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We suggest a modification of a comb model to describe anomalous transport in spiny den-
drites. Geometry of the comb structure consisting of a one-dimensional backbone and lat-
eral branches makes it possible to describe anomalous diffusion, where dynamics inside
fingers corresponds to spines, while the backbone describes diffusion along dendrites.
The presented analysis establishes that the fractional dynamics in spiny dendrites is con-
trolled by fractal geometry of the comb structure and fractional kinetics inside the spines.
Our results show that the transport along spiny dendrites is subdiffusive and depends on
the density of spines in agreement with recent experiments.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Dendritic spines are small protrusions from many types
of neurons located on the surface of a neuronal dendrite.
They receive most of the excitatory inputs and their phys-
iological role is still unclear although most spines are
thought to be key elements in neuronal information pro-
cessing and plasticity [1]. Spines are composed of a head
(�1 lm) and a thin neck (�0.1 lm) attached to the surface
of dendrite (see Fig. 1). The heads of spines have an active
membrane, and as a consequence, they can sustain the
propagation of an action potential with a rate that depends
on the spatial density of spines [2]. Decreased spine den-
sity can result in cognitive disorders, such as autism, men-
tal retardation and fragile X syndrome [3]. Diffusion over
branched smooth dendritic trees is basically determined
by classical diffusion and the mean square displacement
(MSD) along the dendritic axis grows linearly with time.
However, inert particles diffusing along dendrites enter
spines and remain there, trapped inside the spine head
and then escape through a narrow neck to continue their
diffusion along the dendritic axis. Recent experiments to-
gether with numerical simulations have shown that the
transport of inert particles along spiny dendrites of Pur-
kinje and Piramidal cells is anomalous with an anomalous
exponent that depends on the density of spines [4–6].
Based on these results, a fractional Nernst-Planck equation
and fractional cable equation have been proposed for elec-
trodiffusion of ions in spiny dendrites [7]. Whereas many
studies have been focused to the coupling between spines
and dendrites, they are either phenomenological cable the-
ories [7,8] or microscopic models for a single spine and
parent dendrite [9,10]. More recently a mesoscopic non-
Markovian model for spines-dendrite interaction and an
extension including reactions in spines and variable resi-
dence time have been developed [11,12]. These models
predict anomalous diffusion along the dendrite in agree-
ment with the experiments but are not able to relate
how the anomalous exponent depends on the density of
spines [5,6]. Since these experiments have been performed
with inert particles (i.e., there are not reaction inside
spines or dendrites) we conclude that the observed anom-
alous diffusion is due exclusively to the geometric struc-
ture of the spiny dendrite. Recent studies on the
transport of particles inside spiny dendrites indicate the
strong relation between the geometrical structure and
anomalous transport exponents [5,13,14]. Therefore, elab-
oration such an analytical model that establishes this rela-
tion can be helpful for further understanding transport
properties in spiny dendrites. The real distribution of
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Fig. 1. Schematic drawing of smooth and spiny dendrites.
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spines along the dendrite, their size and shapes are com-
pletely random [3], and inside spines the spine necks act
as a transport barrier [9]. For these reasons we reasonably
assume that the diffusion inside spine is anomalous. So, we
propose in this paper models based on a comb-like struc-
ture that mimic a spiny dendrite; where the backbone is
the dendrite and the fingers (lateral branches) are the
spines. The models predict anomalous transport inside
spiny dendrites, in agreement with the experimental re-
sults of Ref. [4], and also explain the dependence between
the mean square displacement and the density of spines
observed in [5].

2. Model I: Anomalous diffusion in spines

Geometry of the comb structure consisting of a one-
dimensional backbone and lateral branches (fingers) [15]
makes it possible to describe anomalous diffusion in spiny
dendrites structure in the framework of the comb model.
In this case dynamics inside fingers corresponds to spines,
while the backbone describes diffusion inside dendrites.
The comb model is an analogue of a 1D medium where
fractional diffusion has been observed and explained in
the framework of a so-called continuous time random walk
[15–18].

Usually, anomalous diffusion on the comb is described
by the 2D distribution function P = P(x,y,t), and a special
behavior is that the displacement in the x-direction is pos-
sible only along the structure backbone (x-axis at y = 0).
Therefore, diffusion in the x-direction is highly inhomoge-
neous. Namely, the diffusion coefficient is Dxx = Dxd(y),
while the diffusion coefficient in the y-direction (along fin-
gers) is a constant Dyy = Dy. Due to this geometrical con-
struction, the flux of particles along the dendrite is

Jx ¼ �DxdðyÞ
@P
@x

ð1Þ

and the flux along the finger describes the anomalous trap-
ping process that occurs inside the spine

Jy ¼ �Dy
@1�c

@t1�c

�����
RL

@P
@y

ð2Þ

where P(x,y,t) is the density of particles and

@1�c

@t1�c

�����
RL

f ðtÞ ¼ @

@t
Ict f ðtÞ ð3Þ
is the Riemann–Liouville fractional derivative, where the
fractional integration Ict is defined by means of the Laplace
transform

L̂ Ict f ðtÞ
� �

¼ s�c~f ðsÞ: ð4Þ

So, inside the spine, the transport process is anomalous
and hy2(t)i�tc, where c 2 (0,1). Making use of the continu-
ity equation for the total number of particles

@P
@t
þ divJ ¼ 0; ð5Þ

where J = (Jx,Jy) one has the following evolution equation
for transport along the spiny dendrite

@P
@t
� DxdðyÞ

@2P
@x2 � Dy

@1�c

@t1�c

�����
RL

@2P
@y2 ¼ 0: ð6Þ

The Riemann–Liouville fractional derivative in Eq. (6) is not
convenient for the Laplace transform. To ensure feasibility
of the Laplace transform, which is a strong machinery for
treating fractional equations, one reformulates the prob-
lem in a form suitable for the Laplace transform
application.

To shed light on this situation, let us consider a comb in
the 3D [19]. This model is described by the distribution
function P1(x,y,z,t) with evolution equation given by the
equation

@P1

@t
� DxdðyÞdðzÞ

@2P1

@x2 � DydðzÞ
@2P1

@y2 �
@2P1

@z2 ¼ 0: ð7Þ

It should be stressed that z coordinate is a supplementary,
virtue variable, introduced to described fractional motion
in spines by means of the Markovian process. Thus the true
distribution is Pðx; y; tÞ ¼

R1
�1 P1ðx; y; z; tÞdz with corre-

sponding evolution equation

@P
@t
� DxdðyÞ

@2P1ðz ¼ 0Þ
@x2 � Dy

@2P1ðz ¼ 0Þ
@y2 ¼ 0: ð8Þ

A relation between P(x,y,t) and P1(x,y,z = 0,t) can be ex-
pressed through their Laplace transforms (see derivation
in the Appendix)

~P1ðx; y; z ¼ 0; sÞ ¼
ffiffi
s
p

2
~Pðx; y; sÞ; ð9Þ

where ~Pðx; y; sÞ ¼ L̂½Pðx; y; tÞ� and ~P1ðx; y; z; sÞ ¼ L̂½P1ðx; y;
z; tÞ�. Therefore, performing the Laplace transform of Eq.
(8) yields

s~Pðx; y; sÞ � DxdðyÞ
@2~P1ðx; y; z ¼ 0; sÞ

@x2

� Dy
@2~P1ðx; y; z ¼ 0; sÞ

@y2 ¼ Pðx; y; t ¼ 0Þ ð10Þ

and substituting relation (9), dividing by
ffiffi
s
p

and then per-
forming the Laplace inversion, one obtains the comb model
with the fractional time comb model

@
1
2P

@t
1
2
� DxdðyÞ

@2P
@x2 � Dy

@2P
@y2 ¼ 0; ð11Þ
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where 2Dx,y ? Dx,y and the Caputo derivative1 @c

@tc can be de-
fined by the Laplace transform for c 2 (0,1) [20]

L̂ @cf
@tc

� �
¼ sc~f ðsÞ � sc�1f ðt ¼ 0Þ: ð12Þ

The fractional transport takes place in both the dendrite x
direction and the spines y coordinate. To make fractional
diffusion in dendrite normal, we add the fractional integra-
tion I1�c

t by means of the Laplace transform (4), as well

L̂ I1�c
t f ðtÞ

h i
¼ sc�1~f ðsÞ. This yields Eq. (11), after generaliza-

tion 1
2! c 2 ð0;1Þ,

@cP
@tc
� DxdðyÞI1�c

t
@2P
@x2 � Dy

@2P
@y2 ¼ 0: ð13Þ

Performing the Fourier–Laplace transform in (13) we get

Pðkx; ky; sÞ ¼
Pðkx; ky; t ¼ 0Þ � Dxk2

x Pðkx; y ¼ 0; sÞ
sþ Dyk2

y s1�c
; ð14Þ

where the Fourier–Laplace image of the distribution func-
tion is defined by its arguments L̂F̂ xF̂ y½Pðx; y; tÞ� ¼
Pðkx; ky; sÞ. If P(x,y,t = 0) = d(x)d(y), inversion by Fourier over
y gives

Pðkx; y; sÞ ¼
1� Dxk2

x Pðkx; y ¼ 0; sÞ
sð2�cÞ=2

ffiffiffiffiffiffi
Dy

p
� exp �jyjsc=2=

ffiffiffiffiffiffi
Dy

q� 	
: ð15Þ

Taking y = 0 the above equation provides

Pðkx; y ¼ 0; sÞ ¼ 1

sð2�cÞ=2
ffiffiffiffiffiffi
Dy

p
þ Dxk2

x

ð16Þ

which inserted into (14) yields

Pðkx; ky; sÞ ¼
1

sþ Dyk2
ys1�c

1� Dxk2
x

sð2�cÞ=2
ffiffiffiffiffiffi
Dy

p
þ Dxk2

x

 !
: ð17Þ

We can calculate the density of particles at a given point x
of the dendrite at time t, namely P(x,t), by integrating over
y

Pðkx; sÞ ¼ Pðkx; ky ¼ 0; sÞ ¼
s�c=2

ffiffiffiffiffiffi
Dy

p
sð2�cÞ=2

ffiffiffiffiffiffi
Dy

p
þ Dxk2

x

; ð18Þ

then

hx2ðsÞi ¼ � @
2

@k2
x

Pðkx; sÞ
�����

kx¼0

¼ 2Dxffiffiffiffiffiffi
Dy

p 1

s2�c
2

ð19Þ

so that

hx2ðtÞi ¼ 2Dxffiffiffiffiffiffi
Dy

p t1�c
2: ð20Þ

Eq. (20) predicts subdiffusion along the spiny dendrite
which is in agreement with the experimental results re-
1 To avoid any confusion between the Riemann–Liouville and the Caputo
fractional derivatives, the former one stands in the text with an index RL:
@a

@ta
��
RL , while the latter fractional derivative is not indexed @a

@ta . Note, that it is
also convenient to use Eq. (12) as a definition of the Caputo fractional
derivative.
ported in [4]. It should be noted that this result is counter-
intuitive. Indeed, subdiffusion in spines, or fingers should
lead to the slower subdiffusion in dendrites, or backbone
with the transport exponent less than in usual comb, since
these two processes are strongly correlated. But this corre-
lation is broken due to the fractional integration I1�c

t in Eq.
(13). On the other hand, if we invert (18) by Fourier–La-
place we obtain the fractional diffusion equation for P(x,t)

@1�c
2P

@t1�c
2

¼ Dxffiffiffiffiffiffi
Dy

p @2P
@x2

which is equivalent to the generalized Master equation

@P
@t
¼
Z t

0
Mðt � t0Þ @

2Pðx; t0Þ
@x2 dt0 ð21Þ

if the Laplace transform of the memory kernel is given by
MðsÞ ¼ Dxffiffiffiffi

Dy
p sc=2, which corresponds to the waiting time

PDF in the Laplace space given by

uðsÞ ¼ 1

1þ
ffiffiffiffi
Dy
p

Dx
s1�c

2

ð22Þ

that is uðtÞ � t�2þc
2 as t ? 1. The above waiting time PDF

is the effective PDF corresponding to the whole comb and
takes into account the particle trapping inside spines. Let
us employ the notation for a dynamical exponent dw used
in [4,5]. If dw = 4/(2 � c) then the MSD grows as t2=dw . On
the other hand, it has been found in experiments that dw

increases with the density of spines qs and the simulations
prove that dw grows linearly with qs. Indeed, the experi-
mental data admits almost any growing dependence of
dw with qs due to the high variance of the data (see
Fig. 5.D in [5]). Eq. (20) also establishes a phenomenologi-
cal relation between the second moment and qs. When the
density spines is zero then c = 0, dw = 2 and normal diffu-
sion takes place. If the spine density qs increases, the
anomalous exponent of the PDF (22) 1 � c/2 = 2/dw must
decrease (i.e., the transport is more subdiffusive due to
the increase of qs) so that dw has to increase as well. So,
our model predicts qualitatively that dw increases with
qs, in agreement with the experimental results in [5].

3. Model II: Lévy walks on fractal comb

In this section we consider a fractal comb model [21] to
take into account the inhomogeneity of the spines distribu-
tion. The comb model is a phenomenological explanation
of an experimental situation, where we introduce a control
parameter that establishes a relation between diffusion
along dendrites and the density of spines. Suggesting more
sophisticated relation between the dynamical exponent
and the spine density, we can reasonably suppose that
the fractal dimension, due to the box counting of the spine
necks, is not integer: it is embedded in the 1D space, thus
the spine fractal dimension is m 2 (0,1). According the frac-
tal geometry (roughly speaking), the most convenient
parameter is the fractal dimension of the spine volume
(mass) lspine(x) � l(x)�jxjm. Therefore, following Nigmatu-
lin’s idea on a construction of a ‘‘memory kernel’’ on a Can-
tor set in the Fourier space jkj1�m [22] (and further
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developing in Refs. [23–25]), this leads to a convolution
integral between the non-local density of spines and the
probability distribution function P(x,y,t) that can be ex-
pressed by means of the inverse Fourier transform [21]
F̂�1

x ½jkxj1�mPðkx; y; tÞ�. Therefore, the starting mathematical
point of the phenomenological consideration is the fractal
comb model

@cP
@tc � DxdðyÞI1�c

t
@2P
@x2 � Dy

@2

@y2 F̂
�1
kx
½jkxj1�mPðkx; y; tÞ� ¼ 0:

ð23Þ

Performing the same analysis in the Fourier–Laplace space,
presented in previous section, then Eq. (18) reads

Pðkx; sÞ ¼ Pðkx; ky ¼ 0; sÞ ¼
s�c=2

ffiffiffiffiffiffi
Dy

p
sð2�cÞ=2

ffiffiffiffiffiffi
Dy

p
þ Dxjkxjb

; ð24Þ

where b = 3/2 + m/2.
Contrary to the previous analysis expression (19) does

not work any more, since superlinear motion is involved
in the fractional kinetics. This leads to divergence of the
second moment due to the Lévy flights. The latter are de-
scribed by the distribution � 1/jxj1+b, which is separated
from the waiting time probability distribution u(t). To
overcome this deficiency, we follow the analysis of the
Lévy walks suggested in [26,27]. Therefore, we consider
our exact result in Eq. (24) as an approximation obtained
from the joint distribution of the waiting times and the
Lévy walks. Therefore, a cutoff of the Lévy flights is ex-
pected at jxj = t. This means that a particle moves at a con-
stant velocity inside dendrites not all times, and this
laminar motion is interrupted by localization inside spines
distributed in space by the power law.

Performing the inverse Laplace transform, we obtain
solution in the form of the Mittag–Leffler function [28]

Pðkx; tÞ ¼ E1�c=2ð�Djkjbt1�c=2Þ; ð25Þ

where D ¼ Dxffiffiffiffi
Dy
p . For the asymptotic behavior jkj? 0 the

argument of the Mittag–Leffler function can be small. Note
that in the vicinity of the cutoff jxj = t this corresponds to
the large t ðj k j� 1

t � 1Þ, Thus we have [28]

E1�c=2ð�Djkjbt1�c=2Þ � exp � Djkjbt1�c=2

Cð2� c=2Þ

 !
: ð26Þ

Therefore, the inverse Fourier transform yields

Pðx; tÞ � Ac;m
Dt1�c=2

Cð2� c=2Þjxjð5þmÞ=2 ; ð27Þ

where Ac,m is determined from the normalization condi-
tion2. Now the second moment corresponds to integration
with the cutoff at x = t that yields

hx2ðtÞi ¼ Kc;mt
3�c�m

2 ; ð28Þ

where Kc;m ¼ 4Ac;mDx

ð1�mÞCð2�c=2Þ
ffiffiffiffi
Dy
p is a generalized diffusion coeffi-

cient. Transition to absence of spines means first transition
2 The physical plausibility of estimations (26) and (27) also follows from
the plausible finite result of Eq. (27), which is the normalized distribution
P(x,t) � 1/jxj(3+m+c)/2, where jxj = t.
to normal diffusion in fingers with c = 1 and then m = 0 that
yields

hx2ðtÞi ¼ K1;0t: ð29Þ
4. Discussion

The present analysis establishes that the fractional
dynamics in spiny dendrites can be described by two
parameters, related to the fractal geometry of spines m
and fractional kinetics inside the spines c. Summarizing,
the most general phenomenological description can be
performed in the framework of the fractional Fokker–
Planck equation (FFPE)

@aP
@ta
¼ Ka;b

@bP

@jxjb
; ð30Þ

where, for the present analysis a = (2 � c)/2 and b =
(3 + m)/2; in general case a 2 (0,1) and b 2 (1,2) are
arbitrary.

For b = 2, we arrive at the first model, presented in Sec-
tion 2, where we deal with a one temporal control param-
eter c only. In this case, anomalous transport in dendrites,
described by the dynamical exponent dw, is characterized
by anomalous transport inside spines, described by the
transport exponent c. The obtained relation dw ¼ 4

2�c also
establishes a relation between the dynamical exponent
and the density of spines and is in agreement with recent
experiments [4–6].

In the second model we suggested a more sophisticated
relation between the dynamical exponent and the spine
density. In this case b = (3 + m)/2 < 2 depends on fractal
dimension of spines, and this leads to an essential restric-
tion for Eq. (30). The first one is a cutoff of the Lévy flights
at jxj = t that leads to a consequence of laminar and
localized motions [27] and yields a finite second moment
hx2(t)i � t2+a � b. When a = 1/2 and b = 2 the FFPE (30) cor-
responds to the continuous comb model, namely spine
dendrites with the maximal density of spines. For a = 1/2
and b = 3/2 this model corresponds to smooth dendrites.
Apparently, another physically sound transition to limiting
case is possible for m = 1 and c = 0 that corresponds first to
the transition to the continuous model, and then the tran-
sition to c = 0. This physical control of the parameters en-
sures an absence of superdiffusion in Eq. (30). Another
important question is what happens in intermediate cases.
A challenging question here is what is the fractal dimen-
sion of the spine volume.

We conclude our consideration by presenting the phys-
ical reason of the possible power law distribution of the
waiting time PDF u(t) in Eq. (22). At this point we para-
phrase some arguments from Ref. [19] with the corre-
sponding adaptation to the present analysis. Let us
consider the escape from a spine cavity from a potential
point of view, where geometrical parameters of the cavity
can be related to a potential U. For example, let us consider
spines with a head of volume V and the cylindrical spine
neck of the length L and radius a, and the diffusivity D
[13,14]. In this case, the potential is U = VL/pa2, which
‘‘keeps’’ a particle inside the cavity, while Ds0 plays a role
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of the kinetic energy, or the ‘‘Boltzmann temperature’’,
where s0 is a mean survival time a particle inside the spine.
Therefore, escape probability from the spine cavity/well is
described by the Boltzmann distribution exp (�U/Ds0).
This value is proportional to the inverse waiting, or sur-
vival time

t � exp
U

Ds0


 �
: ð31Þ

As admitted above, potential U is random and distributed
by the exponential law PðUÞ ¼ U�1

0 expð�U=U0Þ, where U0

is an averaged geometrical spine characteristic. The proba-
bility to find the waiting time in the interval (t,t + dt) is
equal to the probability to find the trapping potential in
the interval (U,U + dU), namely u(t)dt = P(U)dU. Therefore,
from Eq. (31) one obtains

uðtÞ � 1
t1þa : ð32Þ

Here a ¼ Ds0
U0
2 ð0;1Þ establishes a relation between geome-

try of the dendrite spines and subdiffusion observed in
[4,5] and support application of our comb model with
anomalous diffusion inside spines, which is a convenient
implement for analytical exploration of anomalous trans-
port in spiny dendrites in the framework of the continu-
ous-time-random-walk framework.
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Appendix A. Derivation of Eq. (9)

Eq. (9) is a relationship between the distributions P1-

(x,y,z = 0,t) and P(x,y,t) in the Laplace space. Both distribu-
tions are related through the expression

Pðx; y; tÞ ¼
Z 1

�1
P1ðx; y; z; tÞdz:

If we transform the above equation by Fourier–Laplace we
get

~Pðkx; ky; sÞ ¼ ~P1ðkx; ky; kz ¼ 0; sÞ: ð33Þ

Then, Eq. (9) is nothing but a relation between
~P1ðkx; ky; kz ¼ 0; sÞ and ~P1ðkx; ky; z ¼ 0; sÞ. To find
~P1ðkx; ky; kz; sÞ we transform Eq. (7) by Fourier–Laplace
and after collecting terms we find

~P1ðkx;ky;kz;sÞ¼
1�Dxk2

x P1ðkx;y¼0;z¼0;sÞ�Dyk2
y P1ðkx;ky;z¼0;sÞ

sþk2
z

ð34Þ

where the initial condition has been assumed
P1(x,y,z,t = 0) = d(x) d(y)d(z) for simplicity. Setting kz = 0
one gets
~P1ðkx;ky;kz ¼ 0; sÞ

¼
1�Dxk2

x P1ðkx;y¼ 0;z¼ 0; sÞ �Dyk2
y P1ðkx;ky; z¼ 0; sÞ

s
ð35Þ

Inverting Eq. (34) by Fourier over kz we obtain

~P1ðkx;ky; z; sÞ

¼
1�Dxk2

x P1ðkx;y¼ 0; z¼ 0; sÞ�Dyk2
y P1ðkx;ky; z¼ 0; sÞ

2
ffiffi
s
p e�

ffiffi
s
p
jzj

and setting z = 0

~P1ðkx;ky;z¼0;sÞ

¼
1�Dxk2

x P1ðkx;y¼ 0;z¼ 0;sÞ�Dyk2
y P1ðkx;ky;z¼ 0;sÞ

2
ffiffi
s
p

ð36Þ

Combining (35) and (36) one has

~P1ðkx; ky; z ¼ 0; sÞ ¼
ffiffi
s
p

2
~P1ðkx; ky; kz ¼ 0; sÞ

and inverting Fourier over kx and ky one finally recovers Eq.
(9).
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