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We present a method, founded on previous renewal approaches as the classical Wilemski-Fixman
approximation, to describe the escape dynamics from a potential well of a particle subject to non-
Markovian fluctuations. In particular, we show how to provide an approximated expression for the
distribution of escape times if the system is governed by a generalized Langevin equation (GLE).
While we show that the method could apply to any friction kernel in the GLE, we focus here on the
case of power-law kernels, for which extensive literature has appeared in the last years. The method
presented (termed as two-point approximation) is able to fit the distribution of escape times ade-
quately for low potential barriers, even if conditions are far from Markovian. In addition, it confirms
that non-exponential decays arise when a power-law friction kernel is considered (in agreement with
related works published recently), which questions the existence of a characteristic reaction rate in
such situations. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3685418]

I. INTRODUCTION

The Kramers escape problem from a well potential repre-
sents one of the cornerstones of the reaction-rate theory.1 Ac-
cording to it, the kinetics of chemical transformations can be
interpreted in the light of a Brownian particle moving through
a reaction coordinate space x subject to an energy poten-
tial V (x) which determines the energy landscape of the sys-
tem. This Brownian dynamics can be represented through the
Langevin equation

ẍ = −γ ẋ − dV (x)

dx
+ ξ (w)(t), (1)

where we have assumed a unit mass (m = 1). In this ex-
pression a standard velocity-dependent friction term is used
(with a characteristic friction parameter γ ), and ξ (w)(t) rep-
resents Gaussian white noise. One of the celebrated results
by Kramers was on the analysis of the distribution of escape
times from one potential well to another.2 He was able to de-
termine that the decay of this distribution in the steady state is
asymptotically exponential, giving rise then to a characteristic
reaction (escape) rate k.

During several decades, many researchers have explored
the generalized Kramers problem in which this noise-induced
escape process is governed by correlated fluctuations (this is,
colored noise). In that situation, an asymptotic reaction rate
can still be well defined (provided that the integral of the auto-
correlation function of the noise does not diverge). The Eq. (1)
then turns into the generalized Langevin equation (GLE)

ẍ = −
∫ t

0
dt ′η(t − t ′)ẋ(t ′) − dV (x)

dx
+ ξ (t), (2)

where the friction kernel η(t) and the noise ξ (t) are connected
through

〈ξ (t)ξ (s)〉 = kBT η(|t − s|). (3)

a)Author to whom correspondence should be addressed. Electronic mail:
daniel.campos@uab.es.

These equations can be rigorously derived using a formalism
from statistical mechanics for the case of a particle immersed
in a thermal bath of harmonic oscillators.3 Then the fluctu-
ation dissipation theorem expressed by Eq. (3) holds since
fluctuations and friction have a common origin. Likewise, the
GLE has also been studied in the presence of additional or
external noises.

In the last years special focus has been put on those cases
where the noise correlations expand over several timescales
(giving rise to autocorrelation functions whose integral di-
verges) as Mittag-Leffler noise, fractional Gaussian noise
(fGn), etc. This interest is motivated by recent experimental
findings. Single-molecule experiments with different proteins
have shown that the conformational fluctuations observed in
these systems are long-lasting correlated,4, 5 and for some spe-
cific cases the system (2) and (3) has been specifically pro-
posed as an appropriate model to explain these results.5, 6

Also, ultraslow relaxation in the viscoelastic properties of
dense suspensions7 as well as DNA escape dynamics from
nanopores8, 9 are found to admit similar descriptions.

Notably, recent theoretical works carried out in this
line have proved that the escape times distributions for
these cases do not decay exponentially but as a stretched
exponential.10, 11 This is again in agreement with observa-
tions done in bistable enzymatic reactions performed at the
single-molecule level.12–16 For a GLE approach governed by
fGn, this type of decay is expected to occur in general if
potential barriers separating the wells are below a certain
threshold value,11 and (even above that threshold) if the av-
erage value of the autocorrelation function diverges (albeit
this last case requires careful consideration since an expo-
nential cutoff is always expected to appear in the correla-
tion function at long times).11, 17, 18 The escape times then
lack a characteristic timescale and a reaction rate (in a
classical sense) cannot be well established; this is a topic
of major theoretical interest which has been under debate
recently.
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Due to the non-Markovian and the nonlinear nature of the
problem, it becomes really difficult to obtain exact or analyti-
cal results from Eqs. (2) and (3). The problem simplifies con-
siderably if the reactant well is approximated to a harmonic
potential. Then a Fokker-Planck description is available, as
was first derived by Adelman19 and later used to study trans-
mission through a parabolic barrier by Hänggi and Mojtabai20

(see also Ref. 21). The corresponding dynamical phase dia-
gram for the case of fGn has also been explored recently.23 In
the absence of inertial effects in Eq. (2) an exact asymptotic
limit to the escape times distribution has also been obtained
for power-law noise, and it has been shown to follow a power-
law asymptotic decay.17 The case of overdamped motion with
fGn has also been explored very recently,24 but in that situ-
ation it is observed that the distribution of escape times de-
cays exponentially and so a rate theory can be established
without problem. Finally, a quasistatic disorder approxima-
tion has also been used to justify the stretched exponential
decays found in the general (this is, not overdamped) case.11

In the present work we propose a semi-analytical ap-
proximation to the escape problem from a harmonic potential
governed by the GLE and the fluctuation-dissipation theorem
with a Gaussian power-law noise (this is, for example, the
same problem addressed recently in Ref. 25). Note, however,
that the method we shall present can be extended straightfor-
ward to any colored Gaussian noise. The model is inspired
on a first-passage approach proposed by Sokolov,26 and it is
not only able to explain the stretched exponential decays ob-
served in Refs. 10 and 11 for large escape times, but it fits
reasonably well the whole shape of the escape times distribu-
tion (at least in some regimes) without using any adjustable
parameters. This will be confirmed by direct comparison with
Langevin dynamics simulations performed at different values
of the kBT factor.

II. THE WILEMSKI-FIXMAN APPROXIMATION

In order to present our model it is first convenient to re-
view the well-known approach proposed almost forty years
ago by Wilemski and Fixman (WF). Renewal approximations
in general represent a quite usual way to address first-passage
problems27 and, in particular, the WF approximation had its
origin in the analysis of polymer cyclization,26, 28, 29 though
has later been extended to many other situations. Consider
a stochastic particle moving on the x coordinate subject to
a known dynamics, which includes the effect of a harmonic
potential (Figure 1). We want to determine the probability to
reach for the first time the position xf > 0 at time t. Following
the van Kampen’s derivation,27 we can split the total num-
ber of possible trajectories leading the particle to the position
x at time t into those for which the first-passage has already
occurred at a previous time t′ < t, and those for which the
first-passage has not occurred yet. Then the probability G(x,
t|x0) to be at x at time t (given the initial condition x0) reads

G(x, t | x0) = Q(x, t | x0) +
∫ t

0
dt ′G(x, t | f (xf , t ′ | x0); x0)

× f (xf , t ′ | x0). (4)

FIG. 1. Schematic representation of the escape problem addressed here.

Here, the probability Q(x, t|x0) stands for those paths that
have not passed yet through xf during the interval (0, t), and
the function f(xf, t|x0) is the first-passage probability distri-
bution for particles at time t (in the following, we will omit
the explicit dependence of f on initial conditions to simplify
notation). In consequence, G(x, t |f (xf , t ′); x0) represents the
probability to be at (x, t) conditional to the first-passage event
at time t. In order to deal analytically with the previous ex-
pression some sort of simplification is needed; in the WF ap-
proximation it is assumed that

G(x, t | f (xf , t ′); x0) ≈ G(x, t − t ′ | xf ). (5)

According to this, it is assumed that a new process, indepen-
dent of the previous history of the particle, starts once the first-
passage occurs (this is, a renewal assumption). Note that this
approximation completely ignores initial conditions and any
other previous memory of the system when xf is crossed for
the first time, so this is not appropriate to describe highly non-
Markovian systems in which correlations are long-lasting, as
those driven by fGn or similar.

The final step in the WF approximation simply consists
of evaluating (4)–(5) at x = xf so that Q(xf, t|x0) = 0 (which
holds from the definition of Q). Then one obtains

G(xf , t | x0) =
∫ t

0
dt ′G(xf , t − t ′ | xf )f (xf , t ′), (6)

from which the first-passage distribution can be obtained (by
inversion) in case the G’s are known. Also, note that Eq. (6)
can be easily transformed into an algebraic equation by tak-
ing advantage of the time convolution theorem; this represents
one of the main advantages of this approach.

III. TWO-POINT APPROXIMATION

A. The distribution of escape times

In the following we show how to extend the idea above
in such a way that correlations are not completely excluded.
Our model follows the prescriptions in Ref. 26 but we con-
sider here explicitly the velocity of the particle as a variable.
According to this, we can define the probability G(x, t, v|x0,
v0) to be at x at time t with velocity v if the initial conditions
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are x0, v0 (with x0 < xf ). In analogy with Eq. (4) we can write

G(x, v, t | x0, v0)

= Q(x, v, t | x0, v0)

+
∫ t

0
dt ′G(x, v, t | f (xf , t ′); x0, v0)f (xf , t ′ | x0, v0). (7)

Now, Q(x, t, v|x0, v0) is the probability that the particle, mov-
ing with velocity v at time t, has not yet crossed through xf

during the interval (0, t). The first-passage distribution f is
now explicitly dependent on the initial speed v0. Finally, G(x,
v, t|f(xf, t′); x0, v0) is the conditional distribution of being at
(x, v, t) provided that the first passage occurred at time t′.

Again, we need an approximation in order to make the
expression (7) analytically treatable. We propose here

G(x, v, t | f (xf , t ′); x0, v0) ≈ G(x, v, t | xf ,+, t ′), (8)

which means that we approximate G(x, v, t|f(xf, t′); x0, v0) as
the probability to be at (x, t, v) provided that the particle was at
xf at time t′ with positive velocity (denoted by the symbol +).
This is because the first-passage process necessarily involves
a positive velocity of the particle, since xf > x0 . Also, the
effect of the initial conditions x0, v0 has been obviated since
it is expected to be almost negligible.

Note that f does not depend explicitly on the velocity v

at time t, so we can integrate Eqs. (7) and (8) over this vari-
able. In principle, we could choose the corresponding inte-
gration limits freely. However, our approximation consists of
partially neglecting the effect from correlations, so intuitively
it is expected to work better as the average time between the
first event (first-passage) and the second one (later passage)
is longer, so the correlation effects have vanished meanwhile.
If we force the second event to occur at positive velocity v

then the probability that the first and the second event are very
close in time decreases very much, so it is likely that the ef-
fect of correlations is smaller (if compared with the case −∞
< v < ∞). In agreement with this discussion, we have found
numerically that the validity of our approximation is better if
the integration is performed only over positive values of v in-
stead of using the whole range (−∞, ∞). In consequence, we
will use at practice∫ ∞

0
dvG(x, v, t | f (xf , t ′); x0, v0)

≈
∫ ∞

0
dvG(x, v, t | xf ,+, t ′). (9)

Let us add that we have not explored yet other choices for
the integration limits of v, but that could possibly improve the
results we report in the present manuscript.

Now, using the approximation (9) and the Bayes theorem
we can integrate Eq. (7) over v and write it in the form∫ ∞

0
dv

P (x, v, t ; x0, v0)

P (x0, v0)

=
∫ ∞

0
dvQ(x, v, t | x0, v0)

+
∫ t

0
dt ′

∫ ∞

0
dv

P (x, v, t ; xf ,+, t ′)
P (xf ,+, t ′)

f (xf , t ′), (10)

where the P’s are the one and two-time joint probability densi-
ties. If we write explicitly P (xf ,+, t) = ∫ ∞

0 dvP(xf, v, t) and
evaluate the resulting equation at x = xf, Eq. (10) leads to∫ ∞

0
dv

P (xf , v, t ; x0, v0)

P (x0, v0)

=
∫ t

0
dt ′

∫ ∞

0
dv

∫ ∞
0 dv′P (xf , v, t ; xf , v′, t ′)∫ ∞

0 dv′P (xf , v′, t ′)

× f (xf , t ′ | x0, v0). (11)

The distribution of the first-passage or, equivalently, the es-
cape times f can be finally found from this expression. Note
that a similar equation (but without explicitly considering the
role of the velocity) was derived in Ref. 24. In that case, the
authors later assumed a stationary approximation in order to
obtain an analytical result for f, while in the present paper we
will rather obtain the exact expression for P(xf, v, t; xf, v′, t′)
and then we will solve Eq. (11) by quadrature rules.

As in the WF approximation, the expression (11) will
only be exact if the particle dynamics is Markovian. However,
here we do not consider that the dynamics starts anew after the
first passage event. Instead, the approximation (8) consists of
assuming that the future dynamics after the crossing will be
independent of the fact that the passage of the particle through
xf at time t′ is the first one, or it is the second, third . . . In or-
der to differentiate this from the WF case (which is strictly a
renewal approach) we will term our approach as a two-point
approximation, since it involves the two-point joint probabil-
ity density P(xf, v, t; xf, v′, t′).

B. Multi-point probability distributions

The main drawback in applying Eq. (11) is how to eval-
uate the multi-point distributions. This is analytically feasi-
ble for the case of the GLE with a harmonic potential V (x)
= ω2x2/2 and a Gaussian noise (regardless its correlation
function). The way to proceed is equivalent to that in Ref. 26.
Since the resulting GLE is linear and the noise term is Gaus-
sian then x and ẋ will be Gaussian variables too, and then the
multi-point distribution P(xn, vn, tn; xn − 1, vn − 1, tn − 1; . . . ;
x1, v1, t1) for arbitrary n becomes a multi-variate Gaussian
distribution, so it must follow30, 31

P (q2n, q2n−1, . . . , q1) = exp
(− 1

2 q (C2n)−1 qT
)

(2π )n/2 √
det C2n

. (12)

Here we define the vector q (and its corresponding trans-
pose qT) through q = (q2n, q2n−1, . . . , q1) ≡ (xn, vn, xn−1,

vn−1, . . . , x1, v1), while C2n represents the covariance matrix
whose coefficients are cij = 〈qiqj〉. Now, all the functions nec-
essary to find f(xf, t) from Eq. (11) can be explicitly found
using Eq. (12) and its corresponding integrals, provided that
the correlation coefficients cij (and so the corresponding ele-
ments of the inverse matrix (C2n)−1) are known. In Sec. III
C we show how to derive them analytically for any colored
Gaussian noise.
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C. Covariance matrices

The coefficients of the covariance matrix C2n can be ob-
tained from the formal solution of the GLE. By carrying out
the Laplace transformation of Eq. (2) with V (x) = ω2x2/2 and
rearranging terms we obtain

x̂(s) = ξ̂ (s) + ẋ0 + (s + η̂(s)) x0

s2 + sη̂(s) + ω2
, (13)

where s is the Laplace argument and the hat denotes the
Laplace transform. Now this expression should be inverted;
this cannot be done in general for any arbitrary friction kernel
η̂(s), but we can exploit the fact that Eqs. (2) and (3) admit a
Markovian embedding in the form,

ẋ = v,

v̇ = −∂V (x)

∂x
+

N∑
i=1

ui(t),

u̇i = −ηiv − γiui +
√

2γiηikBT ξ
(w)
i (t), (14)

provided that the initial values ui(0) are taken randomly from
a Gaussian distribution with zero average and a variance equal
to ηikBT. This at practice means that we approximate the
colored noise ξ (t) as a finite sum of independent exponen-
tially correlated noises ui(t) (since ξ

(w)
i (t) are independent

Gaussian white noise terms), an idea which has been fur-
ther discussed in Ref. 11 and the references therein. Then,
the equivalence between Eq. (14) and Eqs. (2) and (3) holds
as long as the autocorrelation function of the noise ξ (t) can
be expressed as a combination of exponential terms, so by the
fluctuation-dissipation theorem the friction kernel reads then

η(t) = 〈ξ (τ )ξ (τ + t)〉
kBT

=
N∑

i=1

ηie
−γi t . (15)

Here we focus on the subdiffusive case with η(t) > 0, for
which this Markovian embedding is known to be valid (the
case η(t) < 0 has been explored recently in Refs. 32 and 33).
The coefficients ηi , γ i are to be determined by fitting this sum
to the specific friction kernel desired. In Ref. 11 a power-law
friction kernel (corresponding to 1/f 1−α noise) was studied,
and a sum of N = 16 terms was shown to be enough to obtain
an excellent fitting over 15 time decades (for more details see
Sec. IV below).

By introducing the Laplace transform of Eq. (15) into
Eq. (13) we can formally express the latter as

x̂(s) = R0(s)

R2(s)
ξ̂ (s) + R0(s)

R2(s)
ẋ0 + R1(s)

R2(s)
x0, (16)

where R0(s), R1(s), and R2(s) are polynomials in s of order
N, N + 1, and N + 2, respectively. The coefficients of these
polynomials will depend in general on the parameters ω2, ηi,
and γ i.

Next, we can use the following relation, which is valid
for any polynomial of order N + 2 with different roots a1, a2,
. . . aN+2:22, 23

sm

R2(s)
=

N+2∑
k=1

am
k Ak

s − ak

, 0 � m � N + 1, (17)

with the coefficients Ak defined through

Ak ≡
(

dR2(s)

ds

∣∣∣∣
s=ak

)−1

. (18)

The property (17) allows us to write

R0(s)

R2(s)
=

N∑
m=0

N+2∑
k=1

am
k AkR

(m)
0

s − ak

, (19)

where R
(m)
0 represents the mth coefficient of the polynomial

R0(s). An equivalent expression to Eq. (19) could be written
for R1(s)/R2(s), too, just by replacing R

(m)
0 by R

(m)
1 and ex-

tending the sum up to m = N + 1. Then, the corresponding
inverse Laplace transform of R0/R2 and R1/R2 is just a sum of
exponentials. To simplify notation we can define now

L−1

[
R0(s)

R2(s)

]
=

N∑
m=0

N+2∑
k=1

am
k AkR

(m)
0 eakt ≡ H0(t), (20)

L−1

[
sR0(s)

R2(s)

]
=

N∑
m=0

N+2∑
k=1

am+1
k AkR

(m)
0 eakt ≡ H1(t), (21)

L−1

[
R1(s)

R2(s)

]
=

N+1∑
m=0

N+2∑
k=1

am
k AkR

(m)
1 eakt ≡ H2(t). (22)

This allows us to write the inversion of Eq. (16) in the form

x(t) =
∫ t

0
dt ′H0(t)ξ (t − t ′) + ẋ0H0(t) + x0H2(t), (23)

and, by differentiation, it can be found

ẋ(t) =
∫ t

0
dt ′H1(t)ξ (t − t ′) + ẋ0H1(t) − x0ω

2H0(t).

(24)

Now we are in position to evaluate the correlation coeffi-
cients; for example, for correlations in the position x we have

〈x(τ )x(τ + t)〉 =
∫ τ

0
dt ′

∫ t+τ

0
dt ′′H0(t ′)H0(t ′′)

×〈ξ (τ − t ′)ξ (t + τ − t ′′)〉
+H0(τ )H0(t + τ )

〈
ẋ2

0

〉+H2(τ )H2(t + τ )
〈
x2

0

〉
.

(25)

To obtain this expression we have used first Eq. (23) and next
the conditions 〈x0〉 = 〈v0〉 = 〈x0v0〉 = 0, which hold since
x0 and v0 must be independent Gaussian variables centered
at zero (otherwise we could not use the concept of a multi-
variate Gaussian distribution in Sec. III B). Moreover, using
explicitly the relation (15) we finally reach
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〈x(τ )x(τ + t)〉 = kBT

N∑
i=1

ηi

∫ τ

0
dt ′

∫ t+τ

0
dt ′′H0(t ′)H0(t ′′)e−γi(t+t ′−t ′′) + H0(τ )H0(t + τ )

〈
ẋ2

0

〉 + H2(τ )H2(t + τ )
〈
x2

0

〉
. (26)

From an analogous argument, we can also find the expressions

〈x(τ )v(τ + t)〉 = kBT

N∑
i=1

ηi

∫ τ

0
dt ′

∫ t+τ

0
dt ′′H0(t ′)H1(t ′′)e−γi(t+t ′−t ′′) + H0(τ )H1(t + τ )

〈
ẋ2

0

〉 − H2(τ )H0(t + τ )
〈
x2

0

〉
ω2, (27)

〈v(τ )x(τ + t)〉 = kBT

N∑
i=1

ηi

∫ τ

0
dt ′

∫ t+τ

0
dt ′′H1(t ′)H0(t ′′)e−γi(t+t ′−t ′′) + H1(τ )H0(t + τ )

〈
ẋ2

0

〉 − H0(τ )H2(t + τ )
〈
x2

0

〉
ω2, (28)

〈v(τ )v(τ + t)〉 = kBT

N∑
i=1

ηi

∫ τ

0
dt ′

∫ t+τ

0
dt ′′H1(t ′)H1(t ′′)e−γi(t+t ′−t ′′) + H1(τ )H1(t + τ )

〈
ẋ2

0

〉 + H0(τ )H0(t + τ )
〈
x2

0

〉
ω4. (29)

From Eqs. (26)–(29) we can finally compute all the coef-
ficients cij , and by inverting the corresponding matrix C2n we
will find the coefficients μij appearing in Eq. (12). Note that
all the integrals in Eqs. (26)–(29) can be carried out analyti-
cally since the integrand is nothing but a sum of exponential
terms. Hence, the method described throughout this section
is completely analytical except for the resolution of the main
equation of Eq. (11), which must be performed by quadrature
rules.

IV. RESULTS

Following the prescriptions in Ref. 11 we can approx-
imate a power law noise with great accuracy by taking ηi

∼ b−iα and γ i = γ */bi where the parameters b, γ * and the
proportionality constant must be chosen to fit the specific
form of the power-law kernel used. In particular, for the case
of η(t) ∼ t−0.5 the choice of parameters b = 10, γ * = 103

with N = 16 terms was proved to provide quite satisfactory
results while still keeping the number of terms involved quite
low (see Ref. 11 for further details). We will focus here in this
power-law case, since its interest is experimentally justified5

and corresponds to an anomalous escape process where the
classical reaction rate theory is expected to break down.

Using the results derived in Secs. III B and III C above
we computed the multi-point probability distributions appear-
ing in Eq. (11). Numerical inspection of the results show that
the two-point distribution P(xf, v, t; xf, v′, t′) diverges al-
gebraically in the limit t′ → t. This is an important aspect
to take into account in the numerical inversion of Eq. (11),
since choosing a wrong integration algorithm would lead us
to unstable behavior. To overcome these problems, we in-
verted Eq. (11) by using a trapezoidal quadrature rule based
on an Euler-MacLaurin expansion for functions with weak
singularities.34, 35 To verify the performance of our approxi-
mation with this quadrature method we compared the results
with those obtained from Langevin simulations, in which the
escape process from the well potential was explicitly simu-
lated for a particle governed by Eq. (14). For this purpose,
we used a Heun algorithm36 with a time step of 5 × 10−4.

Averages over 2 × 105 particles were typically performed to
obtain a good statistics even for large escape times, for which
corresponding probabilities are rather small.

Our semi-analytical approach is able to fit the numerical
results adequately in the cases reported in Figure 2 and is also
computationally faster than performing the Langevin dynam-
ics simulations, especially when mean escape times are large
and so the Langevin dynamics becomes rather long. In the in-
sets in Figure 2 we observe that the first passage time distribu-
tion obtained from Langevin dynamics realizations (circles)
shows a main peak followed by a subsequent decay modulated
by an oscillating behavior. These oscillations are noise-driven
since their amplitude clearly increase with kBT. Our approach
(solid lines) fits these general tendencies with a reasonable
accuracy, specially for lower potential barriers (this is, large
kBT). Also, we show the corresponding scaling of the survival
probability

S(xf , t) =
∫ ∞

t

dt ′f (xf , t ′),

to verify that the corresponding decay is not exponential, but
fits very well a stretched exponential function S(t) ∼ e−tα .
The corresponding exponent α varies from values very close
to 1 (which corresponds to exponential behavior) for large po-
tential barriers to values close to 0.8 for lower barriers (see
Figure 3). This is in qualitative agreement with the findings in
Ref. 11 for the case of a quartic potential. However, note that
the transition from exponential to non-exponential behavior
was found there to occur for larger potential heights (approx-
imately 10 or 12 times the value of the thermal energy), while
in the parabolic case studied here we observe that this tran-
sition occurs for ω2/2kBT close to 2.5. This means that the
parabolic case is able to reproduce qualitatively (despite im-
portant differences at a quantitative level) the features found
for the more realistic double-well case. On the other side,
the fact that the transition from non-exponential to exponen-
tial occurs at such low values of the barrier height suggests
that inertial effects may have an important role within this
dynamics. To check this, we have carried out some extra sim-
ulations (not shown) giving different values to the mass (in-

Downloaded 16 Feb 2012 to 158.109.59.32. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



074506-6 D. Campos and V. Méndez J. Chem. Phys. 136, 074506 (2012)

FIG. 2. Distribution of escape times and survival probability for a harmonic
potential with a power-law friction kernel for different values of kBT (see
legends). A comparison is performed between Langevin dynamics (circles),
the Wilemski-Fixman approximation (dashed lines), and the two-point ap-
proximation derived here (solid lines). The logarithm of S(xf, t) is plotted in
order to show the asymptotic scaling S ∼ exp(−tα). The insets show the cor-
responding derivative f(xf, t). The values of the parameters used are x0 = v0
= 0, xf = 1 , ω2 = 0.5, while the values of the parameters for the friction
kernel are given in the text.

stead of assuming m = 1 as we have done in all our discussion
above and the figures presented in the present paper). So we
have verified that reducing the effect of inertia (by taking m <

1) the transition occurs at lower values of the barrier height; to
give an example, when we chose m = 0.25 we observed that
the transition occurred at ω2/2kBT ≈ 3.5. Likewise, we have
also numerically verified that, except for this shift in the value
of the transition point, the qualitative behavior of the system
does not change and so the conclusions of our work remain
valid.

FIG. 3. Values of the exponent α defined through the asymptotic scaling S

∼ exp(−tα), obtained from Langevin dynamics simulations. All the parame-
ter values are the same as in Figure 2.

For the sake of completeness we also show in Figure 2
the results for S(xf, t) corresponding to the Wilemski-Fixman
approximation (dashed lines). It can be checked that the fitting
is much poorer for this classical approximation. As a whole,
Figure 2 shows the usefulness of our two-point approxima-
tion as a predictive tool for non-Markovian escape problems
in the regime of low potential barriers, for which the reaction-
rate theory seems to fail. Likewise, it must be pointed out
that as long as the distribution f(xf, t) becomes exponential
(this is, for large potential barriers) the two-point approxima-
tion derived here performs badly and cannot predict the decay
rate obtained from the Langevin dynamics. This is shown in
Figure 4, which is the same as Figure 2 but for a larger barrier
height ω2/2kBT = 4, which according to Figure 3 corresponds
to a height above the transition level. The reason why our ap-
proximation fails in those cases is probably that for kBT small

FIG. 4. Distribution of escape times and survival probability for a harmonic
potential with a power-law friction kernel for a value of kBT corresponding
to exponential behavior (see legends). A comparison is performed between
Langevin dynamics (circles) and the two-point approximation derived here
(solid lines). The insets show the corresponding derivative f(xf, t). The values
of the parameters used are the same as in Figure 2.
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(low noise) the successive passages of the particle through
xf are more clustered in time. When this happens the impor-
tance of the correlations in the particle dynamics increases,
so then our approximation (8) is expected to break down.
This idea has been further discussed in Ref. 31 and the ref-
erences therein, where the authors used the concept of system
of nonapproaching points to identify those subsequent pas-
sages which are well separated in time, so correlation effects
between them are negligible. Let us finally add that in those
cases (high potential barriers) alternative methods based on
the explicit assumption that a reaction rate exists (so f(xf, t) de-
cays exponentially) or based on the non-Markovian reaction-
rate theory (as in Ref. 11) are expected to fit the results with a
greater accuracy, while our interest here was mainly focused
on the non-exponential regime.

V. CONCLUSIONS

We have confirmed that the non-exponential decays ob-
tained in the escape times distributions from the wells of a
quartic potential driven by fractional Gaussian noise11 are
also found when a harmonic approximation is used. As a re-
sult, ultraslow relaxation in the well makes the determination
of a reaction rate impossible in this case, at least in a classi-
cal sense. This result contrasts with previous theoretical ap-
proaches used to explore the same or similar problems to that
addressed here. For example, the expression

SLB(xf , t) ≡ exp

[
−

∫ t

0
dt ′〈L(xf , t ′)〉

]
, (30)

has been proposed as a lower bound to the actual survival
distribution,25 where 〈L(xf, t)〉 represents the average flux of
particles crossing out of the region x < xf at time t (the brack-
ets refer to an average over different realizations of the parti-
cle). This contrasts with the exact expression for the survival
probability, which can be proved to be25

S(xf , t) =
〈
exp

[
−

∫ t

0
dt ′L(xf , t ′)

]〉
. (31)

While the lower bound of Eq. (30) is mathematically correct,
that expression does not necessarily imply that S(xf, t) should
decay exponentially, but only slower than an exponential, and
then it does not justify per se the existence of a constant re-
action rate. In those cases where the escape dynamics reaches
a stationary situation, the average flux 〈L(xf, t)〉 will tend to
a constant and then the exponential decay for SLB(xf, t) will
hold. However, our numerical results show that 〈L(xf, t)〉 al-
ways approaches asymptotically a constant value for power-
law friction kernels, even for those values of kBT for which we
have found non-exponential decays in S(xf , t). This means
that the bound provided by Eq. (30), while mathematically
valid, is of scarce utility in these situations. To prove this we
compare in Figure 5 the expressions for SLB(xf, t) and S(xf, t)
computed directly from Eqs. (30) and (31) using our Langevin
dynamics simulations and for kBT = 1. This plot confirms that
the survival probability S(t) decays as a stretched exponential
(note that the characteristic exponent α � 0.83 coincides with
that reported in Figure 3, as can be seen from the auxiliary line
∼ tα) while SLB(xf, t) is clearly an exponential lower bound.

FIG. 5. Comparison between the actual survival probability S(xf, t) (crosses)
and the lower bound SLB(xf, t) (circles) for the case kBT = 1 (the other param-
eters values are the same as in Figure 2). Auxiliary lines are used to show the
scaling for each case. The inset shows the same results but in a different plot
scaling to emphasize the differences observed in the asymptotic behavior.

In general, strong correlations in the reaction kinetics can
be mainly attributed to the existence of multiple traps in the
configurational landscape. This also admits a description in
terms of a multiple kinetic scheme representing a discrete map
of configurational states, each intermediate transition between
states governed by a characteristic rate. This approach, which
has been exhaustively explored in the literature, ensures that
an exponential decay (governed by the slowest characteris-
tic timescales) is asymptotically attained for the distribution
of escape times. However, it might be that this asymptotic
regime is only reached at long times compared to observa-
tional timescales. As an alternative, the effective description
in terms of a GLE proves very useful at practice, and so
analytical and numerical methods focused on this problem
(as the one provided here) are welcome. Regarding the two-
point approximation derived here, we think that the versa-
tility of the approach represents one of its most interesting
properties, since it can be applied straightforward to any fric-
tion kernel that can be fitted to a combination of exponential
functions (Eq. (15)). In particular, we have here proved its
performance for highly non-Markovian conditions (corre-
sponding to a power-law friction kernel) and low potential
barriers, where it fits reasonably well the whole shape of
the escape times distribution without any adjustable parame-
ters. We also observe, however, that our approximation shows
poorer performances for high barrier potentials. This may
suggest that a combination of this approach together with
other methods, more suited to the exponential regime, could
represent a promising strategy to reach a complete descrip-
tion of non-Markovian escape problems. Such hybrid meth-
ods will be explored in forthcoming works.
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