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Effect of environmental fluctuations on invasion fronts
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a b s t r a c t

We determine the density profile and velocity of invasion fronts in one-dimensional infinite habitats in

the presence of environmental fluctuations. The population dynamics is reformulated in terms of a

stochastic reaction–diffusion equation and is reduced to a deterministic equation that incorporates the

systematic contributions of the noise. We obtain analytical expressions for the front profile and velocity

by constructing a variational principle. The effect of the noise differs, depending on whether it affects

the density-independent growth rate, the intraspecific competition term or the Allee threshold.

Fluctuations in the density-independent growth rate increase the invasion velocity and the population

density of the invaded area. Fluctuations in the competition term also change the population density of

the invaded area, but modify the invasion velocity only for certain initial conditions. Fluctuations in the

Allee threshold can induce pulled or pushed invasion fronts as well as invasion failure. We compare our

analytical results with numerical solutions of the stochastic partial differential equations and show that

our procedure proves useful in dealing with reaction–diffusion equations with multiplicative noise.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Biological invasions correspond to the introduction and
spread of exotic organisms into regions outside of their native
range. They have emerged as a major environmental, economic
and public health problem tied to the rapid, ongoing expansion
of international trade and travel and have been studied for many
decades (Hengeveld, 1989; Williamson, 1996; Shigesada and
Kawasaki, 1997; Murray, 2003). The invasion process can be
regarded as a traveling wave front that propagates through a
homogeneous medium, and it can be described mathematically
by reaction–diffusion equations (Fisher, 1937; Kolmogorov et al.,
1937; Skellam, 1951; Shigesada and Kawasaki, 1997; Murray,
2003; Ortega-Cejas et al., 2004; Méndez et al., 2010). These
equations can be generalized to take into account memory
effects in the animal motion for logistic dynamics (Ortega-
Cejas et al., 2004) and dynamics with Allee effect (Lewis and
Kareiva, 1993; Méndez and Compte, 1998).

Another important topic in ecology is the role of fluctuations in
population dynamics (Horsthemke and Lefever, 1984). Popula-
tions with a small number of individuals experience internal
fluctuations and require a stochastic description. Even if these
fluctuations can be neglected because the population contains a

large number of individuals, other stochastic factors are usually
present and can affect significantly the dynamic behavior of the
population. Examples are demographic stochasticity, environ-
mental stochasticity, demographic heterogeneity and stochastic
sex determination. Various authors have investigated the effect of
random fluctuations on population dynamics. Marcus (1982)
studied a stochastic partial differential equation (SPDE), namely
a reaction–diffusion equation with logistic growth and multi-
plicative spatiotemporal Gaussian white noise. He carried out a
small-noise expansion and established the existence and unique-
ness of a weak solution of the SPDE. More recently, Malchow et al.
(2004a,2004b) have studied numerically the effect of external
noise on pattern formation in reaction–diffusion models of
plankton dynamics. Scarsoglio et al. (2011) have used analytical
and numerical tools to investigate the effects of external fluctua-
tions on vegetation patterns.

Already Skellam (1951) analyzed the effects of random
dispersal on population spread and applied his results to the
spread of oak in Britain and the muskrat in Central Europe.
Mollison (1991) used linear stochastic models to estimate inva-
sion velocities. The author stressed the limitations of linear
models and the need for a better understanding of nonlinear
stochastic models. Lewis (2000) similarly stressed the importance
of stochastic factors for biological invasions and used a discrete-
time continuous-space model, an integrodifference equation, to
study the effect of intrinsic stochastic factors. Deriving equations
for the first two spatial moments of the population density via
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moment closure approximations, he obtained an upper bound for
the invasion speed via comparison methods. Neubert and Caswell
(2000) combined integrodifference equations for dispersal with
matrix models for population growth to analyze invasion velocity
in populations with stage structure. Though they did not incor-
porate stochastic effects in their description, they acknowledged
the importance of including environmental stochasticity and
demographic stochasticity in their discussion of directions for
future research. They also acknowledged the importance of
including Allee (1938) effects. The issue of environmental
stochasticity has been addressed by Schreiber and Ryan, who
studied the effect of a fluctuating environment in integrodiffer-
ence matrix models (Schreiber and Ryan, in press). Melbourne
and Hastings have reported experimental studies to assess the
effects of various stochastic factors on extinction risk (Melbourne
and Hastings, 2008) and the effects of demographic stochasticity
on spread rates in populations for the red flour beetle (Tribolium

castaneum) (Melbourne and Hastings, 2009).
Here we investigate the effect of environmental stochasticity on

the invasion velocity of two types of population dynamics, namely
logistic growth and growth with Allee effect. For logistic growth,
we consider an external noise that gives rise to fluctuations in
either the density-independent growth rate or the competition
term. For growth with Allee effect, we consider an external noise
that gives rise to fluctuations in the Allee threshold. This requires
us to address the open problem of how to include stochasticity
in an analytically tractable model as stated by different authors
(see, e.g., Mollison, 1991; Melbourne and Hastings, 2008).

We adopt a continuous-time continuous-space description of
the population, namely reaction–diffusion equations with multi-
plicative, spatially correlated, temporally white Gaussian noise.
The effect of external noise on propagating fronts has been
studied in physical and chemical reaction–diffusion systems,
mostly for the case of bistable and excitable systems (see, e.g.,
Schimansky-Geier and Zülicke, 1991; Armero et al., 1996; Garcı́a-
Ojalvo and Sancho, 1999; Hizanidis et al., 2006). Our approach
consists in decomposing the population density into a systematic
(or deterministic) part and a fluctuating part. We derive analyti-
cally the reaction–diffusion equation for the deterministic part
and construct a variational principle that provides the invasion
velocity and the front profile by maximizing a functional. This
allows us to study analytically the effect of environmental
stochasticity on the invasion velocity and on the front profile.

We find for logistic growth that if fluctuations are present in
the density-independent growth rate, then the final state after
invasion experiences an increase in the population density and
the invasion velocity increases with the intensity of fluctuations.
If fluctuations affect the competition term, then two types of
invasion fronts can occur. The first type corresponds to the front
observed in the deterministic system. It occurs for certain initial
conditions. The population density of the final stable state after
invasion increases in the presence of fluctuations. The invasion
front, however, travels with the Fisher velocity, that is, the
invasion velocity does not depend on the intensity of fluctuations.
For other initial conditions, and if the intensity of the fluctuations
is low enough, a noise-induced front occurs that corresponds to
the collapse of a noise-induced high-density state to the effective
carrying capacity of the system. This front travels with a velocity
that decreases with the intensity of the fluctuations. In the cases
mentioned above, the front is pulled – its dynamics is governed
by the tail of the front – in the absence of fluctuations and
remains pulled in the presence of fluctuations. For growth with
strong Allee effect, fluctuations in the Allee threshold give rise to
a richer behavior. In this case, the invasion front is pushed – its
dynamics is governed by the interior part of the front – in the
absence of fluctuations. In their presence, the invasion front can

be pulled, pushed or even disappear all together, depending on
the intensity of the fluctuations.

2. Equation for the systematic population density

Consider a population with density fðx,tÞ. For simplicity, we
assume that the population lives in a one-dimensional system
and evolves dynamically according to a reaction–diffusion equa-
tion,

@fðx,tÞ

@t
¼D

@2fðx,tÞ

@x2
þF½fðx,tÞ,t�: ð1Þ

We consider two types of population dynamics, i.e., two forms of
FðfÞ, namely logistic population growth,

Fðf,tÞ ¼ r1fðx,tÞ�r2fðx,tÞ2, ð2Þ

and growth with Allee effect,

Fðf,tÞ ¼ rfð1�fÞðf�aÞ: ð3Þ

For logistic growth, r1 is the density-independent per-capita rate,
or the coefficient of increase to use (Skellam’s, 1951) terminology.
The coefficient r2 is the limiting coefficient in Skellam’s terminol-
ogy; it describes intraspecific competition or the struggle for
resources. For growth with Allee effect, r is the growth rate and a

the Allee threshold. We consider only the case a40, i.e., a strong
Allee effect. For logistic growth, one usually writes r1¼r and r2¼r/
K, where K is the carrying capacity of the environment. In general,
we can consider these parameters to be functions of space and
time, e.g., r1ðx,tÞ and r2ðx,tÞ, though they are usually treated as
constants in the literature (Murray, 2003). Eq. (1) does not include
fluctuations explicitly. Environmental fluctuations, i.e., external
noise, turn the parameters r, K and a into stochastic quantities
and (1) into a SPDE, whose solution will be a functional of the noise
(San Miguel and Toral, 2000),

@f
@t
¼D

@2f
@x2
þFðfÞþe1=2gðfÞZðx,tÞ, ð4Þ

where Zðx,tÞ represents the noise and e measures the noise
strength. Note that the external noise appears in a multiplicative
way in (4) if gðfÞ is not a constant. Motivated by the Central Limit
Theorem, we consider the case that the noise is Gaussian with zero
mean, /Zðx,tÞS¼ 0. We further assume that the fluctuations occur
on a faster time scale than that of the systematic population
growth. This implies that we can consider the noise to be white
in time, i.e., it has a correlation function given by

/Zðx,tÞZðx0,t0ÞS¼ 2Cðjx�x0j=‘Þdðt�t0Þ: ð5Þ

Here C(x) is the spatial correlation function of the noise and ‘ its
characteristic length. In the numerical simulations C(x) has been
chosen to be Gaussian with variance 1 and C(0)¼10. Since the
noise is white in time, the population density is a Markovian
stochastic variable.

The mean value of the noise term gðfÞZðx,tÞ does not vanish if
gðfÞ is not a constant, which gives rise to a systematic contribu-
tion to the dynamics of the density (Garcı́a-Ojalvo and Sancho,
1999). Adopting the Stratonovich interpretation of the SPDE (4),
we evaluate /gðfÞZðx,tÞS using Novikov’s (1965) theorem, see
Appendix A for details,

/gðfÞZðx,tÞS¼ e1=2Cð0Þ
dgðfÞ

df
gðfÞ

� �
: ð6Þ

This result allows us to rewrite (4) in a form where the noise term
has zero mean,

@f
@t
¼D

@2f
@x2
þFeff ðfÞþe1=2zðf,x,tÞ: ð7Þ
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The effective reaction term and the new noise term are given by

Feff ðfÞ ¼ FðfÞþeCð0Þ dgðfÞ
df

gðfÞ, ð8Þ

and

zðf,x,tÞ ¼ gðfÞZðx,tÞ�e1=2Cð0Þ
dgðfÞ

df
gðfÞ, ð9Þ

respectively. We decompose the population density into a sys-
tematic, or deterministic, part and a fluctuating part by writing
the density as

fðx,tÞ ¼ rðx,tÞþ
X1
n ¼ 1

en=2rnðx,tÞ: ð10Þ

The first term rðx,tÞ is deterministic and includes the systematic
contributions. The sum represents the fluctuating part of the
density. This expansion represents an extension of the standard
small-noise expansion procedure (see, e.g., Marcus, 1982); the
form (10) keeps the relevant, systematic contributions of the
multiplicative noise. It allows us to separate the systematic effects
from the purely stochastic effects of the external noise on the
population density. We assume that the deterministic contribu-
tion dominates, while the stochastic part plays only a small role.
We will show by comparing the analytical results with numerical
simulations that focusing solely on the deterministic density
represents an excellent approximation.

Substitution of (10) into (7) yields to the lowest order the
equation for the systematic (deterministic) contribution,

@r
@t
¼D

@2r
@x2
þFeff ðrÞ: ð11Þ

The equation for the next order, the first stochastic contribution,
is given by

@r1

@t
¼D

@2r1

@x2
þ

dFeff ðrÞ
dr r1þzðr,x,tÞ: ð12Þ

By construction, see (9), the mean value of the noise zðr,x,tÞ is
zero, and its correlation function is given by

/zðr,x,tÞzðr,x0,t0ÞS¼ gðrðx,tÞÞgðrðx0,t0ÞÞ/Zðx,tÞZðx0,t0ÞS: ð13Þ

The equation for the systematic density, the dominant con-
tribution, can be written as

@r
@t
¼D

@2r
@x2
þFðrÞþe0

dgðrÞ
dr

gðrÞ, ð14Þ

where e0 � eCð0Þ.
We investigate this equation explicitly for three cases:

(i) fluctuations in the density-independent growth rate,
(ii) fluctuations in the carrying capacity, and (iii) fluctuations in
the Allee threshold. Stochastic variations in environmental vari-
ables, such as temperature and precipitation for example, lead to
random changes in the vital rates of populations (Schreiber and
Ryan, in press). Fluctuations in the density-independent growth
rate (Tuckwell, 1974) occur because the difference between births
and deaths changes with time and fluctuates around a mean
value, due to external stochastic factors. Fluctuations in the
competition term represent temporal variations in the availability
of resources (Feldman and Roughgarden, 1975). Finally, fluctua-
tions in the Allee threshold occur because the minimum number
of individuals necessary for the population to grow fluctuates in
space and time due to environmental factors.

2.1. Fluctuating density-independent growth rate

If the density-independent growth rate fluctuates around a
mean value rm, we write r1ðx,tÞ ¼ rm½1þe1=2Zðx,tÞ� and r2 ¼ rm=K ,
with rm and K constants. Introducing the expression for the

fluctuations of the density-independent growth rate into (1), we
obtain the following SPDE:

@f
@t
¼D

@2f
@x2
þrmf 1�

f
K

� �
þe1=2rmfZðx,tÞ: ð15Þ

In this case gðfÞ ¼ rmf, as can be seen by comparing (15) and (4).
According to (14), the systematic density obeys the reaction–
diffusion equation

@r
@t
¼D

@2r
@x2
þrmð1þrme0Þr�

rm

K
r2: ð16Þ

The systematic effects of the fluctuating net growth rate are
represented by the term r2

me0r. In the following we assume K¼1
for simplicity. Note that fluctuations in the density-independent
growth rate lead to a larger effective coefficient of increase.

2.2. Fluctuating competition term

To model fluctuations in the carrying capacity, we consider (2)
with r2ðx,tÞ ¼ ðr=KmÞ½1þe1=2Zðx,tÞ� and r1ðx,tÞ ¼ r. Eq. (1) turns into
the SPDE

@f
@t
¼D

@2f
@x2
þrf 1�

f
Km

� �
�

r

Km
e1=2f2Zðx,tÞ: ð17Þ

In this case gðfÞ ¼�rf2=Km. According to (14), we obtain the
following equation for the systematic population density:

@r
@t
¼D

@2r
@x2
þrr 1�

r
Km

� �
þ

2r2

K2
m

e0r3: ð18Þ

Note that noise in the competition term introduces a singular
perturbation in the logistic growth model. The reaction function
of the logistic model is quadratic, while the systematic contribu-
tions of the noise give rise to a cubic term in the effective reaction
function. In other words, noise in the limiting term has the effect
of introducing a mutualistic term due to its Gaussian nature.
For densities above a critical value, see below, this cubic term will
overcome the quadratic competition term and lead to unbounded
growth. In actual populations, higher-order limiting term,
e.g., terms of order f4, will come into play at these high densities
and prevent a population explosion. Consequently, the range of
validity of (18) is restricted to densities below the critical value
and to sufficiently small-noise strengths.

This does not affect our studies, since the expansion (10) is
essentially a small-noise expansion and self-consistency requires
sufficiently small-noise strengths. In the following we assume
Km¼1 for simplicity.

2.3. Fluctuating Allee threshold

If the Allee threshold fluctuates around the mean value am, we
write aðx,tÞ ¼ am½1þe1=2Zðx,tÞ�, r1ðx,tÞ ¼ r2ðx,tÞ ¼ r and K¼1 and
obtain the SPDE

@f
@t
¼D

@2f
@x2
þrfð1�fÞðf�amÞ�rame1=2fð1�fÞZðx,tÞ: ð19Þ

Here gðfÞ ¼�ramfð1�fÞ, and according to (14) we find

@r
@t
¼D

@2r
@x2
þrrð1�rÞ½ð1�2re0a2

mÞr�amð1�re0amÞ�: ð20Þ

Note that the third factor of the effective reaction term is very
similar to the case without noise (e0 ¼ 0) but with different
coefficients, which can be either positive or negative giving rise
a wide range of different front solutions. In other words, external
noise can decrease the effective Allee threshold and even render it
negative, i.e., turn a strong Allee effect into a weak Allee effect.
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3. Invasion fronts

Consider the situation that the reaction term FðfÞ in (1) has
two steady states, FðfÞ ¼ 0, given by fu ¼ 0 (unstable) and fs ¼ 1
(stable). The velocity of the invasion front joining states 0 and
1 can be obtained from the variational formula,

v2 ¼ 2D max
0olr2

lGð4Þ
Gð2�lÞGð2þlÞ

Z 1

0
FðrÞr�lð1�rÞl dr

" #
, ð21Þ

where l parameterizes the set of trial functions fr�lð1�rÞlg.
See Appendix B for details of the derivation of the variational
formula (21).

3.1. Invasion velocities

In the following, we determine the invasion velocity for the
three cases of external noise described in Section 2. To do so, we
apply the variational formula (21) to the evolution equation for
the systematic part of the density, namely (16), (18) and (20),
replacing FðfÞ by Feff ðrÞ and renormalizing the density where
necessary, so that the steady states are given by 0 and 1. We also
compare our analytical results with numerical calculations.
Details of the numerical algorithm to calculate the invasion

velocities and the front profile are provided in Appendix C. In
the following sections we find fronts invading both unstable and
metastable states. The main difference is that in the first case the
front velocity depends on the tail of the initial condition and in
the second case the front velocity is independent. For more
information about pulled and pushed fronts and fronts propagat-
ing into unstable and metastable states see the works by van
Saarloos (2003) and by Méndez et al. (2010).

3.1.1. Fluctuating density-independent growth rate

If the density-independent growth rate fluctuates, the effective
reaction term is given by Feff ðrÞ ¼ rmð1þrme0Þr�rmr2 according to
(16). The effective reaction term has two steady states, namely
r¼ 0 and 1þrme0. The first steady state is unstable to small
density perturbations, while the second one is stable. To be able
to apply (21) we introduce the renormalized density
u¼ r=ð1þrme0Þ. This change of variables turns (16) into the Fisher
equation with a rate constant given by rmð1þrme0Þ. Consequently,
the front velocity is given by

v¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Drmðrme0þ1Þ

p
: ð22Þ

We confirm this result by numerical integration of (1) and (2), see
Fig. 1. The velocity grows sublinearly with the stochastic noise
strength as e1=2—recall that e0 ¼ eCð0Þ. Moreover, the velocity
becomes the Fisher front velocity, vF, for e-0, as expected.

3.1.2. Fluctuating competition term

If the carrying capacity fluctuates, the effective reaction term
is given by Feff ðrÞ ¼ rr�rr2þ2r2e0r3 according to (18). This
reaction term possesses three different steady states: r¼ 0 and

r7 ¼
17

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�8e0r

p
4e0r

: ð23Þ

The nontrivial solutions, r7 , exist only if e0o1=8r. This is a
reflection of the fact that the validity of (18) is restricted to the
regime of small-noise strength, as discussed in Section 2.2. The
state r� is stable, and the states 0 and rþ are unstable. The latter
is the critical value of the population density, see Section 2.2,
above which the population will grow without bound. Writing the
square root as a power series, we find that

r� ¼ 1þe0r=4þOðe2
0Þ, ð24Þ

rþ ¼
1

2e0r
�1þOðe0Þ: ð25Þ

The state r� correspond to the deterministic case of the popula-
tion being at the carrying capacity of the system, f¼ Km ¼ 1.
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Fig. 1. Invasion velocity as a function of the noise amplitude if r1 fluctuates;

C(0)¼10, rm¼0.1, D¼1. Solid lines correspond to the analytical expression (22)

and circles to numerical solutions. Inset: Logarithmic plot to show that the

dependence of the velocity on the noise amplitude is square root like (slope 1/2).
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Fig. 2. Invasion velocity as a function of the noise amplitude if K fluctuates, with Km¼1. Solid lines correspond to the analytical expression (28) and circles to numerical

solutions. (a) Invasion velocity for a front that connects r� with r¼ 0. (b) Invasion velocity for a front that connects r� with rþ . C(0)¼10, r¼0.1, D¼1. In both cases x0¼10.
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Noise in the competition term increases the effective carrying
capacity of the system. The other state, rþ , is a pure noise-
induced state. Its origin lies in the fact that noise in the competi-
tion term, i.e., in the limiting coefficient, gives rise to a systematic
effect of the opposite nature, see Section 2.2.

We exclude here situations where the initial densities are
larger than rþ , i.e., we exclude all cases of unbounded population
growth. Then there are two possible pulled fronts propagating
into unstable states, one invading the state 0 and connecting it to
the state r� and another invading the state rþ and connecting it
to r�. To obtain both fronts, one has to prepare the system with
appropriate initial conditions. Below we indicate which initial
condition we employed. Eq. (21) allows us to calculate the front
velocities of the two different fronts, and we compare the results
with numerical results.

3.1.2.1. Pulled front connecting 0 to r�. This case corresponds to
the one that occurs in the deterministic system, (1) with (2). Since
the noise increases the effective carrying capacity, we must again
renormalize the density, u¼ r=r�, to be able to apply the varia-
tional formula (21). The front velocity is calculated from

v2 ¼ 4Dr2e0rþr� max
0olr2

l 1�
1

4

r�
rþ
ð2�lÞ

� �	 

: ð26Þ

Since the function to be maximized is monotonically increasing
with l, the maximum is attained at l¼ 2, which results in the
Fisher velocity, vF ¼ 2

ffiffiffiffiffiffi
Dr
p

. Note that in this case the front velocity
does not depend on the noise strength e0. This result is depicted in
Fig. 2(a), where we compare our analytical result with results
from numerical simulations. For the numerical calculations we
chose the initial conditions to be rðx,0Þ ¼ r�½1�yðx�x0Þ�, where
yð�Þ is the Heaviside function and x040.

3.1.2.2. Pulled front connecting rþ to r�. Such a front can occur
only in the presence of external noise; it has no deterministic
counterpart. To obtain the front velocity using (21), we apply the
change of variables u¼ ðrþ�rÞ=ðrþ�r�Þ and find

v2 ¼ 4Dr2e0ðrþ�r�Þrþ max
0olr2

l 1�
1

4

rþ�r�
rþ

ð2�lÞ
� �	 


: ð27Þ

Again the function of l is monotonically increasing, the maximum
is at l¼ 2, and the front velocity expression reads

v¼

ffiffiffiffiffi
D

e0

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�8e0rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�8e0r

pq
: ð28Þ

This front velocity decreases with the noise amplitude as e�1=2

and is valid only if e0o1=8r. This result is depicted in Fig. 2(b),
where we compare our analytical result with results from
numerical simulations. For the numerical calculations we chose
the initial conditions to be rðx,0Þ ¼ r�þðrþ�r�Þyðx�x0Þ with
x0 ¼ 10. The front corresponds to a collapse of the high-density
state rþ to the ‘‘deterministic’’ state r�. The fact that the velocity
decreases with the noise amplitude reflects the nature of the state
rþ . It is a noise-induced or noise-sustained state, and its survival
time increases with increasing noise strength.

3.1.3. Fluctuating Allee threshold

Applying (21) to (20) we obtain

v2 ¼ 2Drm max
0olr2

1�2re0a2
m

4
lð2�lÞþamðre0am�1Þl

� �
: ð29Þ

The maximum must be determined carefully because it depends
strongly on the values for the parameters am and e0. We can
distinguish up to five different situations, which correspond to
different regions of the parameter space (re0 versus am), see Fig. 3.

(The first two situations are shown as one region, Region I, in the
figure.)

3.1.3.1. Region I. Front propagating into the unstable state r¼ 0 and

connecting r¼ 0 to 1. In this case, the front can be pulled (the
front dynamics is governed by the leading edge, i.e., the nonlinear
term is not important) or pushed (i.e., the front dynamics is
governed by its interior part and nonlinear term becomes more
important than linear term) and can occur only for amo1=2.
Using the variational formula (29) we can determine analytically
where this transition takes place. Eq. (29) implies that

vI ¼

ffiffiffiffiffiffi
rD

2

r
1�2amffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2re0a2

m

p ,
1

am
oe0rr

1þ2am

4a2
m

ðpushedÞ,

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dramðamre0�1Þ

p
,

1þ2am

4a2
m

re0ro
1

2a2
m

ðpulledÞ:

8>>>><
>>>>:

9>>>>=
>>>>;

ð30Þ

In Fig. 4 we plot the invasion velocity versus re0 (30) (solid line)
and compare it with results from numerical solutions (circles).
The transition between the pulled and pushed regimes is located
at re0 ¼ ð1þ2amÞ=ð4a2

mÞ.

3.1.3.2. Region II. Front propagating into the unstable state r¼ 0 and

connecting r¼ 0 to r� ¼ amðre0am�1Þ=ð2re0a2
m�1Þ. Note the r� is

0 1
am

0

0.2

0.4

0.6

0.8
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(I)
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Fig. 3. Diagram of the different invasion front regimes if the Allee threshold

fluctuates. Solid lines correspond to the analytical expressions and circles to

numerical solutions.
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Fig. 4. Invasion velocity for a front connecting r¼ 0 to r¼ 1 (region I). The

boundary between the regions of pulled and pushed fronts occurs at re0 ¼ 6;

am¼1/4. The initial condition taken is rðx,0Þ ¼ 1�yðxÞ.
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the effective Allee threshold in the presence of external noise.
We again need to renormalize the density, u¼ r=r�. In this case,
the front is always pulled and the region is defined by e0r41=2a2

m

if amo1=2 or by e0r41=am if am41=2. According to (29), the
velocity of the front is given by

vII ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dramðamre0�1Þ

p
: ð31Þ

3.1.3.3. Region III. Front propagating into the metastable state r¼ 0
and connecting r¼ 0 to 1. This region is defined by e0ro1=am for
amo1=2. In this case, the front is always pushed and it travels
with the velocity

vIII ¼

ffiffiffiffiffiffi
rD

2

r
1�2amffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2re0a2

m

p : ð32Þ

If e0r41=am and amo1=2 there is no front. In Fig. 3 we depict
these regions and compare our theoretical results with numerical
simulations.

To construct numerically the region boundaries we fix am and
then vary re0. For each value of re0 we compute numerically the
front profile and check in which region we are. For example, to
find the boundary between regions I and II in Fig. 3 we begin with
a high value of re0 (belonging to region I) and determine if the
front velocity depends on the shape of initial condition. To this
end we take rðx,0Þ ¼ 1�yðxÞemx and observe that the front velocity
depends explicitly on m. This indicates that the front invades the
unstable state r¼ 0 and we are in region I. When we decrease
progressively re0 and it crosses the boundary to enter in region III,
the front velocity ceases to depend on m which indicates that the
front invades the metastable state r¼ 0 and we are in region III.
To compute the boundary between regions I and II we must
observe which is the final stable state, since in both regions the
front invades the unstable state r¼ 0. To this end, we take the
initial condition rðx,0Þ ¼ 0:1½1�yðxÞ�. If the stable state (state
behind the front) is r¼ 1 then we are in region I. Otherwise, we
are in region II. Finally, the boundary between region II is trivial to
find numerically because below the boundary no front is formed.

3.2. Front profiles

Besides the front velocity, front profiles are also of interest. The
variational principle allows us also to predict the profile shape,
i.e., the analytical expression for rðx,tÞ, when the front is fully
developed and the velocity has reached its stationary value. If the
trial function is chosen to be gðrÞ ¼ r�lð1�rÞl, and using the fact
that (see Appendix B)

�
d

dr
lng ¼

v

Dp
, ð33Þ

we find that

p¼
v

lD
rð1�rÞ �� dr

dz
: ð34Þ

Integrating over z, we obtain the expression for the density

rðzÞ ¼ 1

1þb�1exp �
vz

lD

� � , ð35Þ

which is a sigmoidal function. The integration constant is
b�1 ¼ ð1�r�Þ=r�, where r� is the density at z¼0. The asymptotic
front profile given by (35) is the same for each of the three cases
we have studied. To specify the solution for each case, we must
substitute the value of l for which the maximum in (21) is
attained and the corresponding velocity v. For example, when the
density-independent growth rate fluctuates, the velocity is given

by (22). The density profile reads

rðx,tÞ ¼
1

1þb�1exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rmð1þrme0Þ

D

r
½x�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Drmðrme0þ1Þ

p
t�

 ! , ð36Þ

which is plotted in Fig. 5 and compared with numerical integration
of the dynamic equations. The other cases are straightforward.

4. Conclusions

Variations in temperature and other climatic factors can
produce environmental fluctuations that can modify the invasion
patterns of populations. The question of how such external
stochastic factors affect population dynamics will become
more crucial with the expected increase in climatic variability
(Schreiber and Ryan, in press). We have obtained the density
profile and the invasion velocity in the presence of such external
fluctuations for reaction–diffusion models of population growth.
We have considered the situations where they give rise to noise in
the density-independent growth rate, the competition term or the
Allee threshold. We have been able to address this problem in an
analytically tractable model by reducing the SPDE to an effective
deterministic equation for the mean density that incorporates the
systematic effect of the noise. We have constructed a variational
principle that is able to provide the mean density profile and the
invasion velocity for both pulled and pushed fronts.

If fluctuations affect the density-independent growth rate, the
mean population density of the invaded area and the invasion
velocity experience an increase with the noise intensity. Both
increases have exactly the same cause, namely an increase in the
effective density-independent growth rate due to the systematic
contribution of the multiplicative external noise. This result
differs from previous studies that either considered intrinsic
stochastic factors or adopted discrete-time integrodifference
descriptions of population growth. Lewis (2000) analyzed the
effect of internal fluctuations in a discrete-time model. He found,
in agreement with a long-time conjecture in the literature, that
‘‘intrinsic stochastic factors associated with interacting indivi-
duals can slow the spread of a population or disease, even in a
uniform environment.’’ Schreiber and Ryan (in press) employed
an integrodifference matrix population model to investigate the
effect of external stochastic factors and also found that increased
variability in vital rates leads to slower invasion speeds. Clearly,
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0.5

1

ρ(
x,

t)
/ρ

0 t=0

t=100

t=250 t=500
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Fig. 5. Front profiles at different times for a fluctuating intrinsic net growth rate;

C(0)¼10, rm¼0.1, D¼1 and L¼5000. The final stable state is r0 ¼ 1þrme0 ¼ 2.

Analytical and numerical results are plotted. The analytical profile calculated from

(36) is drawn for t¼500 and r� ¼ 4=3.
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the nature of the fluctuations, intrinsic versus external, plays an
important role for the invasion speed. So does the nature of the
dynamics, discrete-time integrodifference equations versus con-
tinuous-time reaction–diffusion equations.

If fluctuations affect the competition term, two different fronts
traveling with different velocities appear depending on the initial
conditions. One corresponds to the deterministic invasion front.
(The initial conditions for this type of front correspond to the
usual conditions of a non-native species being introduced locally
at small to moderate densities.) Here the noise raises the carrying
capacity of the system, while having no effect on the invasion
speed. The other front represents a noise-induced phenomenon,
namely the ‘‘collapse’’ of a noise-sustained high-density state.
(The initial conditions for this type of front correspond to a high-
density state that arose due to some catastrophic event triggering
a sudden explosive growth in the population.) The front speed is
strongly dependent on the noise strength and decreases with
increasing noise amplitude. In other words, stronger noise
extends the lifetime of the noise-induced high-density state.

In the case of logistic growth, the systematic effect of the external
noise in either the coefficient of increase or the limiting coefficient
does not change the pulled character of the front. If the population
experiences the Allee effect, the invasion front is pushed in the
absence of noise. In this case, the invasion velocity cannot be
calculated by the linear conjecture, because the front dynamics is
governed by the nonlinear terms. However, in the presence of
fluctuations in the Allee threshold, both pulled and pushed fronts
are possible, and we have been able to predict analytically the
transition diagram. The dynamics of the system is very rich and
the velocity and success or failure of the invasion depends on the
balance between the average Allee threshold and the noise strength.
Our results agree with numerical simulations and can be generalized
to two-dimensional invasions and the case of colored noises.

Our results for the logistic growth model show that fluctua-
tions in the density-independent growth rate are more ‘‘danger-
ous’’ than fluctuations in the competition term. The former
increase the velocity of invasion, while the latter have no effect.
This suggests that if the effects of external variability on the vital
rates of a non-native species can be mitigated, then the effort
should be directed towards minimizing the noise strength of the
density-independent growth rate. It should be possible to test our
predictions in experiments of the type conducted by Melbourne
and Hastings. The authors were interested in the effects of
endogenous variability on invasion velocity in those experiments
and tightly controlled the ambient environment (Melbourne and
Hastings, 2009). It should be possible to repeat the experiments
and introduce deliberate and controlled variability of the envir-
onment. A comparison of the two types of experiments should
reveal the effects of external fluctuations on the invasion velocity.
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Appendix A. Mean value of the noise term

The mean value can be evaluated as follows:

/gðfÞZðx,tÞS¼
Z t

0
dt0
Z

dx0/Zðx,tÞZðx0,t0ÞS dgðfðx,tÞÞ

dZðx0,t0Þ

� �

¼ 2

Z
dx0Cðjx�x0j=lÞ

dgðfÞ
df

dfðx,tÞ

dZðx0,t0Þ


t0 ¼ t

� �
: ð37Þ

Eq. (4) can be integrated formally to obtain

fðx,tÞ ¼fðx,0ÞþD
@2

@x2

Z t

0
dsfðx,sÞþ

Z t

0
dsF½fðx,sÞ�

þe1=2

Z t

0
dsg½fðx,sÞ�Zðx,sÞ, ð38Þ

and (38) implies that

dfðx,tÞ

dZðx0,t0Þ ¼ e
1=2

Z t

0
dsg½fðx,sÞ�

dZðx,sÞ

dZðx0,t0Þ ¼ e
1=2dðx0�xÞg½fðx,t0Þ�: ð39Þ

Substituting (39) into (37), we obtain

/gðfÞZðx,tÞS¼ 2e1=2 dgðfÞ
df

gðfÞ
� �Z

dx0Cðjx�x0j=lÞdðx0�xÞ

¼ e1=2Cð0Þ
dgðfÞ

df
gðfÞ

� �
, ð40Þ

where in the last equality we have made use of the Stratonovich
interpretation of stochastic calculus (

R
dx0dðx0�xÞ ¼ 1=2). Eq. (40)

is Novikov’s (1965) theorem for spatially extended systems.

Appendix B. Variational principle

In order to formulate a variational principle we start with the
reaction–diffusion equation

@rðx,tÞ

@t
¼D

@2rðx,tÞ

@x2
þFðrÞ: ð41Þ

The time evolution of an initial condition rðx,0Þ has been studied
for FðrÞ monostable or bistable. It was proven (Aronson and
Weinberger, 1978) that suitable initial conditions evolve into a
monotonic traveling front rðx�vtÞ, joining the stable state r¼ 1
to 0. If F is monostable, e.g., logistic growth, there exists a
continuum of values of v for which a monotonic (pulled) front
occurs. If the initial condition has compact support, the front with
minimal velocity is selected. If F is bistable, e.g., growth with Allee
effect, there is a single isolated value of the velocity for which the
(pushed) front exists. In this appendix we show how to derive the
velocity for pushed fronts and the minimal velocity in the case of
pulled fronts from a variational principle following the method
developed by Benguria and Depassier (1996).

To this end, consider (41) transformed to the frame commoving
with the front

D
d2r
dz2
þv

dr
dz
þFðrÞ ¼ 0, ð42Þ

where v is the asymptotic front velocity and z¼ x�vt is the
commoving coordinate. For simplicity, we assume that the front
connects the state r¼ 0 (unstable) to the state r¼ 1 (stable). One
can define the front slope as pðrÞ ¼ �dr=dz, which is a positive
function for every value of the density. Therefore, (42) can be
written as

Dp
dp

dr
�vpþFðrÞ ¼ 0, ð43Þ

with the conditions pð0Þ ¼ pð1Þ ¼ 0. Defining gðrÞ as a positive trial
function on ð0,1Þ, such that h¼�dg=dr40, multiplying (43) by
gðrÞ, and integrating by parts we obtainZ 1

0
Fgdr¼

Z 1

0
vpg�

1

2
Dhp2

� �
dr: ð44Þ

For fixed r, the functional

F½p� � vpg�
1

2
Dhp2

ð45Þ

has a maximum at pmax ¼ vg=ðDhÞ, since v, p, g and h are positive.
Therefore, F½p�rF½pmax� ¼ v2g2=ð2DhÞ for any value of r. Eqs. (44)
and (45) lead to the following condition, which is valid for any
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reaction function FðrÞ:

v2
Z2D

R 1
0 Fg drR 1

0 ðg
2=hÞ dr

: ð46Þ

The equality in (46) holds if

�
d

dr
ðln g�Þ ¼

v

Dp
, ð47Þ

which can be integrated to yield

g�ðrÞ ¼ exp

Z r0

r

v

Dp
dr

 !
ð48Þ

where 0or0o1 comes from the integration constant. Obviously,
g�ðrÞ is a continuous, positive and decreasing function on ð0,1Þ
with g�ð1Þ ¼ 0: Near r¼ 0, g� diverges. We linearize (43) to find
from (48) that g� diverges as

g�ðrÞ � r�v=ðDmþ Þ ð49Þ

near r¼ 0, with mþ ¼ ½vþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2�4DF 0ð0Þ

p
�=2D. Consequently,

Fg � rg � r1�v=ðDmþ Þ near r¼ 0: Analogously g2=h� r1�v=ðDmþ Þ

near r¼ 0, so the integrals in (46) exist if v=ðDmþ Þo2. Since this
condition is always satisfied, we can ensure that the equality in
(46) is well established. Thus

v2 ¼max
g

2D

R 1
0 Fg drR 1

0 ðg
2=hÞ dr

" #
, ð50Þ

where the maximum is taken over all positive, decreasing trial
functions on (0,1). Since (49) implies that g must behave like r�l,
with l40, near r¼ 0 and must be such that gð1Þ ¼ 0, we can
choose the trial function gðrÞ ¼ r�lð1�rÞl. With this choice, (50)
has to be maximized over the parameter l, but only for values
such that the integrals in the variational principle exist,

v2 ¼ 2D max
0olr2

lGð4Þ
Gð2�lÞGð2þlÞ

Z 1

0
FðrÞr�lð1�rÞl dr

" #
: ð51Þ

To confirm that the variational formula provides the correct
front velocities, we apply it to a simple case. If the reaction term is
logistic, FðrÞ ¼ rrð1�rÞ, without noise, the above equation leads
to the Fisher front velocity,

v� vF ¼ 2
ffiffiffiffiffiffi
Dr
p

: ð52Þ

Appendix C. Numerical algorithm

The numerical integration of (15), (17) and (19) was performed
using the general approach for SPDE (San Miguel and Toral, 2000).
The habitat is simulated as a grid consisting of N lattice sites of
size Dx, such that L¼NDx is the habitat size. Every lattice site i is
identified by its position xi, which is a discrete variable. The
continuum density, fðx,tÞ, is replaced by its analog in discrete
space, fðxi,tÞ, and the external noise is simulated via the genera-
tion of Gaussian numbers, where we replace the white noise Zðx,tÞ
by ð1=

ffiffiffiffiffiffi
Dx
p
ÞZiðtÞ, as a result of the relation between the Dirac and

the Kronecker delta functions. The correlation function is given by
/ZiðtÞZjðt

0ÞS¼ dijdðt�t0Þ. Moreover, the noise amplitude is
eCð0Þ ¼ e=Dx (Santos and Sancho, 1999).

Eqs. (15), (17) and (7) can be written as

@f
@t
¼D

@2f
@x2
þFðfÞþGðfÞZ, ð53Þ

where GðfÞ ¼ e1=2gðfÞ. Assuming uniform time steps of size Dt

and integrating (15) and (17) using the Euler algorithm, we obtain

a dynamic equation that is discrete in both space and time,

ftþDt,i ¼ft,iþDt
D

Dx2
ðfiþ1,t�2fi,tþfi�1,tÞþDt1=2Gðfi,tÞut,i

þDt Fðfi,tÞþ
1

2
Gðfi,tÞG

0ðfi,tÞu
2
t,i

� �
, ð54Þ

where Dt1=2ut,i ¼ ZiðtÞ. Simulations have been performed with
Dx¼ 0:1, Dt¼ 0:0025 and D¼1. We have varied the parameters
r, K, e and L in different simulations.
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Hizanidis, J., Balanov, A., Amann, A., Schöll, E., 2006. Noise-induced front motion:

signature of a global bifurcation. Physical Review Letters 96, 244104.
Horsthemke, W., Lefever, R., 1984. Noise-Induced Transitions. Springer-Verlag, Berlin.
Kolmogorov, A.N., Petrovsky, I.G., Piskunov, N.S., 1937. Study of the equation of

diffusion equation combined with an increase of matter and its application to
a biological problem. Bulletin of Moscow State University 1, 1–25.

Lewis, M.A., 2000. Spread rate for a nonlinear stochastic invasion. Journal of
Mathematical Biology 41, 430–454.

Lewis, M.A., Kareiva, P., 1993. Allee dynamics and the spread of invading
organisms. Theoretical Population Biology 43, 141–158.

Malchow, H., Hilker, F.M., Petrovskii, S.V., 2004a. Noise and productivity depen-
dence of spatiotemporal pattern formation in a prey–predator system.
Discrete and Continuous Dynamical Systems B 4, 705–711.

Malchow, H., Hilker, F.M., Petrovskii, S.V., Brauer, K., 2004b. Oscillations and waves
in a virally infected plankton system Part I: the lysogenic stage. Ecological
Complexity 1, 211–223.

Marcus, R., 1982. A stochastic logistic diffusion equation. Mathematical Bios-
ciences 62, 281–294.

Melbourne, B.A., Hastings, A., 2008. Extinction risk depends strongly on factors
contributing to stochasticity. Nature 454, 100–103.

Melbourne, B.A., Hastings, A., 2009. Highly variable spread rates in replicated
biological invasions: fundamental limits to predictability. Science 325, 1536–1539.

Méndez, V., Compte, A., 1998. Wavefronts in bistable hyperbolic reaction–diffu-
sion systems. Physica A 260, 90–98.

Méndez, V., Fedotov, S., Horsthemke, W., 2010. Reaction-Transport Systems, Meso-
scopic Foundations, Fronts and Spatial Instabilities. Springer-Verlag, Berlin.

Mollison, D., 1991. Dependence of epidemic and population velocities on basic
parameters. Mathematical Biosciences 107, 255–287.

Neubert, M.G., Caswell, H., 2000. Demography and dispersal: calculation and sensitiv-
ity analysis of invasion speed for structured populations. Ecology 81, 1613–1628.

Murray, J.D., 2003. Mathematical Biology. Springer, New York.
Novikov, E.A., 1965. Functionals and the random-force method in turbulence

theory (Euler velocity field described by random forces method using
Lagrangian representation of turbulence). Soviet Physics JETP 20, 1290–1294.

Ortega-Cejas, V., Fort, J., Méndez, V., 2004. Role of the delay time in the modelling
of biological range expansions. Ecology 85, 258–264.

San Miguel, M., Toral, R., 2000. Instabilities and Nonequilibrium Structures VI.
Kluwer Academic Publishers, pp. 35–130.

Santos, M.A., Sancho, J.M., 1999. Noise-induced fronts. Physical Review E 59, 98–102.
Scarsoglio, S., Laio, F., D’Odorico, P., Ridolfi, L., 2011. Spatial pattern formation

induced by Gaussian white noise. Mathematical Bioscience 229, 174–184.
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