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We have derived reaction-dispersal-aggregation equations from Markovian reaction-random walks
with density-dependent jump rate or density-dependent dispersal kernels. From the corresponding
diffusion limit we recover well-known reaction-diffusion-aggregation and reaction-diffusion-advec-
tion-aggregation equations. It is found that the ratio between the reaction and jump rates controls the
onset of spatial patterns. We have analyzed the qualitative properties of the emerging spatial patterns.
We have compared the conditions for the possibility of spatial instabilities for reaction-dispersal and
reaction-diffusion processes with aggregation and have found that dispersal process is more stabilizing
than diffusion. We have obtained a general threshold value for dispersal stability and have analyzed
specific examples of biological interest.
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1. Introduction

It is known and well documented on the literature that
individuals of a population can aggregate (Okubo, 1986). Actually,
it is hard to find animals in nature that do not aggregate for one
reason or another. Aggregations of motile animals can result from
several distinct mechanisms classified by whether or not the
motion of individuals is influenced by the presence of other
individuals. If the motion is not influenced by neighbors, the
motion is said to be density-independent, and it is said to be
density-dependent if it is affected by the presence of other
individuals. The gregarious behavior can be motivated by the
need for survival, reproduction or to overcome a hostile environ-
ment. This behavior can also increase the chance of avoiding
capture by a predator. As a result, individuals can undergo two
different motions: attraction or repulsion. Attraction between
individuals of the same species can occur either through indirect
(different taxis mechanisms such as chemotaxis, phototaxis, etc.)
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or direct attraction. In this latter case, individuals attract con-
specifics due to social interactions (mating, settlement, etc.) or to
defense against predators (Fedotov et al., 2008). However, it is the
lower resources in the highly populated regions which causes
exodus, i.e., a repulsive movement due to aggregation. The
population pressure forces the individuals to move away from
regions of large population densities. The existence of a critical
population density which separates attractive from repulsive
phenotypic response was considered by Turchin (1989).

There exist several theoretical models that account for aggre-
gation. Some of them deal with indirect attraction and require
two partial differential equations (PDEs) to account both for
(i) the evolution of the population density and (ii) the balance
equation for the attractive substance. This is the so-called
chemotaxis-reaction—-diffusion scenario (Murray, 2003). Others
only involve one PDE for the individuals motion but are nonlinear
due to aggregation. The most common equation, known as
density-dependent Fisher equation or density-dependent reac-
tion-diffusion equation, constitutes a simple extension of the
Fisher equation with a diffusion coefficient that depends expli-
citly on the population density (Murray, 2003). This equation can
be obtained by combining the balance equation for the population
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density with a Fick’s law for the individual’s flux where the
diffusion coefficient depends on the density. This equation was
derived by Turchin (1989) from a random walk model on a lattice
with constant spacing and assuming that the probabilities of
jumping to the right or left are not constant. The merit of this
derivation is to connect the diffusion coefficient with microscopic
features of the underlying random walk such as the bias due to
the presence of other individuals. This helps to understand the
origin of aggregation in the density-dependent reaction-diffusion
models. However, most models are phenomenological and intro-
duce ad hoc non-linear or non-local terms such as nonlinear
advection. There are several works that consider the diffusion
coefficient as a linearly increasing function of the density (Gurney
and Nisbet, 1975; Shigesada et al., 1979; Petrovskii and Li, 2003;
Almeida et al., 2006; Balasuriya and Gottwald, 2010; Kenkre and
Kumar, 2008), other models involve nonlinear dependences
(Turchin, 1989; Smith et al., 2008; Maini et al., 2006; Sanchez-
Garduiio et al., 2010; Cates et al., 2010). Most of those works
study the conditions for the existence and uniqueness of traveling
wave solution (front propagation) or the emergence of spatial
instabilities due to nonlinear couplings. Other models incorporate
nonlinear advection terms in addition to the density-dependent
diffusion coefficient (Okubo, 1986). These terms are also present
in models for chemotaxis. There are models with nonlocal
advection terms to deal with long distance attraction described
through a spatial kernel (Griinbaum and Okubo, 1994) and have
been applied to model cell-cell adhesion (Armstrong et al., 2006).
Another line of research consists of identifying aggregation with
nonlocal competition (Britton, 1989). Only the works by Okubo
(1986), Turchin (1989) and more recently Petrovskii and Li
(2003), have made an effort to connect the density-dependent
reaction-diffusion models with the microscopic details of the
random motion. More recently, Fedotov (2011) has derived a
model from residence time structured model to study the emer-
gence of anomalous aggregation due to crowding effects.

Moreover, it is well known that the displacement of many
animals can be properly described by random walks (Othmer
et al., 1988; Okubo and Kareiva, 2001). The distance that indivi-
duals travel can be described as random draws from a probability
density function termed a dispersal kernel. These kernels have
been measured for a tremendous number of organisms (Kot et al.,
1996). This can have important effects in the spatial dynamics of
biological systems. For example, the invasion rate obtained from
the classical reaction-diffusion equation (Skellam, 1951) cannot
predict, for example, fast plant migration (Reid’s paradox) since
reaction-diffusion always underestimates the observed value.
The paradox was solved by describing the movement using
dispersal kernels with fat tails (Clark, 1998).

Besides the importance of dispersal in ecology there is a growing
realization of the influence of density-dependence in movement rate
as well. Density-dependent dispersal in demographic processes is
crucial to the study of population dynamics (Matthysen, 2005).
Increasingly, density-dependent dispersal kernels are being imple-
mented in both theoretical and applied population models (e.g. Wu
et al, 1993; Veit and Lewis, 1996; Ims and Andreassen, 2005).
Furthermore, it has been experimentally observed that density-
dependent dispersal leads to aggregation population patterns (de
Jager et al., 2011; Igoshin et al., 2001, 2004).

The aim of this work is twofold. First of all we want to give a
wide, and at the same time simple, stochastic foundation to
aggregation due to the presence of conspecifics. We shall consider
a Markovian random walk with density-dependent jump rate or
density-dependent biased jumps with a general dispersal kernel.
In both cases we take the diffusion limit to derive the correspond-
ing macroscopic density-dependent reaction-diffusion equations.
As particular cases, we shall recover well-known equations and

provide an expression for the density-dependent diffusion coeffi-
cient in terms of the second moment of the dispersal kernel and
the nonlinear advection term. On the other hand, we shall show
how our model can predict patterns of population aggregation by
considering density-dependent dispersal kernels, providing a
microscopic explanation. To this end, we study the role of the
dispersal kernel (in comparison with the diffusion approach) in
the emergence of spatial instabilities both considering density-
dependent jump rate (observed experimentally by Ims and
Andreassen, 2005; Igoshin et al., 2001, 2004) and density-depen-
dent dispersal kernels in one dimension (observed very recently
by de Jager et al., 2011). In both cases we show that the conditions
for the emergence of spatial diffusive-instability are less restric-
tive than for spatial dispersal-instability. This means the dispersal
processes have a stronger stabilizing effect than diffusion. In
particular, we show the existence of a threshold value for the
quotient between the reaction and jump rates above which it is
not possible a spatial dispersal instability.

2. Stochastic foundation of reaction-diffusion-aggregation

Let X(t) be the position of a particle at time t. If jumps are
Markovian the probability of a jump during the small time interval
(t,t+At] is AX(O]JAt+O(AL?), so that X(t+At) = X(t)+Z(t)+O(At?)
with Z(t) the jump distance. The conditional density for a stationary
jump process Z(t) is the dispersal kernel

0
D(2) = = P{zZ(t) <z}
and the balance of particles at point x
p(x,t+Ab) = At / Jp(x—2,0)@(2) dz+(1—AAD)p(x,t)+ O(AL?). 1)
R

Subtracting p(x,t) from both sides, dividing by At and letting At —0
we obtain the mesoscopic equation

op _ .
F _'/R)Lp(x 2,6)D(2) dz—Ap(x,t). 2)

Since the jump process is Markovian it is easy to account for
population growth simply by adding a reaction function F(p) to the
right hand side of (2). In non-Markovian models p(x,t) depends on
the probability that particles reached the point x at time a previous
time, say t—1. However, if mortality effects are considered then those
particles that reached the position x at t—7 may have died and this
should be taken into account in the transport term of the equations.
For this reason, it is indispensable to couple transport and reaction in
non-Markovian models and the reaction term cannot be simply
added to the transport equation (Méndez et al., 2010). If we want
to consider overcrowding effects such us aggregation then we can
assume that the jump rate A depends explicitly on p

B = | Apx-z.0pix-2.00@) de—2p.Olp(x0-+F(p) 3)

or, alternatively, the dispersal kernel depends explicitly on p

P =4 [ poe-2000z px-20) dz— -+ F(p). @
Since Egs. (3) and (4) contain a dispersal kernel instead of spatial
derivatives they account for a rather general spread mechanism than
diffusion. Likewise, due to the density dependence of the jump rate or
the dispersal kernel and the presence of a reaction term, they
constitute a generalization of the classical and well-known
reaction-diffusion-aggregation equations.
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3. The diffusion limit

In this section we analyze the diffusion regime of the evolution
equations obtained in Egs. (3) and (4)

3.1. Density-dependent jump rate

Density-dependent jump rates have been observed in micro-
organisms such myxobacteria cells (Igoshin et al.,, 2001) and
tundra vole (Ims and Andreassen, 2005). In both cases the jump
rate depends nonlinearly with the density. To perform the
diffusion limit we consider the jump distance small compared
to the spatial scale x so that
13°p ,

P, t)——z+——z +0(z%) (5)

p(x_zvt) 2 ox2

and
,18
Ap(x—z,0)]p(x—2,t) = pA(p)— Z—[pﬂ(p)]+z 22 2[pﬂ»(p)]+0(2)
(6)

Inserting (5) and (6) into (3), gathering terms and considering the
statistical properties of the dispersal kernel

/(15(2) dz=1, /z@(z) dz=0, my= /.zzdi(z) dz, (7)
R R R

corresponding to isotropic random walks with finite moments,
we have that (3) becomes

F) 2
2= M2 2 5 2 PAPI+F(p), ®
or equivalently
op
e {D(p) }+F(p), C)
where
_m d
D(p)= Tﬁ[pﬂu(p)]. (10

Note that D(p) plays the role of effective density-dependent
diffusion coefficient. This has been widely employed in theore-
tical ecology to model population aggregation. Eq. (9) is known as
the density-dependent Fisher equation and has been widely
studied (see for example: Turchin, 1989; Murray, 2003). With
this derivation we give a clear and simple microscopic interpreta-
tion to the D(p). Eq. (10) shows the dependence of the diffusion
coefficient on the density-dependent jump rate. Other mesoscopic
interpretations have been done by Okubo (1986) and Turchin
(1989) extending the idea of random walk in a lattice with
density-dependent probabilities to jump to the right or to the
left. For example, Eq. (8) was derived by Turchin (1989), where
p/(p) was related to jump probabilities of jumping to right or left
in a lattice of fixed spacing. In this work we provide a more
general framework to explain aggregation which is at the same
time simple and easily connected to the underlying microscopic
features.

In the context of bacterial colony evolution, Cates et al. (2010)
have recently observed aggregation patterns of E. coli by con-
sidering a run-and-tumble motion with density-dependent speed.
Their model resembles very much the one obtained in (9). In this
system the diffusive behavior of the bacteria colonies can be
understood from the dependence of run and tumbling events of
the individual microorganisms on their environment (Tailleur and
Cates, 2008). Thompson et al. (2011) have analyzed how such
effective diffusion coefficient can be understood from micro-
scopic, lattice-based, models for population dynamics.

3.2. Diffusion limit for density-dependent dispersal kernel

Density-dependent dispersal kernels have been recently found
in the dispersal of mussels (de Jager et al., 2011). Although the
dispersal distances are unaffected by mussel density the authors
find that the probability of movement depends on p. Then, it
suggests to consider the form &[z,p(x—zt)]. Expanding
D[z,p(x—2z,t)] for z < x we get

2.6 = 00100, 120 2] 4 120 2(), o
D(z,p(x—2,0)] ~ D(z,p)+ ap [ + 5 8x22 :|+ 20/)22 P +0(z2°).
(1)

Inserting (5) and (11) into (4) one finds, after considering the
properties (7), exactly the same equation (9) but now

Ad
D(p)—zdp

pma(p)] with my(p) = [ 20.p) dz. (12)
In summary, we have given two different microscopic founda-
tions to the well-known reaction-diffusion-aggregation equation
(9) and have shown different origins which can lead to effective
density-dependent diffusion coefficients.

3.3. Diffusion limit for biased dispersal

Let us consider that there exists an “aggregation force” that
modifies the isotropy of the dispersal process by introducing
some bias, i.e. [z®(z) dz # 0. The diffusion limit corresponding to
the case of density-dependent jump rate contains now two
additional terms in such a way that the final PDE has a new
nonlinear advection term

ap o ap
&= {D(p) o } 10 L +Fp) (13)
where

d .
Hp)=my L pip)] with my = [z0@ az

For the case of density-dependent dispersal kernel the final
equation reads as (13) but now

x1(p)= %[pmﬂp)l with my(p) = /R 2®(z,p) dz.

4. Spatial instabilities

In this section we study the emergence of spatial instabilities in
one-dimensional one-component reaction—diffusion and reaction-
dispersal equations with aggregation. It is well known that the one-
dimensional Fisher equation (Eq. (9) with D(p) = constant) is not able
to describe spatial instabilities (Murray, 2003) and at least a two-
component systems with activator-inhibitor dynamics is required.
However, we show here that the model introduced in the previous
section can exhibit spatial patterns due to aggregation. To this end,
we exploit the fact that both Egs. (3) and (4) admit a homogeneous
population steady state, p,, corresponding to the zeros of the reaction
term, F(py)=Fo=0. These homogeneous states are stable if
F'(py) <0, where the prime refers to the derivative of the function
with respect to the function argument. To analyze the growth of
spatial instabilities we perform a standard linear stability analysis
about the homogeneous steady state p,. Specifically, we let
px,t) = py+Ip(x,t) where dp(x,t) is a small perturbation. We will
analyze separately the situations where the jump rate and the
dispersal kernel depend on the population density.
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4.1. Density-dependent jump rate

Substituting the previous expression for density variations in
Eq. (3) and neglecting nonlinear terms in Jp(x,t), the linear
evolution equation for the perturbations in the case of density-
dependent jump rate is

D0 —Dipo)| [ spix-2000@) dz-3pen | +Fippiopixo, (4
where we have considered (10).

Introducing spatiotemporal variations of the form
Sp(x,t) = spe*+ 1t into Eq. (14), where k and u stand for the wave
number and the growth rate, respectively, yields the dispersion
relation

- 2 5 ~
uép = {m—zDo[d>(k)—]]+F/O}5p. (15)

where @ (k) corresponds to the Fourier transform of the dispersal
kernel and Dg =2D(py)/my stands for the value of the effective
density in the reference, homogeneous state. The dispersion
relation (15) that controls the instability of the homogeneous
state can be expressed as

'Ll:—DQl&(k)-FFE), (16)

where F =F'(p,) and for simplicity’s sake, we account for the k-
dependence of the dispersal kernel through

s 2[1—d(k)]
bl ===,

which in the diffusion limit reduces to 1/}(k)zk2+0(k4). Since
homogeneous configurations are stable to homogeneous pertur-
bations, Fj <0, for diffusive dispersal models the necessary
condition for their instability is that the corresponding effective
diffusion is negative, Dy < 0. It is clear, from the motivation of the
dispersal models, that we have to ensure that jumps are positive,
hence A(p)> 0. However, this restriction is compatible with a
negative effective diffusion coefficient. This is achieved for suffi-
ciently fast logarithmic variations of the jump rate, i.e.
dlnp/dln A< -1 (this condition is obtained by requiring
D(p) <0 in Eq. (10)). The sufficient condition for pattern forma-
tion can be then expressed as
] Fol
W (k) > Do’ a7
if !L(k) > 0. As we will discuss below, this is the case for a wide
family of usual dispersal kernels. Under this condition, we can see
that once the effective diffusion becomes negative, the homo-
geneous state is necessarily unstable and will develop spatial
patterns. This instability is independent of the reaction rate. The
competition between jump kinetics and population growth and
death will determine the range of wave lengths which become
unstable, hence being relevant to determine the characteristic
time scales associated to the development of the corresponding
patterns. Since in the diffusion regime v (k) ~ k?, the higher the
wave number the higher the growth rate. The instability will
therefore develop from very small scales. The lowest unstable
mode in the diffusive regime corresponds to ki, = \Fb\/|Qo\~
The conditional jump rate determines also a bound for ®(k).
Accordingly, the diffusive regime becomes incorrect at large wave
vectors. The finite bound of ®(k) implies that asymptotically
n/?(k)—»Z/mz for k— oco. As a result, the restriction in particle jumps
introduces a dispersal-stabilization mechanism that can counter-
balance the short scale instability induced by the negative
effective diffusion coefficient. Quantitatively, dispersion stabilizes

the homogeneous density configuration if

<1, (18)

which depends on the competition between diffusion and dis-
persal rate through the second moment of the conditional
jump rate.

Therefore, we can identify a finite window where the (low)
density-dependence of the dispersal is not relevant when the
homogeneous configuration becomes stable. If the state is
unstable, the destabilization mechanism is always controlled by
short scale fluxes due to the effective negative density. In this
respect, the expected spatial patterns will be characterized by
generic features for any dispersal kernels. The negative effective
diffusion coefficient indicates that as particles move from low to
high density regions, their effective motility is reduced in the later
regimes. At the same time, in these large density regimes particles
tend to die more easily (because of the stability properties of the
reference state p, as dictated by the corresponding reaction rate
F(p)). As a result, large density domains of small spatial extent
develop and end up being sustained by the net flux of incoming
particles from lower density regions, where the positive reaction
rate provides a continuous supply of particles. Due to the general-
ity of the instability mechanism, we expect that patterns are
analogous to those reported for bacterial colonies with a motility
reduced at higher bacterial concentrations (Cates et al., 2010) and
will be formed by relatively isotropic and static islands of large
(small) density aggregates of particles in a background of small
(large) particle density depending on the system parameters.

Although the basic mechanism controlling the growth of the small
domains is independent of the structure of the dispersal kernel, the
relative weight of the unstable wave vectors varies. As a result, since
the instability is controlled by the higher wave vectors and their
distribution depends on the dispersal kernel, there may be a weak
dependence of the formed domains on the structure of the dispersal
kernel. Quantitatively, if m,|F;|/|Do| > 1, all unstable modes will
grow slower than predicted in the diffusive limit. Moreover, the larger
the wave vector the closer the corresponding growth rates. Therefore,
the dispersal nature of the kernel will become apparent both because
the development of the unstable structures will be slower than
expected on the basis of the corresponding diffusive limit and
because there will be more marked mode mixing (i.e. a wider
instability band of unstable modes).

4.1.1. Examples
To analyze specifically how dispersal can lead to inhomoge-
neous aggregation, we consider the particular dependence

Mp)=A—ap+Ppp?/1, (19

where o and f are two positive parameters. This is equivalent to
the density-dependent diffusion coefficient considered by Turchin
(1989) for A. varians. This dependence takes into account that the
jump rate will decrease initially as p increases due to crowding
effects (aggregation). However, at high densities (p > «/2f) the
jump rate will increase as p increases since individuals continu-
ously come into contact and induce each other to disperse
(repulsion). A physical restriction on the parameters o and f
comes from the fact that the jump rate has to be positive. To
guarantee A(p) > 0, we shall require that the minimum value of
J(p) is positive, so o> < 4p. Alternatively, we could allow o? > 4f
and the physical restriction 4 > 0 would require § > o«—1 but have
checked that there are no qualitative differences. These restric-
tions are consistent with a negative diffusion coefficient. When
the reaction term, which models population reproduction and
death, follows the logistic equation, F(p) =rp(1—p), according to
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Eqgs. (18) and (19), the homogeneous configuration becomes
spatially unstable for

0 rt

Wk > 20—3f-1" (20)

assuming the necessary condition of a negative effective diffusion
coefficient, 1-20+3p <0. Therefore, for the dispersal driven
instability to occur it is necessary that the equality in (20) has
positive solution, i.e.,

200-3B—1>r1, (21)

assuming that @(k) > 0 for all k. As pointed out earlier, the ratio
between reaction and jump rates controls the possibility of
developing spatial instabilities. If an instability is allowed, the
minimal unstable mode, k., obeys

rt

blk)=1-5 =57

(22)
In order to gain further insight into the features associated to
dispersal controlled spatial instabilities, we will consider some
specific dispersal kernels widely used in ecology (Kot et al., 1996).
As a first example, the Gaussian kernel

1 2 /52
1) — —2% /0 ,
@ P

Diffusion limit
Gaussian kernel

Laplace kernel

2T 3 i

Fig. 1. Dispersion relations for diffusion limit (solid curves), Gaussian kernel
(dotted curves) and Laplace kernel (dashed-dotted curves). It is observed three
different situations where there is no spatial instability (« = 1), only the diffusion
limit predicts instability (xz=2.2) and both diffusion and dispersal transport
predict instability (¢ =3). t=f=r=my=1.

1.2

re<l/3
1.0 A

0.8 1 Stability
Q0.6
0.4

0.2 1

0.0 T T T
0.0 0.5 1.0 1.5 2.0

< 0.6

leads to d(k) = e~"¥'/4 and m, = 62 /2. The dispersion relation, Eq.
(15), reads

= %(—20{+3ﬁ+ e oK /4_1)—r (23)
and the band of unstable modes in this case reduces to
2 2 4 rt
k” > kZ _—?ln{l—m}
The second example is the Laplace dispersal kernel
1
= _— e l#/o
P(2)=5 € ,

also widely used in dispersal ecology. In this case we have
&(k) = (1+062k*)"" and my = 262. From (15)

1 1
= —(=20+3f+1 {771}4 24

p=—( PD e 24

and

Rsid— L IT

0220-3p—-1—-r1"
As we have shown in Eq. (21), in the regime where
0<20-3B-1<rr, (25)

there is diffusion instability but there is no dispersal instability. In
this diffusion regime the dispersion relation reduces to

2.2
f=— kT°(1_2a+3ﬁ)—r. (26)
In Fig. 1 we display the different stable and unstable phases for
the current dispersal model for the two positive kernels
discussed.

We have compared different kernels with the same mean
(zero) and variance (m;) so that the difference is only for the
kernel moments m,, with n > 2, that vanish in the diffusion limit.
In Fig. 2, we draw the corresponding phase diagrams as a function
of « and 5. We have labeled each region and the “non-physical
region” corresponds to the domain where the jump rate is
negative. In the right hand side panel rt <1/3 while in the left
hand side panel rt>1/3 and the dispersal driven instability
disappears (see the figure caption for details). This is a very
interesting result, absent in the diffusion approach, that shows
the importance of the ratio between reaction rate and jump rate
on dispersal-driven instabilities.

In Fig. 2 we also show the results obtained from the numerical
integration of Eq. (3) just to confirm that they properly match the

1.2

re<l/3
1.0 A

0871 Stability

0.4 1

0.2 1

n—physical region

0.0 T T
0.0 0.5 1.0 1.5 2.0

[24

Fig. 2. Parameter space diagram for the regions of stability and instability obtained from conditions (25). Circles and the corresponding error bars correspond to the results
obtained from the numerical integration of Eq. (3). The non-physical region is A(p) <0. rt = 0.1. Left panel: the region between the stability and non-physical domains
corresponds to diffusion instability. The circles correspond to the numerical values for which the onset to diffusion instability is observed. In this panel rt > 1/3 and
dispersal is always stabilizing. Right panel: the region between the stability and non-physical domains but closer to the stability domain correspond to diffusion instability
while the closer to the non-physical region corresponds to diffusion and dispersal instability.
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different stability regions predicted by our theoretical derivations.
To check this, we have integrated the equation up to a certain
(large enough) time and have observed if the solution p(x,t)
tended asymptotically to the constant stable point p=1 or
reached a non-homogeneous solution (i.e. a pattern) for different
values of o and f3. The corresponding results (circles) confirm that
the agreement with the theory is excellent. In accordance to our
discussion above, we observe that regions of instability are
characterized by non-regular patterns of p(x,t) as those observed
in Cates et al. (2010) which become more irregular in the
diffusion case (due to short-range dispersal, which makes the
instability a more local phenomena) and much smoother when
dispersal kernels are considered.

For heavy-tailed dispersal kernels, such as a Lévy dispersal kernel,
one has @ (k) = e~92" with 0 < ¢ <2 (Méndez et al., 2010) which is
also positive definite and hence will have a behavior analogous to the
one studied for the widespread Gaussian and Laplace dispersal
kernels. A different mechanism for pattern formation may in principle
appear if the dispersal kernel is bounded. If we consider the top-hat
kernel, @(z) = ©(c—|z|)/(20), its Fourier transform oscillates as

sin ko

éj(k) = ko

27)

This kernel will develop regions where @(k) is negative for some
bands of modes. In these situations, the homogeneous density state
can become unstable even if Dy > 0, and the most unstable, growing
mode, is characterized by the specific form of the dispersal kernel (¢
in the previous, simple example). This is a different scenario to
promote pattern formation as compared with the standard scenario
put forward earlier, where instabilities develop always from the
smallest scales. It is interesting to note that as ¢ becomes smaller,
l/}(k) becomes negative at larger k values. Hence, asymptotically, for
large ¢ this mechanism will not be distinguishable from the one
associated to positive-definite dispersal kernels. In general, depending
on the ratio |Fp|/|Do| and the value of ¢ it is then possible to have
different sources of instability depending on the sign of Dy.

4.2. Density-dependent dispersal kernel

It is possible to carry out an analogous study as performed in
the previous subsection when the dispersal-kernel depends on
the local density. Considering a small variation of the population
density around the homogeneous steady configuration, p,. Insert-
ing p(x,t) = py+0p(x,t) into (4) and linearizing one gets

p =/ / 0p(x—2z,t) {M} +D(z,p) pdz—3p(x,t) | +1Fy0p.
ot R P lp=p,

The dispersal relation in this case can be expressed as

w=2A® ,(k,pg)+ D (k,pg)—11+Fp, (28)

where we have defined
3 _ a(p(zvp)
Dp(k,po) = ]:z{ {76,0 L}O}

and
ﬂ@@m:/fmmeZ
R

The condition for spatial instability now reads
&, (k1) + (k1) > 1_%0

and the equation for the band of unstable modes is

/

@, (ke, 1)+ D(ke,1) = 17%0.

Due to the dependence of the dispersal kernel on density, it is less
obvious in this case to correlate the instability to the sign of an
effective diffusion, or the fact that the dispersal kernel is positive-
definite. Since the macroscopic limit in this case allows us to
define an effective diffusion coefficient it is expected to obtain the
same type of spatial patterns as for the case of density-dependent
jump rate.

4.2.1. Examples

We can gain insight on the instability scenarios induced by a
density-dependent dispersal kernel by analyzing first dispersal
kernels with density-dependent variances. For the widely used
Gaussian and Laplace kernels with equal variances one has

1 2
— —z%/2m;y(p)
D(z, p) ) e 29)
and
1
— . elevZ
D(z,p) 130) e v/ ma(p), 30

respectively. Using Egs. (29) and (30), the corresponding disper-
sion relations for the logistic growth term, F(p), can be derived as

r L2
=75 {1 _maK (21)I< } e m(K/2_; p

and

k?
1 +7[m2(1)—m2’(1)]
A

2 2
G+mgm>

for the Gaussian and Laplace dispersal kernels, respectively.

Let us choose a monotonically decreasing variance, ie.,
my(p) =mep~" with n > 0. For the Gaussian kernel, the band of
unstable spatial modes lies between the solutions of the equation
(1+ny?)e~¥’ = 1+r//. This equation has solution if the maximum of
(1+ny?*e™ is higher than 1+r//. There are two solutions if and
only if n > n,, where n. is solution to n.e~1+1/"% =14r//. For the
Laplace kernel this condition reads n>n.=1+2r/il+
2./1/2+/14r1/2. For the diffusion limit, according to (12) and (16)
the band of unstable modes is

2 2 2r
k >kc—m,

—A—T

M:

which exists for any n > 1. So, the diffusion limit instability condition
is less restrictive than that for the dispersal instability. In Fig. 3 we
plot the stability diagram for n versus r/A. As occurs for the case of
density-dependent jump rate, the dispersal instability condition
depends on the quotient between the reaction rate and jump rate
r// but for the diffusion limit it does not. All these results have also
been properly checked numerically from direct integration of Eq. (4)
(circles), showing again an excellent agreement with our theoretical
predictions.

It is interesting to analyze alternative processes which account
for population-dependent dispersal kernels. Let us consider now a
Bernoulli random walk where individuals perform jumps of
constant distance a but with probability 1+p(p) to jump to the
right and probability 1—p(p) to jump to the left. Then, we propose

P(z,p) =5 [1+Pp(PIo(z—a)+3[1-p(P)d(z+a). (€2

This clearly introduces a density-dependent bias in the random
walk. Introducing (31) into (28) and considering logistic growth
one finds

u= 4 cos(ka)—A—r—il sin(ka)[p(1)+p'(1)].
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Fig. 3. Parameter space diagram for the regions of stability and instability for
diffusion limit, Gaussian and Laplace kernels. Circles and the corresponding error
bars correspond to the results obtained from the numerical integration of Eq. (4).

Due to the bias present in the dispersal kernel (31), the dispersion
relation becomes complex and to get the instability condition we
must require Re(u)>0 which implies cos(ka) > 1+r/4, which
cannot be fulfilled for k real. So, there is no spatial instability in
this case. Finally, let us consider the case of non-biased random
walk but with a dispersal distance depending on the density. That
is,

D(z,p) =% dz—a(p)]+1d[z+a(p)]. (32)
From (28) and (32) the dispersal relation is
1= A{cos[ka(1)]—ka'(1)sin[ka(1)]}—A—r.

It is easy to check that in this case there exists always a band of
unstable nodes, so the spatial instability is always possible in this
case for any r/4 and a(p).

5. Conclusions

Macroscopic equations for reaction-diffusion-aggregation and
reaction-diffusion-advection-aggregation have been derived
from general Markovian random walks where the jump rate or
the dispersal kernel are density-dependent. We have provided a
clear and simple microscopic interpretation for the diffusion
coefficient and the advection coefficient in terms of the moments
of the dispersal kernel. The diffusion limit for aggregative indivi-
duals is recovered by considering the small jump scale approx-
imation. Since many organisms move according to dispersal
kernels rather than diffusively (Kot et al., 1996), our results are
ecologically relevant. It is well known that dispersal kernels
modify the invasion rate of populations in comparison to the
corresponding rates for diffusive evolution (Campos et al., 2006;
Kot et al., 1996). Here we have shown that something similar
occurs for the onset of spatial instabilities. We have obtained the
sufficient conditions for the emergence of dispersal/diffusion
driven spatial pattern and have determined that the critical
parameter that controls the onset of instability is the ratio
between the reaction and jump rates. We have compared the
conditions for the emergence of spatial instabilities between
reaction-diffusion-aggregation and reaction-dispersal-aggrega-
tion processes. We have found that dispersal processes has a more
stabilizing effect than their diffusion counterparts. We have
studied two specific situations: first, general dispersal kernels
with the same mean and variance and density-dependent jump
rate and second specific dispersal kernels with the same mean
and density-dependent variance and constant jump rate. In the
first case we have studied the specific cases of Gaussian, Laplace,

Lévy and top-hat dispersal kernels, have depicted the correspond-
ing stability diagrams and have compared to numerical simula-
tions. An important result found is that spatial instability does not
appear in reaction-dispersal-aggregation if the ratio between the
characteristic reaction and jump rate exceeds a certain threshold
value. This does not occur for reaction-diffusion-aggregation. In
the second case we have shown that nonlinear advection also has
a stabilizing effect and damps small spatio-temporal perturbation
of the stable equilibrium state. In both cases we have found that
the inclusion of higher moments of the dispersal kernels in the
description of the transport process has also an stabilizing effect
shrinking the region of instability in the space parameters in
comparison with the diffusion regime. Our results show that the
underlying microscopic mechanism for the population motion is
critical for the emergence of spatial instabilities due to population
aggregation and should be taken into account in those ecological
applications where the dispersal kernel is more adequate than
diffusion.
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