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Extinction conditions for isolated populations with Allee effect
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a b s t r a c t

One of the main ecological phenomenons is the Allee effect [1–3], in which a positive benefit from the
presence of conspecifics arises. In this work we describe the dynamical behavior of a population with
Allee effect in a finite domain that is surrounded by a completely hostile environment. Using spectral
methods to rewrite the local density of habitants we are able to determine the critical patch size and
the bifurcation diagram, hence characterizing the stability of possible solutions, for different ways to
introduce the Allee effect in the reaction–diffusion equations.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Allee effects occur whenever fitness of an individual in a small or
sparse population decreases as the population size or density also
declines [1–5]. Even though the terminology involved in the Allee ef-
fect classification is still somewhat controversial, a distinction is
usually made between ‘component’ and ‘demographic’ Allee effects.
The first one is defined as a positive relationship between any mea-
surable component of individual fitness and population size or den-
sity, whereas the second one designates a positive relationship
between total individual fitness and population size or density and
is classically measured by the per capita population growth rate
[6,7]. In this paper, we will focus on the ‘demographic’ Allee effect
and refer to it simply as the Allee effect for the sake of brevity.

When a population experiences Allee effect, the per capita
growth rate of the species is reduced at low density [8], which is also
referred to as a positive relationship between population growth
rate and density [9] or an inverse density dependence at low popu-
lation sizes [10]. In other words, the individuals of these species ben-
efit from the presence of conspecifics, cooperate with them; if the
lack of conspecifics is stronger than the benefits obtained, then the
individuals may be less likely to reproduce or survive at low popula-
tion sizes and their fitness might be reduced [11]. In consequence,
the Allee effect can also be viewed as the disadvantage of too few
of conspecifics. So, the Allee effect can also be defined as the failure
to mate successfully that occurs when the population density falls
below a certain critical threshold.

Allee effects can be either ‘strong’ or ‘weak’, although the latter is
often ignored [12]. Under the former case, populations experience
negative per capita growth rates when density falls beyond the crit-
ical threshold, and if a population does not surpass this threshold it
will become extinct. Under ‘weak’ Allee effects, populations experi-
ence lower per capita growth rates at low densities but they are al-
ways positive, hence there is no critical threshold to be exceeded
for the population to survive [8].

There are several reasons why populations may exhibit Allee
effects, such as less efficient feeding at low densities, reduced effec-
tiveness of vigilance and antipredator defences, and inbreeding
depression [13]. The most cited and obvious case of the Allee effect
is the difficulty of finding mates at low population sizes in sexually
reproducing species [6], although it represents only a small subset
of social causes of inverse density dependence [9]. Directly or indi-
rectly, the ramifications of Allee effects can be seen in almost every
area of ecology and conservation, as even species under no obvious
Allee effect might be affected by others that do.

Abundant theoretical models account for the Allee effect. Some of
them incorporate the Allee effect by multiplying the per capita
growth rate by a term that becomes negative when the population
density is below a certain threshold and positive otherwise [13], a
case known as multiplicative Allee effect. Other models add a preda-
tion term which causes the Allee effect, which is known as Holling
type II functional response [14].

In this work we want to investigate the role of strong and weak
Allee effect on the extinction conditions for a population living in a
single patch surrounded by completely hostile conditions. Although
the assumption of completely hostile environment represents
an idealization, it has been employed traditionally in the
literature, not only in general theoretical studies [15–17], but also
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in models of specific populations such as plankton blooms [18], crit-
ical plankton filaments [19], fish populations in marine protected
areas [20], annual plants [21] and bacterial colonies under ultravio-
let light [22]. If individuals reach the habitat boundaries, they are ab-
sorbed, killed or removed instantaneously. Hostile surroundings
favor population extinction but, if the net growth rate is high enough
to compensate for the losses at the boundaries, persistence is
guaranteed.

This problem has been theoretically studied by some authors.
Smoller and Wasserman [23], Britton [24] and Cantrell and Cosner
[25] studied the bifurcation problem of the steady-state solution of
the reaction–diffusion equation. They considered Dirichlet,
Neumann and periodic boundary conditions and obtained qualita-
tive bifurcation diagrams by using the technique of the so-called
time-map. More recently, Shi and Shivaji [26] used only weak Allee
effect but on the other hand also considered higher-dimensional
systems. They constructed the bifurcation diagrams qualitatively
by analyzing the sub and super-solutions of the steady-state prob-
lem. Other studies have included also the effect of density-depen-
dent diffusion [27] or have considered spatial variability [28,29].

To study the role of the Allee effect on the extinction condition
for a population living in a one-dimensional patch surrounded by
completely hostile conditions we employ the Galerkin spectral
method [30]. It allows us to get analytical results for the critical
patch size and the coordinates of the bifurcation point that sepa-
rates the extinction and survival regions. Our method is able to
deal consistently with both weak and strong Allee effects and is ap-
plied to three different models proposed in the literature. In addi-
tion, we can also study analytically the role of the initial central
density on the extinction conditions. These results are checked
with numerical solutions and cannot be achieved from the previ-
ous studies.

2. Galerkin spectral method

A population living in a one-dimensional finite habitat may be
modeled by a reaction–diffusion equation with Dirichlet boundary
conditions, that is,

@q
@t
¼ D

@2q
@x2 þ f ðqÞ; with qð0; tÞ ¼ qðL; tÞ ¼ 0; ð1Þ

where 0 6 q(x, t) 6 1 is the population density, D is the diffusion
coefficient, f(q) describes the net population change from birth
and death, and hence f(q)/q stands for the per capita growth rate.
The boundary conditions in (1) define a patch of size L surrounded
by a completely hostile environment. This model neglects stochas-
tic aspects due to external noise introduced in the system through
the fluctuation of a parameter and due to internal noise as conse-
quence of low population densities. The model assumes a continu-
ally reproducing population, and an absence of strong interactions
with other species.

Spectral methods are a class of techniques used to solve numer-
ically certain partial differential equations (PDEs) [30]. If q(x, t) is
sufficiently smooth then it admits the series expansion

qðx; tÞ ¼
X1
n¼1

unðtÞ/nðxÞ; ð2Þ

where /n(x) is a complete set of functions (preferably orthogonal
under some inner product) that satisfy the boundary conditions
/n(0) = /n(L) = 0. In the Galerkin approach one demands that the
residual is orthogonal to the space from which q(x, t) comes. This
is accomplished by ensuring that the residual is orthogonal to each
of the basis functions. Considering /n(x) = sin(npx/L), from Eq. (1)
we define the residual

Rðx; tÞ ¼ @q
@t
� D

@2q
@x2 � f ðqÞ

and require thatZ L

0
Rðx; tÞ sin

mpx
L

� �
dx ¼

Z L

0

@q
@t
� D

@2q
@x2 � f ðqÞ

" #

� sin
mpx

L

� �
dx ¼ 0: ð3Þ

Inserting (2) into (3) the evolution equation for the coefficients
un(t) reads

dun

dt
¼ �D

np
L

� �2
un þ

Z L

0
f ðqÞ sin

npx
L

� �
dx: ð4Þ

The integral of the right hand side of Eq. (4) can be performed if the
expression for the reaction function is known and the functions
un(t) can be obtained by solving the corresponding nonlinear ordin-
ary differential equations. However, to gain simplicity and analytic
results in what follows, let us assume that the first term (n = 1) of
the expansion (2) is the leading term i.e., it is the main contribution;
that is, q(x, t) ’ u1(t) sin (px/L). So that, the functions un>1(t) are
supposed to be of higher order than u1(t). This is the approach
we take throughout the reminder of the paper. The validity of this
approach is analyzed in detail in the Appendix A at the end of the
paper.

Now, the problem is to compute and study the temporal behav-
ior of u1(t). To do this we approximate f(q) by neglecting higher-
order nonlinear terms than f(u1). Let us assume that the reaction
term has the form

FðqÞ ¼ a1qþ a2q2 þ a3q3: ð5Þ

Hence, keeping nonlinear terms up to u3
1 in f(q), Eq. (4) turns, for

n = 1, into

du1

dt
¼ �D

p
L

� �2
þ a1

� �
u1 þ

8a2

3p
u2

1 þ
3a3

4
u3

1: ð6Þ

The steady-state solutions are

u1 ¼ 0; ð7Þ

u�1 ¼ �
16a2

9pa3
� 2

3a3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8a2

3p

� �2

� 3a3 a1 � D
p2

L2

� �s
: ð8Þ

The above solutions conform the branches of the bifurcation dia-
gram of the central population density as a function of the patch
size. To define the regions of stability (survival) or instability
(extinction) we insert into (6) u1ðtÞ ¼ u�1 þ �ðtÞ, where �(t) is a
small perturbation and u�1 is any of the solutions given by (7) and
(8). We find after linearizing that

u1 ¼ 0 is stable if a1 � D
p2

L2 < 0 ð9Þ

and

u�1 is stable if
3a3

2
u�1 þ

8a2

3p
< 0: ð10Þ

From (10) and (8) it is seen that uþ1 is the stable branch and u�1 is
unstable branch. As we will see in detail in the next section for
any of the examples we study, the unstable branch plays the role
of separatrix between the attraction basins of the states u1 = 0
and uþ1 such that if the initial central density exceeds u�1 then the
central density goes to uþ1 and population survives. If the central
density is below u�1 then population extincts. This is what we call
relative extinction/survival. As the bifurcation branches correspond
to the values of central density u1 for different habitat sizes it is not
surprising that what is really important of the initial condition is
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not how it is distributed along the space but its central value. Recall
that under our approach q(x, t) ’ u1(t) sin (px/L), so that
u1(t) ’ q(x = L/2, t) is the central density and is u1(0) ’ q(x =
L/2,0) the initial central density. The only conditions that the initial
condition must accomplish for numerical calculations are that it
must be symmetric respect to x = L/2 due to the symmetry of the
problem (1) so that the maximum value of the density must be
attained at x = L/2.

In the next sections we examine the conditions for extinction
and survival for different models of Allee effects proposed in the
literature distinguishing between strong and weak Allee effects.
From (5) this difference can be established as

weak Allee effect : a1 > 0;

strong Allee effect :
a2

2

4a3
< a1 < 0:

ð11Þ

3. Multiplicative Allee effect

In this section we apply the above analysis to the case of mul-
tiplicative Allee effect. The pioneer model was proposed by Lewis
and Kareiva [13]; there the per capita growth rate was multiplied
by (1 � q)(q � q0). Note that the Allee effect is present when
0 < q0 < 1 and if q < q0 the per capita growth rate becomes nega-
tive. So, q0 represents the fraction of carrying capacity below
which the ill-effects of a low population density produce a negative
growth. The less q0 is, the less prominent is the Allee effect. In this
section we make use of a slight variation of this model [31] that
can deal with both weak and strong Allee effect:

f ðqÞ ¼ q½r � bðq� aÞ2�; ð12Þ

where a, b and r are positive parameters and the carrying capacity is
taken to be 1. From the criteria (11) the Allee effect is weak if r > a2b
and strong if r < a2b. For population densities q below the threshold
qy � a�

ffiffiffiffiffiffiffiffi
r=b

p
the population growth becomes negative. In conse-

quence, q� plays the role of q0 in the model by Lewis and Kareiva.
To study the stability of the different solutions in the bifurcation
diagram we need to consider separately the cases with weak or
strong Allee effect.

3.1. Weak Allee effect (r > a2b)

From (9), (10) and (12) the extinction state (7) is stable if L < Lc

and unstable if L > Lc, where

Lc ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D
r � a2b

r
; ð13Þ

that is always larger than for a logistic growth (a = 0)
Analogously, it can be shown that the state uþ1 is stable and u�1

is unstable, being

u�1 ¼
32a
9p
� 2

3b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ab
3p

� �2

þ 3b r � a2b� D
p2

L2

� �s
: ð14Þ

As both branches join at the bifurcation point, uþ1 ¼ u�1 , the
coordinates of the bifurcation point are, from (14), given by

uðbÞ1 ¼
32a
9p ; ð15Þ

Lb ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D
1

3b
16ab
3p

	 
2 þ r � a2b

s
: ð16Þ

In Fig. 1 we plot the analytical results given by (14) together with
numerical calculations. The latter are performed by using a cen-
tered finite difference scheme. The agreement between both con-
firms that the approach of considering the first term only is
reasonable. The figure shows a backward bifurcation where uðbÞ1

is the minimal survival population density. When the patch size is
lower than Lb the population becomes extinct, but when Lb < L < Lc

both extinction and survival solutions are stable. In this case the fi-
nal population density depends on the value of the initial central
density. Population extincts if u1ð0Þ < u�1 and survives otherwise.
Therefore the solution u�1 plays the role of separatrix between the
attraction basin of the extinction and survival states. Moreover, as
u�1 decreases with L, the greater L the less initial central density
is necessary for survival. If the patch size surpasses Lcthen popula-
tion will always survive for any initial density profile.

The coordinates of the bifurcation point, obtained analytically
in (15 ) and (16), have been also compared to numerical solutions
in Fig. 2. It is seen how Lb increases with a (region 0 < a < 0.55). This

ϕ( )

1

ϕ−

1

ϕ+

1

ϕ±

1

Fig. 1. Backward bifurcation for weak multiplicative Allee effect. If L < Lb population becomes extinct. The solid (stable) curve corresponds to the positive solution given in
(14) and the dotted (unstable) curve corresponds to the negative solution. The symbols correspond to the numerical solutions. D = b = 1, a = 0.55 and r = 0.4.
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parameter denotes how strong the Allee effect is, so that the
extinction region expands to the right (due to the growth of Lb)
when a increases, as expected. The population density at the bifur-
cation point, uðbÞ1 ; increases almost linearly with a.

3.2. Strong Allee effect (r < a2b)

In this case the condition (9) is always satisfied so that the
extinction state is always stable, regardless of the patch size. The
region of survival, present for weak Allee effect when L > Lc, is thus
not present here and u�1 decreases as L increases but never reaches
the value zero. Then, the bifurcation diagram has only two regions:
the extinction region when L < Lb and the relative extinction/sur-
vival region for L > Lb. In consequence, under a strong Allee effect,
a population can survive only if the patch is larger than Lb and if
the initial central population density is higher than u�1 . If one or
both of these conditions are not met, then the population becomes
extinct. In Fig. 3 we represent a bifurcation diagram for this case,
which illustrates these comments. In Fig. 2 we have also plotted
the coordinates of the bifurcation point (region a > 0.55).

An interesting comparison can be made between these results
for the strong Allee effect and those one would find in a well-mixed
media (that is, without diffusion of individuals). In that case one
would have that the population will go extinct if the population
density falls below the threshold density q�. Since the hostile envi-
ronment introduces even more restrictive conditions for popula-
tion growth (all the individuals that cross the domain boundaries
disappear) one would expect that extinction is still more likely.
However, this is not necessarily the case due to the fact that the
hostile conditions lead to a spatially structured population. This
can be seen by comparing the average density

1
L

Z L

0
qðx; tÞdx ’ 2u1

p ð17Þ

with the threshold density q�. Near the bifurcation point one can re-
place (15) and (16) into (17). Then one has that in the vicinity of the
bifurcation point the average population can be below the density
threshold q� provided that

D <
9p
64a

� �2

a�
ffiffiffi
r
b

r� �2
1

3b
16ab
3p

� �2

þ r � a2b

 !
: ð18Þ

In that case the stationary population density will be, in average,
below the critical value but the population will still survive. The
interpretation of Eq. (18) is quite straightforward: a slow dispersal
rate will make the population mixing very slow, so near the central
part (x = L/2) of the domain where the density is high, the popula-
tion can persist even if near the (hostile) boundaries the population
is very small.

4. Shifted logistic growth

In this section we deal with a growth function of the form

f ðqÞ ¼ rqbð1� qÞ; ð19Þ

that has been applied for populations of whales [32,33] or forest fire
models [34]. The parameter b > 1 measures the difficulty of the mat-
ing process. In forest fire models it expresses the number of burning
trees necessary to set fire to a green tree. Then, the greater bthe
more prominent the Allee effect is. At first sight one could think that
this is a case of weak Allee effect because, as can be seen from (19),
the population and the per capita growth rate is 0 at q = 0. However,
as we show below the corresponding bifurcation diagram and its
properties are qualitatively equal to the case of strong Allee effect.
By combining (4) with (19) one gets, for n = 1,

du1

dt
¼ �D

p
L

� �2
u1 þ rMub

1 � rNubþ1
1 ; ð20Þ

where

M ¼ Cð2þ bÞ
2bC 3þb

2

	 
2 ; N ¼ Cð3þ bÞ
21þbC 4þb

2

	 
2

and C( ) is the Gamma function. As b > 1 the state of extinction
u1 = 0 is always stable. In this case there is no critical patch size
and the bifurcation diagram is similar to that of Fig. 3. First, let us
compute the coordinates of the bifurcation point. The solution for
the state of relative survival/extinction is obtained by setting the

Fig. 2. Dependence of the population density and the patch size at the bifurcation point as function of a. Solid curves correspond to the analytical results given in (15) and
(16) and the squares are the numerical results. We have considered D = b = 1 and r = 0.3. The region 0 < a < 0.55 corresponds to weak Allee effect while the region a > 0.55
corresponds to strong Allee effect.
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right hand side of Eq. (20) equal to zero. This equation can be
rewritten by solving for L

L ¼ p
ffiffiffiffi
D
r

r
1

u
b�1

2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M � Nu1

p : ð21Þ

The bifurcation point satisfies @L/@u1 = 0. Solving this equation for
u1 and inserting the result into (21) one finds

uðbÞ1 ¼
2ðb� 1Þ
bð2þ bÞ

C 4þb
2

	 

C 3þb

2

	 

" #2

; ð22Þ

Lb ¼ p
ffiffiffiffiffiffiffi
2D
r

r
b� 1
2þ b

� �1�b
2

bb=2 C 3þb
2

	 
b
C 4þb

2

	 
1�b

Cð2þ bÞ1=2 : ð23Þ

In the limit b ? 1, (19) tends to the logistic growth, uðbÞ1 ! 0 and
Lb ! p

ffiffiffiffiffiffiffiffi
D=r

p
[15]. For b = 2 it is easy to find an analytic solution

for the bifurcation diagram. Setting b = 2 in (20), equating to zero
and solving for u1, one finds

u�1 ¼
16
9p
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32
9p

� �2

� 16Dp2

3rL2

s
: ð24Þ

In Fig. 4 we plot the bifurcation diagram for the central population
density as a function of the patch size. As can be seen, it is qualita-
tively equal to that corresponding to strong Allee effect. If L < Lb

population becomes extinct. The extinction/survival is conditioned
again by the amplitude of the initial central density condition. If
u1ð0Þ > u�1 the population survives and the central density evolves
towards uþ1 . Contrarily, if u1ð0Þ < u�1 the population becomes
extinct. In Fig. 5 we plot the coordinates of the bifurcation point gi-
ven in (22) and (23) as function of the parameter b, that is a mea-
sure of how prominent the Allee effect is. Similarly to the
previous case with a, the parameters uðbÞ1 and Lb are increasing func-
tions of b.

5. Logistic growth with a cutoff

The logistic growth with a cutoff at low densities can be written
as

f ðqÞ ¼ rhðq� aÞqð1� qÞ; ð25Þ

where h(�) is the Heaviside function, that is, h (q � a) = 0 if q < a and
h(q � a) = 1 if q > a. The growth function (25) has been considered
to model the effect of stochastic fluctuations that appear when
the density of individuals in a population is small [35]. This is also
known as internal or demographic fluctuations. From an ecological
perspective the parameter a plays the role of a threshold density.
When the population density falls below a then population growth
breaks down due to mating difficulties that appears at low popula-
tion densities. This growth function can be used to study the role of
internal fluctuations in front propagation [35] and the epidemic
waves [36]. Inserting (25) into (4), the integral can be carried out
for n = 1

Z L

0
f ðqÞ sin

px
L

� �
dx ’ 2L

pu2
1

Z u1

a

q2ð1� qÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

u2
1

r dq

¼ 2L
p

u1

Z 1

a=u1

s2ð1�u1sÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p ds ¼ 2L

p
u1

p
4
� 1

2
arcsin

a
u1

� ��

þ a
2u1

� 2u1

3
� a2

3u1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

u2
1

s #
: ð26Þ

In the first step of the calculation above we have performed the
change of variable sin (px/L) ’ q/u1 and in the second step we de-
fine s = q/u1. By introducing (26) into (4) with n = 1 we get the evo-
lution equation

du1

dt
¼ �D

p
L

� �2
u1

þ 4r
p

pu1

4
�u1

2
arcsin

a
u1

� �
þ a

2
� 2u2

1

3
� a2

3

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

u2
1

s" #

ð27Þ

for u1. The nontrivial solution, corresponding to the relative sur-
vival, is defined by equating to zero the right hand side of (27). As
the resulting equation cannot be solved for u1, we solve it for L:

L ¼ p
ffiffiffiffi
D
r

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

Gðu1Þ
p ; ð28Þ

where

ϕ( )

1

ϕ−

1

ϕ+

1

ϕ±

1

Fig. 3. Backward bifurcation for strong multiplicative Allee effect. The solid (stable) curve corresponds to the positive solution given in (14) and the dotted (unstable) curve
corresponds to the negative solution. The symbols correspond to the numerical solutions. D = b = 1, a = 0.55 and r = 0.05.
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Gðu1Þ � 1� 2
p

arcsin
a
u1

� �

þ 4
p

a
2u1

� 2u1

3
� a2

3u1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

u2
1

s
: ð29Þ

The bifurcation point can be obtained, as in the previous case, by
solving @L/@u1 = 0 to get

uðbÞ1 ¼
ffiffiffi
a
p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ

ffiffiffiffiffiffi
3a
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8� 5a
pq

;

Lb ¼ p
ffiffiffiffi
D
r

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GðuðbÞ1 Þ
q :

ð30Þ

In Fig. 6 we plot the bifurcation diagram for the central population
density as function of the patch size. As can be seen, this diagram is
qualitatively equal to that for shifted logistic and suggests that in
both cases the population is under a strong Allee effect.

Let us check now the stability of the branches of the bifurcation
diagram. As for 0 6 q < a the reaction term vanishes, the equation
for any small perturbation �(t) of the extinction state u1 = 0 follows
the ordinary differential equation d�/dt = �Dp2�/L and �(t) tends
exponentially to zero proving that the state u1 = 0 is globally sta-
ble. From Eq. (28) and solving for u1 one obtains the two branches,
the upper branch uþ1 and the lower branch. To analyze the stability
let us introduce u1ðtÞ ¼ u�1 þ �ðtÞ, with �(t) a small perturbation,
into (27). Expanding and collecting terms the perturbation follows
�(t) 	 eDt where

ϕ+

1

ϕ−

1

ϕ( )

1
ϕ±

1

Fig. 4. Bifurcation diagram for shifted logistic growth. D = r = 1 and b = 2. The solid (stable) and dotted (unstable) curves correspond to the solutions given in (24) and symbols
correspond to numerical solutions.

β

ϕ
1

β

Fig. 5. Dependence of the population density and the patch size at the bifurcation point as function of bfor the shifted logistic growth. Solid curves correspond to the
analytical results given in (22) and (23) and squares are the numerical results. We have considered D = r = 1.
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D ¼ �D
p2

L2 þ rGðu�1 Þ þ ru�1 G0ðu�1 Þ: ð31Þ

To find the sign of D let us analyze a point on the branches close to
the bifurcation point (30) by setting L = Lb + d1. So, we consider a
point belonging to the upper branch near the bifurcation point by
introducing uþ1 ¼ uðbÞ1 þ d2 with d2 > 0. Analogously, the point be-
longs to the lower branch if we introduce uþ1 ¼ uðbÞ1 þ d2 with
d2 < 0. Then, inserting the above definitions in (28) one has
�2Dp2d1 ¼ rG00ðuðbÞ1 Þd

2
2=2 and inserting them in (31)

D ’ ruðbÞ1 G00ðuðbÞ1 Þd2 þ Oðd2
2Þ;

where we have made use of @L/@u1 = 0 (i.e., G0 uðbÞ1

� �
¼ 0). As

G00 uðbÞ1

� �
< 0 (this can be easily checked from (29) and (30)), the

upper branch (d2 > 0) has D < 0 and is globally stable while the low-
er branch is unstable.

In Fig. 7 we plot the central population density and the patch
size at the bifurcation point as function of the threshold density
a. As in previous cases (shifted logistic and strong Allee effect)
both the central density and the patch size at the bifurcation
point increase as the Allee effect becomes stronger. However,
Figs. 2 and 7 differ from Fig. 5 because the concavity of the
graph Lb versus a or b. This is due to the way in which Lb in-
creases with the threshold parameter. In Fig. 2 Lb increases with
a as Lb 	 (a0 � a)�1/2 but in Figs. 5 and 7 the dependence is more
complex.

6. Conclusions

The critical patch size of a population is the minimal size of the
habitat necessary for population survival. In this paper we have
considered that the population is under Allee effects (strong and

ϕ( )

1

ϕ
1

Fig. 6. Bifurcation diagram for logistic growth with cutoff. We have considered D = r = 1 and a = 0.1. The solid (stable) and dotted (unstable) curves correspond to the
solutions given in (28) and symbols corresponds to numerical solutions.

ϕ
1

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 7. Dependence of the population density and the patch size at the bifurcation point with a for the logistic growth with cutoff. Solid curves correspond to the analytical
results given in (30) and the squares are the numerical results. We have considered D = r = 1.
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weak) and have found the conditions under which the population
either becomes extinct or survives.

In previous studies the bifurcation diagrams had been ob-
tained qualitatively. Here, we have made use of the Galerkin
spectral method to get analytical approximate expressions for
the critical patch size, the coordinates of the bifurcation point
and the branches of the bifurcation diagram. This method is also
useful in studying the stability of the branches and to establish
the regions of relative extinction/survival in terms of the value
of the initial central density. The analytical results are checked
with numerical solutions and good accuracy is found. We have
computed the bifurcation diagram for the case of multiplicative
(weak and strong) Allee effect, shifted logistic growth and logistic
growth with a cutoff. We have found that when the critical patch
size does not exist (f0(0) 6 0) the population behaves as under a
strong Allee effect: it becomes extinct if the patch size is lower
than the value at the bifurcation point Lb and survives otherwise,
but only if the amplitude of the initial central density condition
exceeds some threshold value that depends on the patch size
(relative survival). This happens when the population growth is
modeled with a shifted logistic or a logistic with a cutoff.
Conversely, when the model exhibits a critical patch size
(f0(0) > 0), the region of relative survival only takes place if
Lb < L < Lc, because for L > Lc the population survives regardless
of the initial central density condition.

Although the method provides analytical results, and this is a
clear advantage with respect to previous studies, it is not exact.
Our approach consists in truncating the Galerkin expansion at first
order neglecting higher order terms. As we have shown in the
Appendix A, this is strictly valid for small values of the population
density. As can be appreciated in Figs. 1, 3, 4 and 6 the deviation
between our analytical prediction and the numerical results be-
comes evident as the central density approaches 1. Since the pop-
ulation is spatially structured, we have also found (Section 3.2) that
for average densities below the threshold q� (for which the popu-
lation growth rate becomes negative) the population is still able to
survive.

The hostile environment condition we have assumed in this
work (Dirichlet boundary conditions) has been employed in plank-
ton blooms [15], critical plankton filaments [19], fish populations
in marine protected areas [20], annual plants [21] and bacterial
colonies under ultraviolet light [22]. In conclusion, our predictions
could be directly applied to the above systems when they experi-
ence strong or weak Allee effects. It remains to be seen, however,
how the effect of other boundary conditions (e.g. partially hostile,
zero flux or other) will affect (positively or negatively) the spatial
dynamics of species with Allee effect. This would be useful, for
example, to study the effect on stream populations or rivers [37].
It would be also interesting to study in future works how other
patterns of movements as congregation (aggregation as a result
of behavioral responses of organisms to conspecifics) compete
with Allee effects to avoid the extinction.
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Appendix A

In this appendix we check the validity of neglecting un>1 in
comparison with u1. As we will see, this approximation is better
as u1 ? 0. Introducing F(q) = a1q + a2q2 + a3q3 in (4) and keeping
nonlinear terms up to order u3

1 one gets

dun

dt
¼ �D

np
L

� �2
þ a1

� �
un þMna2u2

1 þ Nna3u3
1 ð32Þ

with

Mn ¼
2
L

Z L

0
sin2 px

L

� �
sin

npx
L

� �
¼ 4

np
ð�1Þn � 1

n2 � 4
;

Nn ¼
2
L

Z L

0
sin3 px

L

� �
sin

npx
L

� �
¼ 12

p
sinðnpÞ

ðn2 � 9Þðn2 � 1Þ :

Let us assume u1 small. Then, setting n = 1 into (32) one gets
u1(t) 	 exp(a1 � Dp2/L2)t and integrating (32) one finds (n > 1)

unðtÞ ¼ unð0Þeða1�Dn2p2=L2Þt þ eða1�Dn2p2=L2Þt

�
Z t

0
dt0 Mna2u2

1ðt0Þ þ Nna3u3
1ðt0Þ

� �
e�ða1�Dn2p2=L2Þt0

’ unð0Þeða1�Dn2p2=L2Þt þ M2a2

a1 þ D p2

L2 ðn2 � 2Þ
eð2a1�2Dp2=L2Þt

þ O u3
1

	 

¼ Anus

1 þ Bnu2
1 þ O u3

1

	 

where

s ¼ Dðnp=LÞ2 � a1

Dðp=LÞ2 � a1

> 1

for n > 1, and An and Bn are suitable constants. Finally,

lim
u1!0

un

u1
¼ Anus�1

1 þ Bnu1 þ Oðu2
1Þ ¼ 0;

which shows that if u1 is small then un>1 and can be neglected.
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