean density
of individuals in the habitat. The exact analytical results have
been verified by numerical simulations, which show an excellent
agreement. This proves that the effective deterministic equation
we have derived captures the essential stochastic dynamics of the
system.
(iii) We have obtained exact analytical results for the critical
patch size, both for the case of a fluctuating net growth rate
and the case of a fluctuating carrying capacity. In the first case,
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the critical patch size is found to be decreased in the presence
of noise, so the population can survive in smaller patches. In
other words, environmental fluctuations reduces the extinction
risk. This difference is due to the fact that the competition term,
being nonlinear, has no effect on the critical patch size, which is
determined by the dynamics for small densities, where nonlinear
terms are negligible.
The result obtained for the first case is in apparent contradic-

tion with previous studies, which claim that environmental fluc-
tuations increase the extinction risk. However, both predictions
are compatible if the stochasticity is interpreted as heterogeneity.
Actually, the mechanism of extinction we employ here is due to
the presence of a hostile environment which can destroy the pop-
ulation if the rate of losses at the boundaries is high enough. In
previous studies on extinction due to environmental stochasticity,
extinction is not due to an effect of the boundaries but due to fluc-
tuations in population density. The absorbing boundaries are thus
a contributor to the environmental heterogeneity. When the habi-
tat is environmentally homogeneous, the environmental variance
is highest; that is, there is a high contrast between habitat and
boundaries. If the net growth rate fluctuates, the variance of the
habitat increases but the total variance experienced by the popula-
tion is lower because the contrast between habitat and boundaries
is smoothed out. Lower variance entails lower extinction risk.
(iv) For a fluctuating carrying capacity, the critical patch size is
not affected by environmental fluctuations.When the critical patch
size is exceeded, the mean density evolves towards a stable spatial
pattern if the noise intensity is smaller than 1/8r . If L > Lc
and noise intensity is higher than 1/8r , the population grows
unboundedly, representing an interesting but unrealistic biological
behavior. As discussed above, this situation falls outside the range
of validity of our model. Another limiting case we have not
considered in this paper is when r1 and r2 oscillate with the same
frequency, i.e., the case of a stochastic r parameter. The growth
and interaction terms fluctuate, and an equation for the systematic
density can be written. The critical patch size is also given by Eq.
(16), but the spatial patterns and the bifurcation diagram differ
considerably from the fluctuating r1 case. Moreover, the number of
individuals increases with respect to the noise amplitude for large
patch sizes and decreases for small patch sizes.
Our results can be applied to populations affected by a critical

patch size and environmental fluctuations, for example, ecological
communities confined to finite habitats or patches surrounded
by predators or other adverse environments such as plankton
blooms, plankton filaments, fish populations, bacterial colonies
or annual plants. In our model, we have considered completely
hostile environments, and this is adequate for species where the
population is dominated by individuals that have little control over
their movement, such as juveniles and larvae.
This work can be extended to other ecological situations by

including the Allee effect or bymodifying the boundary conditions.
For example, if the population disperses towards more favorable
environments because of the presence of habitat edges, the
boundary conditions must be density dependent (Cantrell and
Cosner, 2007). Another example is a fish population living in rivers.
The habitat edge may include both a hostile condition and a zero
flow condition (Lutscher et al., 2007). From a theoretical point of
view, the work can be also modified to analyze the effects of noise
with only temporal or spatial correlations.
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Appendix A. Mean value of the noise term

The mean value can be evaluated as follows:

〈g(ρ)η(x, t)〉 =
∫ t

0
dt ′
∫
dx′
〈
η(x, t)η(x′, t ′)

〉 〈δg(ρ(x, t))
δη(x′, t ′)

〉
= 2

∫
dx′C

(∣∣x− x′∣∣ /λ) 〈dg(ρ)
dρ

δρ(x, t)
δη(x′, t ′)

∣∣∣∣
t ′=t

〉
. (23)

On the other hand, Eq. (3) can be integrated formally to obtain

ρ(x, t) = ρ(x, 0)+ D
∂2

∂x2

∫ t

0
dsρ(x, s)+

∫ t

0
dsF [ρ(x, s)]

+ ε1/2
∫ t

0
dsg[ρ(x, s)]η(x, s). (24)

Then, from (24)

δρ(x, t)
δη(x′, t ′)

= ε1/2
∫ t

0
dsg[ρ(x, s)]

δη(x, s)
δη(x′, t ′)

= ε1/2δ(x′ − x)g[ρ(x, t ′)]. (25)

Finally, substituting (25) into (23), we obtain

〈g(ρ)η(x, t)〉 = 2ε1/2
〈
dg(ρ)
dρ

g(ρ)
〉 ∫

dx′C
(∣∣x− x′∣∣ /λ) δ(x′ − x)

= ε1/2C(0)
〈
dg(ρ)
dρ

g(ρ)
〉
, (26)

where in the last equality we have made use of the Stratonovich
interpretation of the calculus (

∫
dx′δ(x′ − x) = 1/2). Eq. (26) is

Novikov’s theorem for spatially extended systems (Novikov, 1965).

Appendix B. Numerical algorithm

The numerical integration of Eqs. (11) and (13) was performed
using the general approach for stochastic partial differential
equations (SPDEs) (San Miguel and Toral, 2000). The habitat is
simulated as a grid consisting of N lattice sites of size 1x, such
that L = N1x is the habitat size. Every lattice site i is identified by
its position xi, which is a discrete variable. The continuum density,
ρ(x, t), is replaced by its analogue in discrete space, ρ(xi, t), and
the external noise is simulated via the generation of Gaussian
numbers, where we replace the white noise η(x, t) by 1

√
1x
ηi(t),

as a result of the relation between the Dirac and the Kronecker
delta functions. Now the noise obeys 〈ηi(t)ηj(t ′)〉 = δijδ(t − t ′).
Moreover, the noise amplitude is εC(0) = ε/1x, using the white
noise approximation on a lattice (Santos and Sancho, 1999). Eqs.
(11) and (13) can be generalized as

∂ρ

∂t
= D

∂2ρ

∂x2
+ F(ρ)+ G(ρ)η, (27)

where thenoise appears in amultiplicativeway. Assuminguniform
time steps of size 1t and integrating Eqs. (11) and (13) using the
Euler algorithm, one obtains the dynamic equation that is discrete
in both space and time,

ρt+1t,i = ρt,i +1t
D
1x2

(ρi+1,t − 2ρi,t + ρi−1,t)+1t1/2G(ρi,t)ut,i

+1t
[
F(ρi,t)+

1
2
G(ρi,t)G′(ρi,t)u2t,i

]
, (28)

where 1t1/2ut,i = ηi(t). Simulations have been performed with
1x = 0.1,1t = 0.0025 andD = 1.Wehave varied the parameters
r , K , ε and L in different simulations.
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Appendix C. Exact solution

The dimensionless variable ξ = x/L turns Eq. (18) into

d2ρss
dξ 2
+ aρss − bρ2ss = 0, ρss(1/2) = ρss(−1/2) = 0, (29)

where a = L2rm (1+ rmε0) /D and b = L2rm/D. Due to the
symmetry of Eq. (29) in the variable ξ , we expect that dρss/dξ = 0
at ξ = 0. Eq. (29) admits solutions in terms of Jacobi elliptic
functions of the form ρss(ξ) = A + Bcd2(Cξ, k), where cd(u, k)
is the quotient cn(u, k)/dn(u, k). Substituting this solution into
Eq. (29) and grouping in powers of the function cd(u, k), we obtain
a set of three algebraic equations that allows us to find the values
for the constants A, B and C in terms of k. It is not difficult to check
that ρss(−1/2) = ρss(1/2) = 0 and dρss/dξ = 0 at ξ = 0. Then,
ρss is

ρss(ξ) =
1+ rmε0
2

{
1−

1+ k2
√
1+ k4 − k2

+
3k2

√
1+ k4 − k2

cd2
[

ξ
√
a

2
(
1+ k4 − k2

)1/4 , k
]}

, (30)

where we obtain the parameter k from the boundary condition
ρss(1/2) = 0; that is,

cd2
[ √

a

4
(
1+ k4 − k2

)1/4 , k
]
=
1+ k2 −

√
1+ k4 − k2

3k2
. (31)

Eq. (30), together with (31), constitutes the solution to (18).
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