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Abstract. We construct a transport model for particles that alternate rests
of random duration and flights with random velocities. The model provides
a balance equation for the mesoscopic particle density obtained from the
continuous-time random walk framework. By assuming power laws for the
distributions of waiting times and flight durations (for any velocity distribution
with finite moments) we have found that the model can yield all the transport
regimes ranging from subdiffusion to ballistic depending on the values of the
characteristic exponents of the distributions. In addition, if the exponents satisfy
a simple relationship it is shown how the competition between the tails of
the distributions gives rise to a diffusive transport. Finally, we explore how
the details of this intermittent transport process affect the success probability
in an optimal search problem where an individual searcher looks for a target
distributed (heterogeneously) in space. All the results are conveniently checked
with numerical simulations.
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1. Introduction

Transport processes are widespread and common in many fields of physics, chemistry
and biology [1]. Traditionally, the Brownian motion has been considered as the
underlying microscopic dynamics for transport processes. Thus, diffusion has been used to
characterize most movement patterns in biological and ecological systems [2]. As is widely
known, diffusive transport is characterized by a mean square displacement which increases
linearly with time, 〈x2(t)〉 ∼ t. However, there are a lot of systems that do not follow this
behavior [3]–[12]. In these cases the mean square displacement is a power law with time
rather than a linear dependence, 〈x2(t)〉 ∼ tγ , where 0 ≤ γ ≤ 2. This regime is known as
anomalous diffusion and has received much attention in recent decades. The continuous-
time random walk (CTRW) framework has been used to describe anomalous diffusion
from a mesoscopic level [3, 13, 14] (albeit other formalisms have also been provided in the
literature to explain this behavior). In this scheme the random walkers are assumed to
perform jumps of random lengths distributed according to a probability density function
(PDF) frequently called the dispersal kernel. These jumps are alternated with resting
phases of random duration, which are also distributed according to a function known as
the waiting time PDF. Using different distributions for the jump lengths and waiting times
it is possible to generate all the possible transport regimes above. However, the model has
the unphysical microscopic feature that jumps are performed instantaneously. In order to
overcome this problem Zaburdaev et al [15] presented a new model where the particles
are permanently flying with random velocities. This model is also proposed within the
formalism of the CTRW and it is more realistic from a microscopic point of view since
there are many non-biological systems where the particles are continuously moving.

doi:10.1088/1742-5468/2011/02/P02033 2

http://dx.doi.org/10.1088/1742-5468/2011/02/P02033


J.S
tat.M

ech.
(2011)

P
02033

Intermittent random walks

However, in many biological systems it is common to find that the individuals present
an intermittent behavior, in which episodes of high activity (flights) are alternated with
episodes of inactivity. Intermittent movement is widely observed in animals and in
cells [16]–[18]. Theoretical studies have shown that intermittent behavior is an efficient
search strategy (see below) but little attention has been paid to incorporating the
intermittent movement into a mesoscopic description. In order to cover this gap, we
generalize here the velocity version of the CTRW scheme (sections 3–5) to incorporate
the intermittency. We point out that similar ideas have been explored recently in the
context of cell migration [19] or nanoparticle movement [20], but the models in those
works are far less general that the one we shall present here.

According to the ubiquity of intermittent strategies observed in animal motion
patterns, there has also been recently an emerging interest in the study of optimization
problems regarding intermittent search. In [21] it was shown that when the distributions
of random times spent by the individual waiting at a position (scanning phase) and
flying (relocation stage) are exponential, then there exists an optimal relation between
the two characteristic times of the distributions, for which the mean search time to detect
a randomly localized target gets minimized. Moreover, the agreement found between this
relation and the foraging data recorded for different species is overwhelming [21]. At the
sight of this, many extensions and modifications of the original problem were proposed; at
this stage the number of papers published on this topic is too large to provide an exhaustive
review here, but the reader can find in [22]–[27] some of the latest advances made. Along
the lines of these works, in the present paper we address a characteristic search problem
where the targets are assumed to be continuously distributed throughout the whole spatial
domain (though a certain scanning time is required to detect them). While the case of
homogeneous target distribution has been already explored by different authors, there is
little knowledge of the results arising when targets are allocated heterogeneously according
to a given density function. In [28] the authors considered the case of targets distributed
according to a Poisson distribution, but introduced several assumptions to avoid the
mathematical difficulties of dealing with quenched disorder. As we will try to show here,
the spatial heterogeneities mean that the properties of the transport pattern followed by
the individuals become essential in order to define an optimal strategy. Our main objective
here (section 6) is then to explore the role that these motion patterns play on the mean
search time needed to detect the target.

2. Previous models

Let us start by introducing the traditional and well-known CTRW framework [29]. For
simplicity, consider a one-dimensional and infinite continuous medium where there is a
set of non-interacting particles. Each particle performs instantaneous jumps from one
position to another. Before jumping, particles must wait at their position a random time
distributed according to the waiting time PDF ϕ(t). On the other hand, the jump lengths
are distributed according to the dispersal kernel Φ(x) which is assumed symmetric. Then,
we define Jj(x, t) as the density of particles arriving at the position x at time t, which is
given by the mesoscopic balance equation

Jj(x, t) = δ(x)δ(t) +

∫
R

∫ t

0

Jj(x − x′, t − t′)ϕ(t′)Φ(x′) dt′ dx′, (1)
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where the subscript j means jump and refers to the jump model. The first term on the
right-hand side is the contribution from the initial condition and the second term stands
for the density of particles that arrived previously at a different position at a previous
time and have waited a time t′ to perform a jump of length x′ to reach the point x. Let
us define ϕ∗(t) =

∫ ∞
t

ϕ(t′) dt′ as the survival probability, which gives us the probability
that a particle has not jumped within the period [0, t]. Using this function, the density
Pj(x, t) of particles at the position x at time t is given by

Pj(x, t) =

∫ t

0

Jj(x, t − t′)ϕ∗(t′) dt′. (2)

Equations (1) and (2) define completely the jump model. Transforming equations (1)
and (2) by Fourier–Laplace it is possible to solve for Pj(k, s),

Pj(k, s) =
ϕ∗(s)

1 − ϕ(s)Φ(k)
, (3)

where k and s are the corresponding arguments in the Fourier and Laplace space.
Although this model has been used in several applications, it presents some unphysical
features such as, for example, that the mean square displacement becomes infinite for
dispersal kernels with heavy tails [30, 31]. This problem arises because the model assumes
a flight time equal to zero or, in other words, an infinite jumping velocity. Although this is
not realistic, it is a good approach for systems with typical waiting times larger than flight
times. There are some ways to deal with this kind of problem, for example by assuming
correlations between waiting times and jump lengths [31, 32]. In particular, Zaburdaev
et al [15] have recently proposed a new model that introduces a finite flight velocity for
particles. They considered that particles fly with random velocities chosen from a velocity
distribution function h(v). The flight duration is a random variable distributed according
to the PDF φ(t). When the waiting time finishes, the particles randomly change their
velocity and the process starts again. In order to express this idea they introduced the
density function Jf(x, t) of particles changing their velocity at position x at the time t as

Jf(x, t) = δ(x)δ(t) +

∫
R

∫ t

0

Jf(x − vt′, t − t′)φ(t′)h(v) dt′ dv, (4)

where the subscript f refers to the flight model. In analogy with the jump model, it is
possible to define the density of particles located at position x at time t as

Pf(x, t) =

∫
R

∫ t

0

Jf(x − vt′, t − t′)φ∗(t′) dt′ dv, (5)

where φ∗(t) provides the probability that the velocity of a particle does not change until
a flight time t; this is defined by φ∗(t) =

∫ ∞
t

φ(t′) dt′. It is possible to solve the model in
Fourier–Laplace space:

Pf(k, s) =
μ2(k, s)

1 − μ1(k, s)
, (6)
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Figure 1. Schematic picture of the trajectories of a particle for the three models
discussed in the text. For the intermittent model, the first waiting and flight
periods are explicitly indicated to facilitate understanding.

where

μ1(k, s) =

∫ ∞

0

e−st

∫
R

e−iktvh(v)φ(t) dv dt, (7)

μ2(k, s) =

∫ ∞

0

e−st

∫
R

e−iktvh(v)φ∗(t) dv dt. (8)

Zaburdaev et al [15] showed that there is a connection between the flight time and velocity
distributions with the dispersal kernel of the traditional (jump-based) CTRW given by

Φ(x) =

∫ ∞

0

∫
R

δ(x − vt)φ(t)h(v) dv dt. (9)

Although equation (9) tells us that there is a connection between both descriptions,
the macroscopic behavior presents fundamental differences [33], which will become
accentuated for heavy-tailed distributions. In the jump model, when the waiting time
PDF lacks a finite first moment and the dispersal kernel has a finite second moment, the
waiting time dominates the macroscopic behavior and the transport regime of the system
is subdiffusive. This behavior cannot be recovered from the flight model since the particles
there are always in motion. On the other hand, when the flight times of the particles are
large enough, the shape of the density profile obtained from the flight model is drastically
different from that obtained from the jump model due to the fact that the dynamics of
the flight model is faster than that of the jump model.

3. The model with intermittency

We propose here a model that takes into account both waiting times between successive
jumps and jumps with finite velocity (or, equivalently, flights of non-zero duration). This
is the main goal of this work. In figure 1 we have drawn the trajectories of a particle for
each model: the jump model, the flight model and the intermittent model. The particle
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starts at t0 at x0 and reaches the point x1 at time t1 by performing an instantaneous
jump after waiting a time t1 − t0 (jump model) or traveling directly from x0 to x1 at
constant velocity without waiting (flight model) or waiting first at x0 and then jumping
with constant velocity to reach x1 at time t1. In our model, each particle waits some
random time distributed by the waiting time PDF ϕ(t), and then the particle starts to
fly with some random velocity distributed according to the velocity PDF h(v) during a
random time distributed by the PDF φ(t). Let us define Jw(x, t), the density of particles
that were flying but now are waiting at position x at time t, as

Jw(x, t) = δ(x)δ(t) +

∫
R

∫ t

0

Jf(x − vt′, t − t′)h(v)φ(t′) dt′ dv, (10)

where the subscript w refers to waiting particles. In consequence, the density of particles
that were waiting and start to fly at position x at time t after the waiting period of
duration t′ is given by

Jf(x, t) =

∫ t

0

Jw(x, t − t′)ϕ(t′) dt′. (11)

Now, we can define the density of waiting particles at position x at time t, namely Pw(x, t),
and the density of particles flying at position x at time t, namely Pf(x, t), as

Pw(x, t) =

∫ t

0

Jw(x, t − t′)ϕ∗(t′) dt′, (12)

Pf(x, t) =

∫
R

∫ t

0

Jf(x − vt′, t − t′)h(v)φ∗(t′) dt′ dv, (13)

respectively. The Fourier–Laplace transform of (10) reads

Jw(k, s) = 1 + Jf(k, s)λ1(k, s), (14)

where

λ1(k, s) =

∫ ∞

0

e−st

∫
R

e−iktvh(v)φ(t) dv dt, (15)

and the corresponding Fourier–Laplace transform of (11) is

Jf(k, s) = Jw(k, s)ϕ(s). (16)

By combining equations (14) and (16) we get

Jw(k, s) =
1

1 − λ1(k, s)ϕ(s)
, (17)

Jf(k, s) =
ϕ(s)

1 − λ1(k, s)ϕ(s)
. (18)

Finally, inserting (17) and (18) into the Fourier–Laplace transforms of (12) and (13) one
finds

Pw(k, s) =
ϕ∗(s)

1 − λ1(k, s)ϕ(s)
, (19)

Pf(k, s) =
λ2(k, s)ϕ(s)

1 − λ1(k, s)ϕ(s)
, (20)
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where

λ2(k, s) =

∫ ∞

0

e−st

∫
R

e−iktvh(v)φ∗(t) dv dt. (21)

The total density of particles at position x at time t, namely P (x, t), is the sum

P (k, s) = Pw(k, s) + Pf(k, s). (22)

4. Relation between models

Now we want to show that under the appropriate limits our model reduces to the flight
model or to the jump model. To recover the flight model we consider ϕ(t) = δ(t),
which means that the waiting time is zero. In this case ϕ(s) = 1 and the survival
probability ϕ∗(s) = 0, therefore Pw(k, s) = 0 and Pf(k, s) = (λ2(k, s))/(1 − λ1(k, s)),
which corresponds to equation (6). On the other hand, to recover the jump model we set
φ(t) = δ(t), which means that the flight time is zero. Introducing this into equation (20)
we find Pf(k, s) = 0, since φ∗(s) = 0. To show that equation (19) equals equation (3),
we need to prove that λ1(k, s) is equal to Φ(k). To this end we introduce the identity
e−iktv =

∫
R

e−ikxδ(x − vt) dx into (15) to obtain

λ1(k, s) = F
[∫ ∞

0

e−st

∫
R

δ(x − vt)h(v)φ(t) dv dt

]
, (23)

where F means the Fourier transform. Now, introducing the Taylor expansion of e−st and
taking into account the identity δ(x − vt) = δ(v − x/t)/t, equation (23) becomes

λ1(k, s) = Φ(k) + F
[ ∞∑

n=1

(−s)n

n!

∫ ∞

0

tn−1h
(x

t

)
φ(t) dt

]
, (24)

where we have assumed absolute convergence of each term in the sum. The term inside
the brackets is equal to zero when φ(t) = δ(t) for any distribution h(v) and therefore
λ1(k, s) = Φ(k).

5. Mean square displacement

The transport process is commonly characterized by the asymptotic (t → ∞) behavior of
the mean square displacement (MSD) as a function of time. This characterization is given
through the exponent γ that rules the asymptotic MSD. When 〈x2(t)〉 ∝ tγ with γ = 1,
the transport regime of the system under study is the standard (normal) diffusion, if γ < 1
the transport is subdiffusive, and if 1 < γ < 2 it is superdiffusive; finally γ = 2 corresponds
to the ballistic transport. We recall that we are concerned here with unidimensional and
symmetric dispersal kernels. Mathematically the MSD of a number density of particles
P (x, t) is defined by

〈x2(t)〉 =

∫
R

x2P (x, t) dx, (25)
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which in the Fourier–Laplace space reads

〈x2(s)〉 = − ∂2

∂k2
P (k, s)|k=0. (26)

Now, applying to equation (22), we obtain

〈x2(s)〉 = 〈v2〉
{

ϕ(s)L[t2φ∗(t)]
1 − φ(s)ϕ(s)

+
φ∗(s)ϕ2(s)L[t2φ(t)]

[1 − φ(s)ϕ(s)]2
+

ϕ∗(s)ϕ(s)L[t2φ(t)]

[1 − φ(s)ϕ(s)]2

}
, (27)

where L means Laplace transform. We have assumed for convenience that the second
moment 〈v2〉 of the velocity distribution exists, since we are basically interested in how
the distributions φ(t) and ϕ(t) affect the macroscopic behavior of the system.

To calculate the MSD explicitly let us take for the waiting time distribution and the
flight time distribution

ϕ(t) =
α

(1 + t)1+α
, φ(t) =

β

(1 + t)1+β
, (28)

respectively, with α > 0 and β > 0. The values of α and β determine the existence of finite
moments. In order to calculate the MSD we need to work with the Laplace transform of
the distributions (28) but, as we are interested in asymptotic properties (s → 0), we only
keep the lowest orders of the expansion of ϕ(s) and φ(s) in powers of s as follows:

ϕ(s) ∼

⎧⎪⎨
⎪⎩

1 − sα, 0 < α < 1,

1 − s + sα, 1 ≤ α < 2,

1 − s + s2, α ≥ 2,

and the same holds for φ(s) but replacing α by β. Introducing these expansions into
equation (27) and applying the inverse Laplace transform, we obtain the following results
for the MSD in the limit s → 0:

〈x2(t)〉 ∼

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t2, 0 < β < α, α > 0,

t2−β+α, α ≤ β < 2, 0 < α < 1,

t3−β, α ≤ β < 2, α ≥ 1,

tα, β ≥ 2, 0 < α < 1,

t, β ≥ 2, α ≥ 1.

(29)

In figure 2 we plot a diagram for the parameter space α − β where the corresponding
transport regions are specified. On the dashed line separating the regions of subdiffusion
and superdiffusion it holds that α = β − 1, and then the transport regime is diffusive.
This clearly illustrates the competition between the tails of the waiting time and flight
time PDFs.

In order to prove our analytical predictions we have made Monte Carlo simulations
of the random walk process, averaged over a large number of realizations. Our numerical
simulations collapse perfectly with the analytical predictions as is shown in figure 3 proving
not only the validity of our analytical results, but also the suitability of the model itself
since we did not make explicit use of the equations above in the simulations.

As shown in (29), our model is able to reproduce all transport regimes ranging from
subdiffusive to ballistic. When 0 < α ≤ 1 and α ≤ β < 2 the asymptotic behavior of the
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Figure 2. Transport regions for the possible values of the characteristic exponents
α and β. On the dotted line the transport regime is diffusive.

Figure 3. MSD versus time in a log–log plot. The symbols correspond to the
numerical simulations and the straight lines are the linear fit. The slope provides
the numerical value of the exponent γ of the expression 〈x2(t)〉 ∼ tγ . The
theoretical prediction for the case with α = 0.6 and β = 1.2 (circles) is γ = 1.4,
for the case α = 1 and β = 1/2 it is γ = 2 (triangles) and for the case α = 0.3
and β = 1.8 it is γ = 1/2 (squares).

MSD presents a particular behavior given by t2−β+α, a proof of the competition between
the tails of the PDFs ϕ(t) and φ(t). In some cases (α < β−1) the waiting times govern the
dynamics of the system and its heavy-tailed distribution induces a subdiffusive regime; in
the opposite case (α > β − 1) the flight times dominate the dynamics of the system and
superdiffusion is obtained. Interestingly, the competition between the tails is equilibrated
when α = β − 1. This competition allows us to obtain any transport regime with the
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same formal shape as the distribution’s shape. This feature cannot be found either in the
jump model or in the flight model, where the transport regime is fully determined by the
order of the largest finite moment of ϕ(t) or φ(t), respectively.

6. Implications on search strategies

Now we will explore how the details of the motion patterns considered here may affect the
success of a search process. To do this we will adopt the same approach as the authors
in [22]. Consider an individual performing an intermittent motion across an infinite one-
dimensional domain, such as that we have implemented here. As usual in intermittent
search strategies, it is considered that resting periods correspond to a scanning phase
during which the searchers can perceive the target, while flights are used as a relocation
phase that the searchers employ to reach a new position in order to start a new scanning
phase. So, searchers are not able to detect the target during flights. The target is assumed
to be distributed throughout the whole domain, so when the searcher reaches a new
position x there is a probability β that the target can be effectively found there. In
that case, the probability that the searcher has not been able to detect the target after a
scanning period of duration τ is denoted by p(x, τ). The function p(x, τ), in consequence,
must be a monotonically decreasing function which satisfies p(x, 0) = 1, p(x,∞) = 0.
Besides, the probability that the target has not been detected in a single scanning phase
of duration τ will be q(x, τ) ≡ (1 − β) + βp(x, τ).

6.1. Homogeneous target distribution

If all the positions in the domain are considered equivalent (that is, if β and p are
independent of space), it is possible to provide an exact expression for the mean search
time; this result has been derived in several works [21, 23, 22]. We define S(t) as the overall
probability that the target has not been detected by a searcher after a time t. Then the
Laplace transform of this function can be written in terms of the Laplace transforms of
the flight and waiting time distributions, φ(t) and ϕ(t), respectively [22]:

S(s) =
L[ϕ∗q] + L[ϕq]φ∗(s)

1 − L[ϕq]φ(s)
. (30)

Note that here again we use either the Laplace argument s or L to denote that a function
is being defined in the Laplace space.

The mean search time can be computed from the previous expression through

〈T 〉 =

∫ t

0

t
d

dt
S(t) dt = lim

s→0
S(s). (31)

This result allows us to study the success of a search strategy (in terms of minimizing
〈T 〉) as a function of the mean waiting and mean flight times. In general, when the
target is homogeneously distributed we should expect that it is more profitable to spend
most of the time in the scanning phase in order to detect the target as quickly as possible.
However, it is risky to carry out too long a scanning phase since there is a finite probability
1 − β that the target is not present, so the searcher could be wasting its time there. In
consequence, it is often found from (30) and (31) that if the waiting time and flight time
distributions have finite first moments, then there exists an optimum waiting (scanning)
time that minimizes 〈T 〉.
doi:10.1088/1742-5468/2011/02/P02033 10
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6.2. Heterogeneous target distribution

As fas as we are concerned, there are no previous studies that have addressed the previous
search problem for the case when the target is not homogeneously distributed in space.
Introducing a heterogeneous target distribution poses a new dilemma to the searchers.
Now they have to choose between spending a long time in the scanning phase in order
to detect (sooner or later) the target, or switching to the relocation phase and wasting
some time in order to reach a new position where the probability of succeeding can be
higher. So, the details of the motion pattern become essential in order to determine what
the optimal strategy is.

Let us assume that the searcher starts a new relocation phase at the origin at t = 0.
The successive random durations of the relocation phases are denoted by τ1, τ3, τ5, . . .
while random durations of the scanning phases read τ2, τ4, τ6, . . .. Moreover, we introduce
the random variables z1, z2, z3, . . . to specify the positions at which the successive scanning

phases will take place. With all this, we can write an expression for the probability S
(1)
n (t)

that the target has not been detected yet by the searcher when it is performing its nth
scanning phase:

S(1)
n (t) =

∫
τ1+τ2+···+τ2n�t

dτ1 dτ2 · · ·dτ2n

∫ ∞

−∞
dz1 · · ·

∫ ∞

−∞
dzn

[
n−1∏
k=0

φ(τ2k+1)

]

×
[

n−1∏
k=1

ϕ(τ2k)q(τ2k, zk)Λk(z1, . . . , zk, τ1, τ3, . . . , τ2k−1)

]

× [ϕ∗(τ2n)q(τ2n, zn)Λn(z1, . . . , zn, τ1, τ3, . . . , τ2n−1)], (32)

where Λi stands for the probability that the ith scanning phase will take place at position
zi conditioned on the previous trajectory followed by the searcher, so in general Λi can
depend on all the previous flight times and scanning positions. Note also in (32) that
the probability q that the target is not detected during a single scanning phase is now
space-dependent, in contrast with the homogeneous case above.

The main problem with expression (32) is that the probabilities Λi depend on the
flight times τ1, τ3, τ5, . . ., which makes the analytical treatment almost impossible. So, in
order to reach some exact results we will consider here a simplified situation in which
flight times have fixed duration tf (albeit they can still be performed at different speeds).
This removes the explicit dependences of the functions Λi on time, so (32) will read now

S(1)
n (t) =

∫
τ1+τ2+···+τ2n�t

dτ1 dτ2 · · · dτ2n

∫ ∞

−∞
dz1 · · ·

∫ ∞

−∞
dzn

[
n−1∏
k=0

δ(τ2k+1 − tf)

]

×
[

n−1∏
k=1

ϕ(τ2k)q(τ2k, zk)Λk(z1, . . . , zk)

]
[ϕ∗(τ2n)q(τ2n, zn)Λn(z1, . . . , zn)]. (33)

Moreover, since we are basically interested in the effects of motion on the search
success, we will consider for simplicity that the target can be present at any position, so
β = 1. Then, the function q takes the decoupled form

q(t, x) = p(t)m(x), (34)

where the function 1 − m(x) can be interpreted as a normalized target density.
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Similarly to (33), we can write the probability S
(2)
n (t) that the target has not been

detected yet after the searcher has finished its nth scanning phase and is performing its
(n + 1)th relocation phase. This will read

S(2)
n (t) =

∫
τ1+τ2+···+τ2n+τ2n+1�t

dτ1 dτ2 · · · dτ2n+1

∫ ∞

−∞
dz1 · · ·

∫ ∞

−∞
dzn

[
n−1∏
k=0

δ(τ2k+1 − tf)

]

×
[

n∏
k=1

ϕ(τ2k)q(τ2k, zk)Λk(zk)

]
[1 − H(τ2n − tf)], (35)

where H represents the Heaviside function.
Finally, the overall probability that the target has not been detected at time t is

obtained through

S(t) =
∞∑

n=0

[S(1)
n (t) + S(2)

n (t)]. (36)

The Laplace transform of this probability, from (33)–(35) and using the convolution
theorem, is

S(s) =
∞∑

n=0

(e−tfs)nλn

(
L[ϕp]n−1L[ϕ∗p] + L[ϕp]n

1 − e−tfs

s

)
, (37)

where we have defined

λn ≡
∫ ∞

−∞
dz1 · · ·

∫ ∞

−∞
dzn

[
n∏

k=1

m(zk)Λk(z1 · · · zk)

]
. (38)

The equations (37) and (38) represent our main result, from which the mean search time
〈T 〉 can be computed through (31). Note that for m(x) = 1 (which indeed leads to λn = 1)
we recover the case of homogeneous target distribution, and then (37) reduces to (30).

Unfortunately, it is not possible to find a non-trivial case for which the sum in (37)
can be computed analytically. However, the rate of convergence for this sum will be rather
fast, so in practice it is not difficult to determine the mean search time directly from (37).
Here we will explore a simple example in which the waiting (or scanning) time distribution
and the survival probability are exponential, so ϕ(t) = t−1

w e−t/tw , p(t) = e−t/ts . Moreover,

we will take m(x) = e−σmx2
, which means that the target is easier to detect as long as we

depart from the origin; this is to ensure that initially the relocation phase will tend to
increase the success probability of the searcher. Finally, we also choose a Gaussian shape
for the speed distribution h(v) ∼ e−σt2f v2

. This last choice leads us, from (9), to

Φ(x) =

√
σ

π
e−σx2

(39)

for the case of flight times with fixed duration φ(t) = δ(t − tf). From this result we can
determine the functions Λi appearing in (38); these are nothing but the probabilities to
relocate to position xi provided that the previous scanning phase occurred at xi−1, i.e.

Λi(x1 · · ·xi) = Φ(xi − xi−1). (40)
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Figure 4. Theoretical results for the mean search time from (31) and (37). The
values of the parameters are shown in the legends, except for the survival time
ts = 1. Each one of the three plots tries to characterize a different regime for 〈T 〉.
(a) The mean search time is always a decreasing function of tw, despite σ/σm

reducing to 0. (b) The mean search time is a decreasing function of tw for large
values of σ/σm and an increasing function of tw otherwise. (c) The same as in
the previous case, but now an optimal mean search time arises for large values of
σ/σm (as indicated by the arrow).

Introducing (38)–(40) into (37) we can determine the exact form of S(s). In figure 4
we plot some results for the mean time 〈T 〉 = S(s = 0) obtained for the functions
ϕ(t), p(t), m(x), h(t) chosen as mentioned above. It is seen that the shape of the speed
distribution h(v) is critical to determine the behavior of 〈T 〉. Specifically, the mean search
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Figure 5. Minimum mean search time (minimized with respect to tf) as a function
of tb (top axis, in gray) and σ/σm (bottom axis, in black). The value tw = 1 has
been used for the waiting time distribution in all cases.

time is found to depend on the quotient σ/σm in the specific case considered here, rather
than on σ, σm separately. For low values of this quotient, the benefits from relocation are
large, so the mean search time is reduced for small values of the mean scanning time tw.
This occurs unless the flight time tf is too large and so relocation is always unproductive
(as happens in figure 4(a)). On the contrary, large values of σ/σm mean that relocation will
be almost useless and so the searcher will perform better by increasing its mean scanning
time tw (figures 4(b) and (c)). Interestingly, we find that there often exists (provided that
the survival time ts is large compared to the flight time tf) an optimal scanning time for
which 〈T 〉 gets minimized (see arrow in figure 4(c)). All this confirms our idea above
that a heterogeneous target distribution introduces a competition between the benefits of
relocation and those of scanning for longer times.

6.3. Comparison with other search strategies

Finally, we think it could be of interest to compare the performance of our search
strategies with those obtained from intermittent strategies based on Levy flights, which
have attracted great interest during recent years [34]–[36]. One interesting result found
recently is that search strategies based on Levy flights have been shown to be quite
insensitive to some parameters such as the target density [35]; this makes these strategies
more robust to external conditions. In the situation presented here it is not easy to
explore the sensitivity of our model, since we do not explicitly have an optimal choice
of parameters that minimizes 〈T 〉 except for some cases (see figure 4). However, we can
try to study how the minimum search time 〈T 〉min (minimized with respect to the range
of tf values) depends on the target density. Intuitively, the difference between high or
low densities will appear in our model by modifying the probability q(t, x), which in turn
depends on the parameters tb and σm. The two cases are shown graphically in figure 5.
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Figure 6. Asymptotic leapover distribution for different values of the target
position d and the exponent α (see legend); in all the cases v0 = 1 has been used.
The solid lines represent, for each of the three cases plotted, the asymptotic
scaling ρ(l) ∼ l−1−α/2 derived in [34]. Inset: average leapover as a function of
the renormalized time tv0/d for the three cases studied.

There it can be seen that the minimum search time remains constant for large values
of either tb or σ/σm. Both situations lead to q(t, x) → 1, so this means that under
unfavorable conditions (or, equivalently, low target densities) our search strategy is quite
robust. On the contrary, when tb and σ/σm are small, then q(t, x) → 0 and the minimum
search time decreases monotonically.

On the other side, leapover distributions play an important role in strategies based on
heavy-tailed distributions. Provided that the target is unique and it is located at position
d, the leapover l is defined as the distance by which the position d is overshot once the
target passes through that point for the first time (see [34] for details). So, the leapover
distribution ρ(l) serves to measure to what extent the searcher can miss the target due to
long relocation events. In our case, we have used a power-law distribution for flight times,
as in (28), and a delta Dirac distribution for speeds h(v) = 1/2[δ(v + v0) + δ(v − v0)].
Waiting times were taken as exponentially distributed for simplicity. With all this, the
dispersal kernel reads, from (9), Φ(x) ∼ |x|−1−α, which allows a direct comparison with
the Levy flight case studied in [34]. As expected, the asymptotic shape of the leapover
distribution coincides with that found for Levy flights (since the dispersal kernel is the
same in both cases) and scales as l−1−α/2 for long values of l (figure 6). This result
was derived analytically in [34] and it implies that dispersal kernels with finite mean can
lead to leapover distributions whose first moments diverge. Note that the values of the
parameters shown in figure 6 are the same as those used in figure 3 of [34] to facilitate
comparison. There is, however, an important difference between our results and those
for the Levy flight case: since larger leapovers require now larger times to be completed
(due to the finite speed of particles in our model) then the average leapover will grow
monotonically with time. This is shown in the inset of figure 6. Besides, if the leapover
distribution does not have a finite mean (as happens for α � 2) then the average leapover
will grow indefinitely.
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7. Conclusions

We have presented a transport model where the particles have an intermittent behavior
between random waiting phases alternated with flights of finite random velocities.
Dividing the total population into two subpopulations (flying and waiting particles)
we have obtained balance equations for the mesoscopic densities of particles within the
framework of the CTRW.

We have found an analytical solution in the Fourier–Laplace space and have shown
the conditions under which our model is reduced to the jump model and the flying model.
From this, we have calculated the MSD, which shows that our model is able to reproduce
all the transport regimes ranging from subdiffusion to ballistic. This is done by assuming
PDFs of waiting times and flight durations as power laws. The explicit competition
between the tails of both PDFs is highlighted when (for a specific relationship between
the exponents) the transport becomes diffusive. Our results have been checked with
numerical simulations of the stochastic process, exhibiting a perfect agreement.

Note that extensions of our results to two or three dimensions are possible, but
this would require the introduction of additional assumptions regarding the reorientation
process of individuals (i.e. how the direction of motion changes from one flight to the
next). Actually, we have studied recently a particular case of the model in 2D [19]. Also,
we could relax the assumption made here that dispersal kernels are symmetric. It is
interesting to note that, if asymmetries are introduced in the speed distribution h(v),
our results for the MSD regimes (summarized in figure 2) would not change, since the
MSD only depends on h(v) through 〈v2〉, as seen in equation (27). On the other hand,
asymmetries in the distributions of flight times or waiting times will necessarily lead to
explicit dependences of these distributions in space. That case, which is out of the scope
of the present work, would not allow us to reach an analytical expression for 〈x2〉 except
for some trivial cases.

Finally, we have shown how the details of the transport process considered here can
affect the mean search time for an intermittent searcher looking for a heterogeneously
distributed target. In agreement with intuitive understanding, we find that fast and
efficient transport is preferred if this can take one to new locations with a higher target
density, while transport should be suppressed to optimize the mean search time if the
benefits from relocation are low. We stress that while search problems on homogeneous
media have become better and better understood in recent years due to the effort of
many researchers, ours represents one of the first attempts to analyze search problems
on a heterogeneous domain. We claim that this may be an extremely attractive topic to
explore in forthcoming years due to the broad importance that spatial problems have in
ecology and biology.
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