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Growth and dispersal with inertia: Hyperbolic reaction-transport systems
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We investigate the behavior of five hyperbolic reaction-diffusion equations most commonly employed to
describe systems of interacting organisms or reacting particles where dispersal displays inertia. We first discuss
the macroscopic or mesoscopic foundation, or lack thereof, of these reaction-transport equations. This is followed
by an analysis of the temporal evolution of spatially uniform states. In particular, we determine the uniform steady
states of the reaction-transport systems and their stability properties. We then address the spatiotemporal behavior
of pure death processes. We end with a unified treatment of the front speed for hyperbolic reaction-diffusion
equations with Kolmogorov–Petrosvskii–Piskunov kinetics. In particular, we obtain an exact expression for the
front speed of a general class of reaction correlated random walk systems. Our results establish that three out of
the five hyperbolic reaction-transport equations provide physically acceptable models of biological and chemical
systems.
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I. INTRODUCTION

The spatial dispersal of organisms or particles is frequently
modeled by Brownian motion or diffusion. The inclusion of
birth-and-death processes of organisms or reactions between
particles leads to the reaction-diffusion equation, also called
the reproduction-dispersal equation. Reaction-diffusion mod-
els are used to describe the spatiotemporal behavior of systems
in a wide variety of fields, including biology [1,2], ecology
[3,4], chemistry [5–8], physics [9], and materials science [10].

There exists, however, a range of applications where a
description of spatial dispersal by Brownian motion or simple
diffusive transport is not entirely satisfactory. It is well known
that the diffusion equation possesses the undesirable feature
that localized disturbances spread infinitely fast, although
with heavy attenuation, through the system. This pathology
of the diffusion equation stems from a lack of inertia of
Brownian particles. Individuals move with infinite velocity
along random paths, and their motion is unpredictable even at
the smallest scales. Such behavior describes neither molecules
nor organisms in a realistic way. Brownian motion should be
replaced by a process that assigns finite speeds to individuals.
This goal can be achieved, for example, by using velocity jump
processes to model the dispersal of molecules and organisms
[11]. The simplest such process is the persistent or correlated
random walk (CRW) [12–14]. Individuals move ballistically
on short timescales, which immediately introduces the idea
of motion persistence, i.e., the tendency to resist changes in
direction [15–18]. By explicitly including persistence and a
fixed speed of movement, the problem of infinite propagation
speed is avoided. However, the position of the individuals is no
longer a Markov process [16–19]; the spatial transport process
now possesses memory.

It has been observed empirically that the motion of
most animals tends to show persistence. CRWs have been
used to model animal paths in various contexts [16,20–22].
In addition, CRWs have also been found to describe the
pattern of motion of various microorganisms [23–26]. In a
physical context, turbulent diffusion is better modeled by a
CRW than by Brownian motion, i.e., classical diffusion, see

Ref. [27, Sect. 10.6]. Furthermore, correlation effects in the
dispersal of molecules have been conjectured to be important
in multicomponent reacting mixtures [28].

In addition to descriptions based on CRWs, other ap-
proaches that do not invoke directly the underlying random
process for the dispersal of individuals have been employed to
account for inertia in the transport process and to remedy the
infinitely fast propagation of disturbances in reaction-diffusion
equations. All these approaches rely on hyperbolic evolution
equations and have been applied to various phenomena, such as
the Neolithic transition and the spread of virus and epidemics;
see for example Refs. [11,15,29–38]. Recently, the validity
of one of these hyperbolic reaction-transport equations has
been questioned and a modified version been introduced [39].
We have been motivated by this development to investigate in
detail several aspects of hyperbolic reaction-transport systems.
Inertia endows the transport process with memory, and dealing
jointly with transport and growth in the presence of persistence
(memory) effects is far from trivial. All approaches face the
problem of how to incorporate properly the contributions
from reactions and dispersal into the evolution equation.
This is a subtle and delicate problem, since there may be
unanticipated interactions between the two processes, if one or
both involve memory. Various processes contribute additively
to the evolution equation only if all processes are memoryless
or, in other words, if the underlying random processes are
Markovian [19,33]. In the following, we will present the five
most commonly used hyperbolic reaction-transport systems
and will explore their foundation, the dynamics of spatially
uniform states, the dynamics of the pure death process, and
the speed of propagating fronts. We employ the results of
these studies to identify which of these widely used equations
are physically acceptable to model transport with inertia in
systems of interacting organisms or reacting particles.

The paper is organized as follows: In Sec. II we briefly
present the five model evolution equations and formulate
criteria of good modeling. We review the derivation and
foundation of the five hyperbolic reaction-transport equations
in Sec. III. Section IV deals with the dynamics of spatially
uniform states and Sec. V with the behavior of the pure death

1539-3755/2014/90(4)/042114(14) 042114-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.042114
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process. We present in Sec. VI a unified derivation of the
propagation speed of a front corresponding to the invasion of
an unstable stationary state by a stable stationary state. We
summarize our findings and draw conclusions in Sec. VII.

II. FIVE HYPERBOLIC REACTION-TRANSPORT
EQUATIONS

Five different hyperbolic evolution equations are commonly
employed to overcome the infinitely fast propagation of
disturbances in the reaction-diffusion equation. For the sake
of simplicity, we write the following equations for one spatial
dimension and one species. The usefulness of the various
hyperbolic evolution equations can be assessed already in this
simple setting, without the complexity of more dimensions
or more species obscuring the salient points. The population
density of organisms or the concentration of particles is
denoted by ρ. The growth rate of the population or the reaction
rate of the particles is given by the kinetic rate function
F (ρ). The transport process is characterized by the diffusion
coefficient D and the persistence (inertial) time τ . We consider
either an infinite system or a finite system of length L with
no-flow boundary conditions.

(1) The hyperbolic reaction-diffusion equation (HRDE)
[40–45]:

τ
∂2ρ

∂t2
+ ∂ρ

∂t
= D

∂2ρ

∂x2
+ F (ρ). (2.1)

This type of equation is also encountered in other areas, such
as nonlinear waves, nucleation theory, and phase-field models
of phase transitions, where it is known as the damped nonlinear
Klein–Gordon equation; see for example Refs. [46–48].

(2) The reaction-Cattaneo system (RCS) [33,49–57]:

∂ρ

∂t
= −∂J

∂x
+ F (ρ) , (2.2a)

τ
∂J

∂t
= −J − D

∂ρ

∂x
. (2.2b)

Here J is the flux of the organisms or particles.
(3) The reaction-telegraph equation (RTE)

[15,29,31–33,58,59]:

τ
∂2ρ

∂t2
+ [1 − τF ′(ρ)]

∂ρ

∂t
= D

∂2ρ

∂x2
+ F (ρ). (2.3)

(4) The modified hyperbolic reaction-diffusion equation
(mHRDE) [39,60–62]:

τ
∂2ρ

∂t2
+ ∂ρ

∂t
= D

∂2ρ

∂x2
+ F (ρ) + τF ′(ρ)F (ρ). (2.4)

(5) The reaction correlated random walk system (RCRW)
[19,33,49,63–65]:

∂ρ+
∂t

+ γ
∂ρ+
∂x

= μ(ρ− − ρ+) + F+(ρ+,ρ−), (2.5a)

∂ρ−
∂t

− γ
∂ρ−
∂x

= μ(ρ+ − ρ−) + F−(ρ+,ρ−). (2.5b)

Here ρ+(x,t) is the density of individuals traveling to the
right, and ρ−(x,t) is the density of individuals traveling to
the left. The speed of the individuals is γ and their turning

frequency is μ. The kinetic terms for the two classes of
particles are F+(ρ+,ρ−) and F−(ρ+,ρ−), respectively.

Evolution equations for systems of organism or molecules
should possess one essential feature to be acceptable de-
scriptions of reacting and dispersing systems. A density or
concentration, ρ, cannot be negative, and evolution equations
for densities should preserve positivity, i.e., ρ(x,0) � 0 for all
x at time t = 0 implies ρ(x,t) � 0 for all x for all times t > 0.
It is well known that the diffusion equation

∂ρ

∂t
= D

∂2ρ

∂x2
(2.6)

possesses this required feature. Principles of kinetics dictate
that proper rate functions obey

F (0) � 0. (2.7)

This property ensures that the rate equation for spatially
unstructured populations or well-stirred reactors, which we
will call lumped systems for the sake of brevity,

dρ

dt
= F (ρ), (2.8)

and the reaction-diffusion equation

∂ρ

∂t
= D

∂2ρ

∂x2
+ F (ρ) (2.9)

preserve positivity. In general, hyperbolic evolution equations
do not preserve positivity; the RCRW is an exception [33,66].

We suggest that three further features are desirable for
models of systems of interacting and dispersing individuals
to be physically acceptable. First, given the fact that deal-
ing jointly with transport and growth in the presence of
persistence (memory) effects is a far from trivial task, the
reaction-transport equation should have a sound macroscopic
or mesoscopic foundation. Second, if the state of the reaction-
transport system is spatially uniform, the characteristics of
the transport process should play no role in the evolution of
the density. For ρ(x,t) ≡ ρ(t), the reaction-transport equation
should reduce to the rate equation of the lumped system (2.8).
Third, if propagating fronts corresponding to the invasion of
an unstable stationary state by a stable one can occur in the
system, their propagation speed should approach the ballistic
speed as the characteristic inertial time of the transport process
increases and reach this value if the characteristic kinetic time
is smaller than the inertial time (high reaction rate regime).

As mentioned above, hyperbolic reaction-transport equa-
tions generally do not preserve positivity, the RCRW being
an exception. While preservation of positivity is certainly a
very desirable feature in an evolution equation for densities,
evolution equations that violate this property may still be
acceptable for practical applications as long as the violation is
small in a certain sense. This has to be determined for the case
under consideration. We will therefore consider the specific
case of a pure death process, i.e., first-order decay for the
kinetic term in the hyperbolic evolution equations, and require
as a minimal condition that the density ρ(x,t) approaches zero
as time goes to infinity. We provide a heuristic argument in
Sec. V E that RCRWs preserve positivity if F+(0,ρ−) � 0 and
F−(ρ+,0) � 0.
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Guided by these considerations, we choose four criteria
to assess the value of the five types of hyperbolic reaction-
diffusion systems: (I) Does the reaction-transport equation
have a sound macroscopic (thermodynamic) or mesoscopic
foundation? (II) Does the reaction-transport equation reduce
to the rate equation (2.8) for ρ(x,t) ≡ ρ(t), i.e., for uniform
densities? (III) Does the solution of the hyperbolic equation
approach zero for large times in the case of a pure death
process, i.e., ρ(x,t) → 0 for t → ∞? (IV) Does the reaction-
transport equation yield speeds for propagating fronts that do
not exceed the ballistic speed and reach the latter in the fast
reaction regime?

III. DERIVATION OF REACTION-TRANSPORT
EQUATIONS

We summarize briefly the derivation of the five hyperbolic
reaction-transport equations for the convenience of the reader
and to make the discussion of the foundation of each equation
more comprehensible.

A. Hyperbolic reaction-diffusion equation

The HRDE

τ
∂2ρ

∂t2
+ ∂ρ

∂t
= D

∂2ρ

∂x2
+ F (ρ) (3.1)

can be derived in two ways. From a mathematical point
of view, the origin of the infinitely fast spreading of local
disturbances in the reaction-diffusion equation can be traced
to its parabolic character. Adding a term τ∂ttρ confers a
hyperbolic character on the equation, which results in finite
speeds for local disturbances. If τ is small, then the HRDE
can be considered to be a singular perturbation of the reaction-
diffusion equation (2.9). This is of course entirely an ad hoc
manner of proceeding. The second way, which we discuss
in greater detail below (see Sec. III E), consists of replacing
Brownian motion, a simple random walk, by a persistent or
correlated random walk, a velocity jump process, which results
in replacing the diffusion equation by the telegraph equation
[11,15,33,49]

τ
∂2ρ

∂t2
+ ∂ρ

∂t
= D

∂2ρ

∂x2
. (3.2)

The RDE (2.9) is obtained from the diffusion equation (2.6)
by adding a kinetic term to the transport term. Similarly, the
HRDE (3.1) can be obtained by adding a kinetic term to the
telegraph equation (3.2). Adding contributions from birth-and-
death processes or reactions to the contributions from transport
processes to obtain the overall evolution of the density ρ is
legitimate in the first case, but not in the second case. The
contributions from different processes to the total evolution
of a system are additive only if all processes are memoryless
or Markovian [19,33]. While the rate equation (2.8) and the
diffusion equation (2.6) describe processes without memory,
this is not the case for the telegraph equation (3.2). The
HRDE is entirely an ad hoc evolution equation; it lacks both a
macroscopic and a mesoscopic foundation.

B. Reaction-Cattaneo system

The macroscopic foundation of the reaction-diffusion equa-
tion consists of the continuity equation

∂ρ

∂t
= −∂J

∂x
+ F (ρ) (3.3)

and Fick’s first law as the constitutive equation,

J = −D
∂ρ

∂x
. (3.4)

Cattaneo and others [67] suggest that Fick’s first law is
unphysical and that the flux should adjust to changes in
the gradient of the density with a small, nonzero relaxation
time τ ,

τ
∂J

∂t
= −J − D

∂ρ

∂x
. (3.5)

Jou and coworkers derived the Cattaneo equation from
extended irreversible thermodynamics [68]. Eu and Al-Ghoul
derived the reaction-Cattaneo system from linear nonequilib-
rium thermodynamics and generalized hydrodynamic theory
[50–52,54]. Hillen used an energy minimization principle to
obtain the Cattaneo system from general transport equations
[55]. Valenti and coworkers resorted to the framework of
extended thermodynamics theory to derive reaction-Cattaneo
equations for the hantavirus infection [56] and the dynamics
of an epidemic with susceptible, infected, and removed indi-
viduals [57]. The reaction-Cattaneo system has a macroscopic
foundation consisting either of the continuity equation and a
constitutive equation or generalized thermodynamic theory.

C. Reaction-telegraph equation

Differentiating the first equation of the reaction-Cattaneo
system, (3.3), with respect to t and the second equation
of the reaction-Cattaneo system, (3.5), with respect to x,
and eliminating the mixed second derivatives, we obtain the
reaction-telegraph equation

τ
∂2ρ

∂t2
+ [1 − τF ′(ρ)]

∂ρ

∂t
= D

∂2ρ

∂x2
+ F (ρ). (3.6)

Note that the RTE (3.6) differs from the ad hoc HRDE (3.1)
by the term

−τF ′(ρ)
∂ρ

∂t
(3.7)

on the left-hand side [15]. This underlines our earlier statement
that contributions from different processes cannot simply be
added to obtain the total evolution of the density, if one or
more processes display memory effects. The RTE is obtained
from the RCS by differentiating and therefore has a sound
macroscopic foundation.

D. Modified hyperbolic reaction-diffusion equation

Isern and Fort derive the mHRDE in the following way
[39]: They consider systems where the individuals or particles
experience a time delay T between successive dispersal events.
The time delay is assumed to correspond to the length of one
generation in most ecological applications. They write the
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MÉNDEZ, CAMPOS, AND HORSTHEMKE PHYSICAL REVIEW E 90, 042114 (2014)

finite-time difference of the density as

ρ(x,t + T ) − ρ(x,t) = [ρ(x,t + T ) − ρ(x,t)]g

+ [ρ(x,t + T ) − ρ(x,t)]m. (3.8)

The subscript g denotes contributions from birth-and-death
processes, i.e., it represents the kinetic term. The subscript m

denotes contributions from migration or dispersal processes,
i.e., it represents the transport term. The premise that the
growth and dispersal processes remain uncoupled during a
finite time interval and contribute simply additively to the total
change of the density is questionable. As mentioned in Sec. I,
dealing jointly with transport and growth in the presence of
memory effects is by no means a trivial task.

Carrying out a Taylor expansion of the growth term up to
second order,

[ρ(x,t + T ) − ρ(x,t)]g = T
∂ρ

∂t

∣∣∣∣
g

+ T

2

∂2ρ

∂t2

∣∣∣∣
g

, (3.9)

and identifying the rate function F (ρ) as

∂ρ

∂t

∣∣∣∣
g

= F (ρ), (3.10)

Isern and Fort obtain

[ρ(x,t + T ) − ρ(x,t)]g = T F (ρ) + T

2

∂F

∂t

∣∣∣∣
g

= T F (ρ) + T

2

dF

dρ

∂ρ

∂t

∣∣∣∣
g

= T F (ρ) + T

2
F ′(ρ)F (ρ) (3.11)

for the kinetic contribution. They write the dispersal contribu-
tion as

[ρ(x,t + T ) − ρ(x,t)]m

=
∫

ρ(x + �x,t)w(�x)d�x − ρ(x,t), (3.12)

where w(�x) is the dispersal kernel. Assuming that the kernel
is symmetric, one obtains the diffusion approximation via a
Taylor expansion in x up to second order,

[ρ(x,t + T ) − ρ(x,t)]m =
〈
�2

x

〉
2

∂2ρ

∂x2
. (3.13)

Carrying out a Taylor expansion up to second order of the left-
hand side of Eq. (3.9) and combining the kinetic contribution
(3.11) and the transport contribution (3.13) according to
Eq. (3.9), one obtains the mHRDE,

τ
∂2ρ

∂t2
+ ∂ρ

∂t
= D

∂2ρ

∂x2
+ F (ρ) + τF ′(ρ)F (ρ), (3.14)

where D = 〈�2
x〉/(2T ) and τ = T/2.

The mHRDE lacks both a macroscopic and a mesoscopic
foundation. Furthermore, it is obtained by a Taylor expansion,
which will be justified only if T is small compared to the other
timescales of the model; see below.

E. Reaction correlated random walk system

The persistent random walk, also called a correlated random
walk, is the simplest velocity jump process that remedies the
physically undesirable features of Brownian motion; namely,
that Brownian particles move with arbitrarily large velocity
and that the motion of dispersing individuals is uncorrelated
even on the smallest timescales. The persistent random walk
was introduced by Fürth [12] to model the motion of bacteria
and further studied by Taylor [13] and Goldstein [14].

In the correlated or persistent random walk [19,69], an
individual or particle takes steps of length �x and duration
�t . The individual continues in its previous direction with
probability α = 1 − μ�t and reverses direction with proba-
bility β = μ�t . In the continuum limit �x → 0 and �t → 0,
such that

lim
�x,�t→0

�x

�t
= γ = constant, (3.15)

we obtain the following set of equations for the density of
individuals moving to the right, ρ+(x,t), and the density of
individuals moving to the left, ρ−(x,t):

∂ρ+
∂t

+ γ
∂ρ+
∂x

= μ(ρ− − ρ+), (3.16a)

∂ρ−
∂t

− γ
∂ρ−
∂x

= μ(ρ+ − ρ−). (3.16b)

The particles travel with speed γ and turn with
frequency μ.

The persistent random walk spans the whole range of
dispersal, from ballistic motion, in the limit μ → 0, to diffusive
motion, in the limit γ → ∞, μ → ∞, such that

lim
γ,μ→∞

γ 2

2μ
= D = constant. (3.17)

The total density of the dispersing individuals is given by

ρ(x,t) = ρ+(x,t) + ρ−(x,t), (3.18)

and the flux J of individuals is given by J = γj , where the
“flow” j is defined as

j (x,t) = ρ+(x,t) − ρ−(x,t). (3.19)

Adding Eqs. (3.16a) and (3.16b), we obtain the continuity
equation

∂ρ

∂t
+ γ

∂j

∂x
= 0. (3.20)

Subtracting Eq. (3.16b) from Eq. (3.16a), we recover the
Cattaneo equation

∂j

∂t
+ γ

∂ρ

∂x
= −2μj. (3.21)

Differentiating Eq. (3.20) with respect to t and Eq. (3.21) with
respect to x and eliminating the mixed second derivatives,
we obtain Eq. (3.2). The persistent random walk provides a
mesoscopic foundation for the Cattaneo equation (3.5) and the
telegraph equation (3.2) [59].

The persistent random walk is a Markov process, and
it is legitimate to add kinetic rate terms to the transport
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equation (3.16) for (ρ+,ρ−) to obtain the total evolu-
tion of the densities due to birth-and-death processes and
dispersal:

∂ρ+
∂t

+ γ
∂ρ+
∂x

= μ(ρ− − ρ+) + F+(ρ+,ρ−), (3.22a)

∂ρ−
∂t

− γ
∂ρ−
∂x

= μ(ρ+ − ρ−) + F−(ρ+,ρ−). (3.22b)

The RCRW has a sound mesoscopic foundation.
The question arises how the rate terms F+(ρ+,ρ−) and

F−(ρ+,ρ−) are related to the rate term F (ρ). The simplest
model assumes that F (ρ) is a source term for the individuals,
that the interactions do not depend on the direction of motion,
and that new individuals choose either direction with equal
probability [15,33,49,63,70]. Then

F+(ρ+,ρ−) = F−(ρ+,ρ−) = 1
2F (ρ), (3.23)

which is the so-called isotropic reaction walk. With Eq. (3.23),
we obtain from Eq. (3.22) the reaction-Cattaneo system,

∂ρ

∂t
+ γ

∂j

∂x
= F (ρ), (3.24a)

∂j

∂t
+ γ

∂ρ

∂x
= −2μj. (3.24b)

The isotropic reaction walk appears to provide a mesoscopic
foundation for the reaction-Cattaneo system, and consequently
for the reaction-telegraph equation. This is, however, not the
case; isotropic reaction walks are unsound. They violate a
basic principle of kinetics [33,64,65]; namely, the rate of loss
or death of individuals of a given type must go to zero as
the density of those individuals goes to zero. Otherwise, the
population density can become negative, which is unphysical.
There are various ways of arriving at RCRWs that obey
the principles of kinetics. We will focus here on a class of
RCRWs defined by the following assumptions [19,49,59,71]:
(i) The individuals undergo a birth and death process with
“fertilities” and “mortalities” that are independent of the
direction of motion of the individuals. (ii) The direction
of “daughters” is correlated with that of the “mother.” The
degree of correlation is given by κ ∈ [0,1]. The value κ = 1/2
corresponds to no correlation, κ = 1 to complete correlation,
and κ = 0 to complete anticorrelation. We write the rate term
F (ρ) in production-loss form, F (ρ) = F+(ρ) − F−(ρ), with
F+(ρ) � 0, F−(ρ) � 0, and F−(0) = 0, and define the per
capita birth and death rates,

f +(ρ) ≡ F+(ρ)

ρ
, f −(ρ) ≡ F−(ρ)

ρ
. (3.25)

Then the RCRW is given by Eq. (3.22) with

F+(ρ+,ρ−) = [κρ+ + (1 − κ)ρ−]f +(ρ) − f −(ρ)ρ+,

(3.26a)

F−(ρ+,ρ−) = [(1 − κ)ρ+ + κρ−]f +(ρ) − f −(ρ)ρ−.

(3.26b)

Adding Eqs. (3.22a) and (3.22b), we obtain

∂ρ

∂t
+ γ

∂j

∂x
= F (ρ). (3.27)

Subtracting Eq. (3.22b) from Eq. (3.22a), we obtain

∂j

∂t
+ γ

∂ρ

∂x
= −[2μ + (1 − 2κ)f +(ρ) + f −(ρ)]j. (3.28)

For RCRWs with κ = 1/2, which are called direction-
independent reaction walks (DIRWs) [64,65], the last equation
reduces to

∂j

∂t
+ γ

∂ρ

∂x
= −[2μ + f −(ρ)]j. (3.29)

Note that Eqs. (3.27) and (3.28) do not form a RCS for any
value of κ due to the contributions from the kinetics to the
decay rate of the flow j .

IV. DYNAMICS OF SPATIALLY UNIFORM STATES

If the density is spatially uniform, then the dispersal process
does not contribute to the evolution of the density. We expect
therefore that the dynamics of spatially constant states should
be described by the rate equation of the lumped system (2.8).
In this section we consider finite systems, x ∈ [0,L], with no-
flow boundary conditions. We study the dynamics of spatially
uniform states for the various hyperbolic reaction-transport
equations and determine the instability thresholds of uniform
steady states.

A. Hyperbolic reaction-diffusion equation

If the density of the system is uniform, then the HRDE (2.1)
reduces to

τ
d2ρ

dt2
+ dρ

dt
= F (ρ), (4.1)

which differs from the rate equation of the lumped system
(2.8). The uniform steady states of the HRDE (2.1) are given
by ρ̄(x) = ρ̄, where

F (ρ̄) = 0, (4.2)

and coincide with the stationary states of the lumped system
(2.8). The latter are stable if

F ′(ρ̄) < 0. (4.3)

We determine the stability of the uniform steady states of the
HRDE (2.1) via a linear stability analysis. Let δρ(x,t) be a
small perturbation of the uniform steady state ρ̄,

ρ(x,t) = ρ̄ + δρ(x,t). (4.4)

The perturbations obey the linearized evolution equation

τ
∂2δρ

∂t2
+ ∂δρ

∂t
= D

∂2δρ

∂x2
+ F ′(ρ)δρ. (4.5)

We write the small perturbation as

δρ(x,t) =
∑

k

akψk(x) exp(λkt), (4.6)

where the spatial modes ψk(x) satisfy

d2ψk(x)

dx2
= −k2ψk(x) (4.7)
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with no-flow boundary conditions. The growth rates λk of the
spatial modes ψk(x) are given by the characteristic equation

λ2
k + 1

τ
λk + 1

τ
[Dk2 − F ′(ρ̄)] = 0. (4.8)

We write this equation as

λ2
k − Tkλk + �k = 0, (4.9)

with

Tk = − 1

τ
, (4.10)

�k = 1

τ
[Dk2 − F ′(ρ̄)]. (4.11)

The roots of Eq. (4.9) are given by

λk = 1
2

[
Tk ±

√
T 2

k − 4�k

]
(4.12)

and have a negative real part if

Tk < 0, (4.13a)

�k > 0. (4.13b)

If the conditions (4.13) are satisfied for all k, then
perturbations with any wave number decay and the uniform
steady state ρ̄ of the HRDE is stable. Since Tk is always
negative, the stability is determined by �k . If the stationary
state of the lumped system (2.8) is stable, i.e., F ′(ρ̄) < 0, then
�k is positive. In other words, the uniform steady state ρ̄ is
stable against perturbations with any wave number k. If the
stationary state of the lumped system (2.8) becomes unstable,
i.e., F ′(ρ̄) goes through zero and becomes positive, then �0

will go through zero and become negative. In other words, the
uniform steady state ρ̄ of the HRDE becomes unstable against
uniform perturbations, k = 0. This implies not only that the
uniform steady states of Eq. (2.1) coincide with those of the
lumped system (2.8), but also that their instability thresholds
are exactly the same. However, the temporal evolution of the
uniform states of the HRDE differs from that given by the rate
equation of the lumped system (2.8).

B. Reaction-Cattaneo system

For uniform states, (ρ(x,t),J (x,t)) ≡ (ρ(t),J (t)), Eqs. (3.3)
and (3.5) of the RCS reduce to

dρ

dt
= F (ρ) , (4.14a)

dJ

dt
= − 1

τ
J. (4.14b)

The evolution equations for the density and flow decouple
for uniform states, and the flow relaxes to zero with the inertial
time τ . Since we consider the system on a finite interval with
no-flow boundary conditions, the flow vanishes for all times,
J (t) ≡ 0. The temporal evolution of the density for a uniform
RCS (4.14a) is identical with the one for the lumped system
(2.8).

The uniform steady states of the RCS (2.2) are given
by (ρ̄(x),J̄ (x)) = (ρ̄,0) with F (ρ̄) = 0. Perturbations around
the uniform steady state (ρ̄,0) obey the linearized evolution

equations

∂δρ

∂t
= −∂δJ

∂x
+ F ′(ρ)δρ, (4.15a)

τ
∂δJ

∂t
= −δJ − D

∂δρ

∂x
. (4.15b)

For the spatial mode with wave number k, we find

λkδρk = −dδJk

dx
+ F ′(ρ)δρk, (4.16a)

τλkδJk = −δJk − D
dδρk

dx
. (4.16b)

Differentiating the first equation with respect to x, using
the second equation to eliminate dδρk/dx, and using d2δJk/

dx2 = −k2δJk , we obtain the characteristic equation

λ2
k + 1

τ
[1 − τF ′(ρ̄)]λk + 1

τ
[Dk2 − F ′(ρ̄)] = 0. (4.17)

We read off that

Tk = 1

τ
[τF ′(ρ̄) − 1], (4.18)

�k = 1

τ
[Dk2 − F ′(ρ̄)]. (4.19)

If the stationary state ρ̄ of the lumped system (2.8) is stable,
F ′(ρ̄) < 0, then Tk < 0 and �k > 0 for all k. In other words,
the uniform steady state (ρ̄,0) of the RCS (2.2) is stable against
perturbations with any wave number. If the stationary state of
the lumped system (2.8) becomes unstable, i.e., F ′(ρ̄) goes
through zero and becomes positive, then �0 will go through
zero and become negative. In other words, the uniform steady
state (ρ̄,0) of the RCS becomes unstable against uniform
perturbations, k = 0.

In summary, the temporal evolution of the density for
a uniform RCS is identical with the one of the lumped
system (2.8). Also, the instability thresholds of the uniform
steady states of the RCS, (ρ̄,0), coincide with the instability
thresholds of the stationary states of the lumped system (2.8).

C. Reaction-telegraph equation

If the density of the system is uniform, then the RTE reduces
to

τ
d2ρ

dt2
+ [1 − τF ′(ρ)]

dρ

dt
= F (ρ). (4.20)

We define a new variable,

ξ = dρ

dt
− F (ρ). (4.21)

Differentiating ξ (t) with respect to time, we obtain

dξ

dt
= d2ρ

dt2
− F ′(ρ)

dρ

dt
, (4.22)

which allows us to rewrite (4.20) in the form

τ
dξ

dt
+ ξ = 0. (4.23)

The solution of (4.23) is given by

ξ (t) = ξ (0) exp(−t/τ ), (4.24)
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which in light of Eq. (4.21) implies

dρ

dt
= F (ρ) + ξ (0) exp(−t/τ ). (4.25)

In other words, the uniform RTE (4.20) relaxes to the rate
equation of the lumped (2.8) with the characteristic inertial
time of the flux. Except for an initial boundary layer, the
temporal evolutions of Eqs. (4.20) and (2.8) are identical. The
existence of the boundary layer t � τ is due to the somewhat
different notion of uniformity for RCSs and RTEs. For a
RCS with no-flow boundary conditions, uniformity implies
that ρ(x,t) ≡ ρ(t) and J (x,t) ≡ 0. Since the flux has been
eliminated as a variable in the RTE description, uniformity
simply corresponds to ρ(x,t) ≡ ρ(t); there is no control over
the flux. As is clear from Eq. (3.5), any nonvanishing flux will
decay with a characteristic time τ .

The uniform steady states of the RTE (2.3) are given
by ρ̄(x) = ρ̄ with F (ρ̄) = 0. The characteristic equation for
the growth rates of spatial perturbations with wave number
k coincides with Eq. (4.17). Consequently, not only do the
uniform steady states of the RTE (2.3) coincide with those of
the lumped system (2.8), but also their instability thresholds
are exactly the same. Furthermore, the evolution equation for
uniform densities reduces to the rate equation of the lumped
system (2.8) after an initial boundary layer.

D. Modified hyperbolic reaction-diffusion equation

If the density of the system is uniform, then the mHRDE
reduces to

τ
d2ρ

dt2
+ dρ

dt
= F (ρ) + τF ′(ρ)F (ρ). (4.26)

The temporal evolution for spatially uniform states differs
from that of the lumped system (2.8). This is inconsistent
with Eq. (3.10), used in the derivation of the mHRDE, which
assumes that the contribution from growth processes is given
by Eq. (2.8).

The uniform steady states of the mHRDE are given by

F (ρ̄) + τF ′(ρ̄)F (ρ̄) = 0, (4.27)

which implies that either

F (ρ̄) = 0, (4.28)

or

1 + τF ′(ρ̄) = 0. (4.29)

The uniform steady states given by Eq. (4.28) coincide with
the stationary states of the lumped system. However, Eq. (4.29)
leads potentially to additional uniform steady states. Consider,
for example, the case of logistic growth,

F (ρ) = rρ

(
1 − ρ

K

)
, (4.30)

where r and K are positive parameters. Then the solutions of
Eq. (4.28) are given by

ρ̄1 = 0, (4.31)

ρ̄2 = K, (4.32)

which are the usual steady states of logistic growth; namely,
extinction and saturation at the carrying capacity K . For the
mHRDE, Eq. (4.29) reads

1 + τr

(
1 − 2

ρ̄

K

)
= 0, (4.33)

which leads to the extraneous uniform steady state

ρ̄3 = K(1 + τr)

2τr
. (4.34)

Small perturbations to the uniform steady state of the
mHRDE, ρ̄(x) = ρ̄, with ρ̄ given either by Eq. (4.28) or by
Eq. (4.29), obey the linearized evolution equation

τ
∂2δρ

∂t2
+ ∂δρ

∂t

= D
∂2δρ

∂x2
+ [F ′(ρ̄) + τF ′(ρ̄)2 + τF ′′(ρ̄)F (ρ̄)]δρ. (4.35)

The characteristic equation is given by

λ2
k + 1

τ
λk − 1

τ
{F ′(ρ̄)[1 + τF ′(ρ̄)]

+ τF ′′(ρ̄)F (ρ̄) − Dk2} = 0. (4.36)

We read off that

Tk = − 1

τ
, (4.37)

�k = − 1

τ
{F ′(ρ̄)[1 + τF ′(ρ̄)] + τF ′′(ρ̄)F (ρ̄) − Dk2}.

(4.38)

Since Tk is always negative, the stability is determined by �k .
For the uniform steady states given by Eq. (4.28), i.e., those
that coincide with the steady states of the lumped system (2.8),
we find

�k = −F ′(ρ̄)

[
1

τ
+ F ′(ρ̄)

]
+ 1

τ
Dk2. (4.39)

If the steady state ρ̄ of (2.8) is unstable, i.e., F ′(ρ̄) > 0, then �0

is negative and ρ̄ is also an unstable steady state of Eq. (2.4).
If the steady state ρ̄ of Eq. (2.8) is stable, i.e., F ′(ρ̄) < 0, then
it is a stable steady state of Eq. (2.4) only if

− 1

τ
< F ′(ρ̄) < 0, (4.40)

i.e., only if the inertial time τ is smaller than the characteristic
kinetic time −1/F ′(ρ̄). Otherwise, there exists a kc such that
�k is negative for k � kc. While ρ̄ is a stable steady state of
Eq. (2.8), it is an unstable steady state of Eq. (2.4). In other
words, the instability thresholds of those steady states common
to the lumped system and the mHRDE are not identical.

For the extraneous steady states given by Eq. (4.29) we find

�k = −F ′′(ρ̄)F (ρ̄) + 1

τ
Dk2. (4.41)

The extraneous steady states are stable, �k > 0 for all k, if
F (ρ̄) and F ′′(ρ̄) have the opposite sign.

For logistic growth

F ′′(ρ) = −2r

K
, (4.42)
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and the extraneous uniform steady state ρ̄3 is stable if
F (ρ̄3) > 0, which is true if

1

τ
< r. (4.43)

Since F ′(ρ̄2) = −r , Eqs. (4.40) and (4.43) imply that the two
steady states ρ̄2 and ρ̄3 exchange stability at rc = 1/τ . Note
that, for r > 1/τ , the stable nontrivial uniform steady state lies
below the carrying capacity K .

The evolution equation for spatially uniform states of the
mHRDE (2.4) differs from the rate equation (2.8) for lumped
systems. Further, the instability thresholds of the steady states
in common with those of the lumped system can differ, and
there may be extraneous homogeneous steady states.

E. Reaction correlated random walk system

If the state of the system is uniform, ρ+(x,t) ≡ ρ+(t) and
ρ−(x,t) ≡ ρ−(t), then the RCRW (2.5) reduces to

dρ+
dt

= μ(ρ− − ρ+) + F+(ρ+,ρ−), (4.44a)

dρ−
dt

= μ(ρ+ − ρ−) + F−(ρ+,ρ−). (4.44b)

According to Eqs. (3.27) and (3.28), the evolution of the
total density ρ is given by the rate equation of the lumped
system (2.8),

dρ

dt
= ρf +(ρ) − ρf −(ρ) = F (ρ), (4.45)

and the evolution equation for the flow j is given by

dj

dt
= −[2μ + (1 − 2κ)f +(ρ) + f −(ρ)]j. (4.46)

Note that the evolution equation for the flow is coupled to the
density, in contrast to RCSs.

Equations (4.45) and (4.46) imply that the uniform steady
states of the RCRW are given by (ρ̄(x),j̄ (x)) = (ρ̄,0) or
(ρ̄+(x),ρ̄−(x)) = (ρ̄/2,ρ̄/2), where ρ̄ is determined by

F (ρ̄) = F+(ρ̄) − F−(ρ̄) = ρ̄[f +(ρ̄) − f −(ρ̄)] = 0. (4.47)

In other words, the total density of the uniform steady states of
the RCRW coincides with the density of the stationary states
of the lumped system (2.8).

Perturbations around the uniform steady state (ρ̄,0) obey
the linearized evolution equations

∂δρ

∂t
+ γ

∂δj

∂x
= F ′(ρ̄)δρ, (4.48a)

∂δj

∂t
+ γ

∂δρ

∂x
= −[2μ + (1 − 2κ)f +(ρ̄) + f −(ρ̄)]δj.

(4.48b)

The corresponding characteristic equation is given by

0 = λ2
k + [2μ + (1 − 2κ)f +(ρ̄) + f −(ρ̄) − F ′(ρ̄)]λk

+ γ 2k2 − F ′(ρ̄)[2μ+ (1 − 2κ)f +(ρ̄) + f −(ρ̄)],

(4.49)

and

Tk = −β + F ′(ρ̄), (4.50)

�k = γ 2k2 − F ′(ρ̄)β, (4.51)

with

β = 2μ + (1 − 2κ)f +(ρ̄) + f −(ρ̄). (4.52)

If ρ̄ of the lumped system (2.8) is stable, F ′(ρ̄) is negative.
Then Tk will be negative, if β is nonnegative. If κ � 1/2, all
three terms of β are nonnegative, and Tk is negative. If κ > 1/2,
the second term of β is negative, and Tk could become positive.
Let κc be the value of κ where the sign of β changes from
negative to positive:

κc = 2μ + f +(ρ̄) + f −(ρ̄)

2f +(ρ̄)
. (4.53)

If ρ̄ 	= 0, then f +(ρ̄) = f −(ρ̄), and

κc = μ + f +(ρ̄)

f +(ρ̄)
> 1. (4.54)

Since κ must lie in the interval [0,1], clearly β is always
positive and Tk is always negative for stable nontrivial uniform
steady states of the RCRW (2.5). If the kinetics have a trivial
steady state, i.e., if F+(0) = 0, then

κc = 2μ + f +(0) + f −(0)

2f +(0)
. (4.55)

The trivial steady state is a stable steady state of the lumped
system (2.8) if F ′(0) < 0, which is equivalent to f −(0) >

f +(0). Consequently, if F ′(0) < 0, then

κc = 2μ + f +(0) + f −(0)

2f +(0)
>

2μ + 2f +(0)

2f +(0)
> 1. (4.56)

In other words, β is always nonnegative and Tk is always
negative for stable trivial uniform steady states of the RCRW
(2.5). Consequently, the stability of the uniform steady states
of the RCRW (2.5) is determined by �k . If F ′(ρ̄) < 0, then
Eq. (4.51) implies that �k is positive for all k, i.e., the
uniform steady state is stable against perturbations with any
wave number. If the steady state of the lumped system is
unstable, F ′(ρ̄) > 0, then �0 is negative and the uniform
steady state is unstable against spatially constant perturbations.
In conclusion, the primary bifurcation threshold is determined
by the sign change of F ′(ρ̄). The evolution equation for
uniform densities of the RCRW (2.5) is identical with the
rate equation of the lumped system (2.8). Furthermore, steady
states of Eq. (2.8) and their instability threshold coincide
exactly with those of the uniform steady states of the RCRW.

V. PURE DEATH PROCESS

If only a pure death process occurs in the system, i.e.,
the kinetic rate term corresponds to first-order decay, then
extinction should be the final outcome. The density should go
to zero for large times.

A. Hyperbolic reaction-diffusion equation

We consider a system with F (ρ) = −rρ, where r > 0
is a constant death rate, on the interval [0,L] with no-flow
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boundary conditions,

τ
∂2ρ

∂t2
+ ∂ρ

∂t
= D

∂2ρ

∂x2
− rρ, (5.1)

∂ρ

∂x

∣∣∣∣
x=0

= ∂ρ

∂x

∣∣∣∣
x=L

= 0. (5.2)

The set

ψn(x) =
{

1/
√

L for n = 0√
2/L cos(knx) for n = 1,2,3, . . . ,

(5.3)

with x ∈ [0,L] and kn = nπ/L forms a complete orthonormal
set of eigenfunctions of the diffusion operator that obey no-
flow boundary conditions. We write ρ(x,t) as a Fourier series

ρ(x,t) =
∞∑

n=0

cn(t)ψn(x). (5.4)

We have obtained the eigenvalues of the linear HRDE in the
previous Sec. IV A; namely,

λn = 1
2

[
Tkn

±
√

T 2
kn

− 4�kn

]
, (5.5)

with

Tkn
= − 1

τ
, (5.6)

�kn
= 1

τ

[
r + Dk2

n

]
, (5.7)

for the HRDE of a pure death process. Thus the dispersion
relation reads

λn;1,2 = 1

2τ

[−1 ±
√

1 − 4τ
(
r + Dk2

n

)]
. (5.8)

The coefficients in the Fourier series are given by

cn(t) = cn;1 exp(λn;1t) + cn;2 exp(λn;2t), (5.9)

where cn;1 and cn;2 are determined by the initial conditions.
The eigenvalues are real and negative for modes with

r + Dk2
n <

1

4τ
, (5.10)

and are complex conjugate with a negative real part other-
wise. Consequently, all coefficients cn(t) decay to zero and
ρ(x,t) → 0 for all x ∈ [0,L] for t → ∞. Long-wavelength
modes decay monotonically, and short-wavelength modes
decay in an oscillatory manner. Note that all modes decay
monotonically in a standard reaction-diffusion system (2.9)
with first-order decay. It is the inertia in the transport that
gives rise to the oscillatory decay of short-wavelength modes.

B. Reaction-Cattaneo system

The RCS for the pure death process reads

∂ρ

∂t
= −∂J

∂x
− rρ, (5.11a)

τ
∂J

∂t
= −J − D

∂ρ

∂x
, (5.11b)

J (0,t) = J (L,t) = 0. (5.11c)

The set

φn(x) =
√

2/L sin(knx), n = 1,2,3, . . . (5.12)

with x ∈ [0,L] and kn = nπ/L forms a complete orthonormal
set with φn(0) = φn(L) = 0. Evaluating Eq. (5.11b) at x = 0
and x = L, we find that

∂ρ

∂x

∣∣∣∣
x=0

= ∂ρ

∂x

∣∣∣∣
x=L

= 0, (5.13)

and we can write ρ(x,t) and J (x,t) as the Fourier series

ρ(x,t) =
∞∑

n=0

cn(t)ψn(x), (5.14)

J (x,t) =
∞∑

n=1

bn(t)φn(x). (5.15)

The eigenvalues of the linear RCS are given by Eq. (5.5), with

Tkn
= − 1

τ
− r, (5.16)

�kn
= 1

τ

[
r + Dk2

n

]
; (5.17)

see Sec. IV B. This results in the following dispersion relation
for the RCS of a pure death process:

λn;1,2 = 1

2τ

[−1 − rτ ±
√

(1 − rτ )2 − 4Dk2
nτ

]
. (5.18)

The eigenvalues are real and negative for modes with

Dk2
n <

(1 − rτ )2

4τ
, (5.19)

and complex conjugate with a negative real part otherwise.
Consequently, all coefficients cn(t) and bn(t) decay to zero
and (ρ(x,t),J (x,t)) → (0,0) for all x ∈ [0,L] for t → ∞.
Again, long-wavelength modes decay monotonically and
short-wavelength modes display damped oscillations.

C. Reaction-telegraph equation

The RTE for a pure death process on the interval [0,L] with
no-flow boundary conditions reads

τ
∂2ρ

∂t2
+ [1 + τr]

∂ρ

∂t
= D

∂2ρ

∂x2
− rρ, (5.20)

∂ρ

∂x

∣∣∣∣
x=0

= ∂ρ

∂x

∣∣∣∣
x=L

= 0. (5.21)

We write ρ(x,t) again as the Fourier series (5.4). The
dispersion relation is identical with Eq. (5.18) for the pure
death RCS. Consequently, all coefficients cn(t) decay to zero
and ρ(x,t) → 0 for all x ∈ [0,L] for t → ∞.

D. Modified hyperbolic reaction-diffusion equation

The mHRDE for a pure death process on the interval [0,L]
with no-flow boundary conditions reads

τ
∂2ρ

∂t2
+ ∂ρ

∂t
= D

∂2ρ

∂x2
− r[1 − τr]ρ, (5.22)

∂ρ

∂x

∣∣∣∣
x=0

= ∂ρ

∂x

∣∣∣∣
x=L

= 0. (5.23)
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We write ρ(x,t) again as the Fourier series (5.4). The
eigenvalues of the linear mHRDE are given by Eq. (5.5), with

Tkn
= − 1

τ
, (5.24)

�kn
= 1

τ

[
r(1 − τr) + Dk2

n

]
; (5.25)

see Sec. IV D. This results in the following dispersion relation
for the mHRDE of a pure death process:

λn;1,2 = 1

2τ

[−1 ±
√

1 − 4Dk2
nτ − 4rτ + 4r2τ 2

]
. (5.26)

The Fourier coefficients are given by

cn(t) = cn;1 exp(λn;1t) + cn;2 exp(λn;2t). (5.27)

Let cn0 = cn(0) and Cn0 = ċn(0). Then

cn(0) = cn;1 + cn;2 = cn0, (5.28)

ċn(0) = λn;1cn;1 + λn;2cn;2 = Cn0, (5.29)

which implies

cn;2 = cn0 − cn;1, (5.30)

cn;1 = Cn0 − λn;2cn0

λn;1 − λn;2
. (5.31)

Note that λn;1 goes through zero at

τc,n = Dk2
n + r

r2
(5.32)

and is positive for τ > τc,n. The nth mode becomes unstable if
τ is too large. The first mode to go unstable is the homogeneous
mode, n = 0, at τ = 1/r . It follows from Eq. (5.31) that ρ(x,t)
will go to ±∞ unless Cn0 = λn;2cn0 for all n. In other words,
the solution of the mHRDE either explodes for a pure death
process or becomes negative for almost all initial conditions,
unless τ is sufficiently small. Such a result is unphysical,
and the pathological behavior of the mHRDE arises from the
term F ′(ρ)F (ρ). It changes the nature of the total kinetic term
F (ρ) + τF ′(ρ)F (ρ) = −r[1 − τr]ρ from a net loss term for
small τ to a net production term for τ > τc,0.

E. Reaction correlated random walk system

The RCRW for the pure death process reads

∂ρ

∂t
+ γ

∂j

∂x
= −rρ, (5.33a)

τ
∂j

∂t
+ γ

∂ρ

∂x
= −[2μ + r]j, (5.33b)

j (0,t) = j (L,t) = 0. (5.33c)

Proceeding as in Sec. V B, we write ρ(x,t) and j (x,t) as
the Fourier series

ρ(x,t) =
∞∑

n=0

cn(t)ψn(x), (5.34)

j (x,t) =
∞∑

n=1

bn(t)φn(x). (5.35)

The eigenvalues of the linear RCRW are given by Eq. (5.5),
with

Tkn
= −2(μ + r), (5.36)

�kn
= r(2μ + r) + γ 2k2

n; (5.37)

see Sec. IV E. This results in the following dispersion relation
for the RCRW of a pure death process:

λn;1,2 = −(μ + r) ±
√

μ2 − γ 2k2
n. (5.38)

The eigenvalues are real and negative for modes with

γ 2k2
n < μ2, (5.39)

and complex conjugate with a negative real part otherwise.
Consequently, all coefficients cn(t) and bn(t) decay to zero
and (ρ(x,t),j (x,t)) → (0,0) for all x ∈ [0,L] for t → ∞.

While most hyperbolic evolution equations do not preserve
positivity, the RCRW (2.5) does. This can be seen by the fol-
lowing heuristic argument. For a more detailed mathematical
discussion, see Refs. [33,66]. Let ρ±(x,0) > 0 and let x± be
the point where the density first attains 0 at time t±. Since
the density ρ±(x,t) must be a continuous and differentiable
function, it must have a minimum at that point, i.e.,

∂ρ±(x,)

∂x

∣∣∣∣
x=x±

= 0, (5.40)

and consequently

∂ρ+(x+,t)

∂t

∣∣∣∣
t=t+

= μρ− + F+(0,ρ−), (5.41a)

∂ρ−(x−,t)

∂t

∣∣∣∣
t=t−

= μρ+ + F−(ρ+,0). (5.41b)

Therefore, RCRWs will preserve positivity, if the right-
hand side of Eqs. (5.41a) and (5.41b) is nonnegative, which
is guaranteed if the rate terms F±(ρ+,ρ−) are proper kinetic
functions, i.e., in analogy to Eq. (2.7),

F+(0,ρ−) � 0, F−(ρ+,0) � 0. (5.42)

RCRWs with proper kinetic terms, such as DIRWs, for
example, preserve positivity.

VI. FRONT SPEED

The propagation of a front corresponding to the invasion
of an unstable stationary state by a stable stationary state has
been investigated via various methods for reaction-transport
equations. For HRDEs, front propagation has been studied ana-
lytically and numerically [40–45]. Abi Mansour and Al-Ghoul
analyzed the propagation of reaction fronts for RCSs with
reactions of the type nA + mB → kC [72]. Front propagation
in RTEs was investigated in Refs. [29,31,32,73–77], and
traveling waves for isotropic reaction walks were studied in
Refs. [15,70] and for DIRWs in Refs. [19,65].

We present a unified approach to front propagation in
the five types of reaction-transport system (2.1)–(2.5). To
determine the speed of invasion into the unstable state ρ̄ = 0,
we employ hyperbolic scaling and large deviation theory to
obtain the Hamilton–Jacobi equation for the front position.
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Equations (2.1), (2.3), and (2.4) can be rewritten in more
general form as

τ
∂2ρ

∂t2
+ �(ρ)

∂ρ

∂t
= D

∂2ρ

∂x2
+ �(ρ). (6.1)

Substituting the hyperbolic scaling x → x/ε and t → t/ε into
Eq. (6.1) we obtain

τε2 ∂2ρε

∂t2
+ ε�(ρε)

∂ρε

∂t
= Dε2 ∂2ρε

∂x2
+ �(ρε), (6.2)

where ρε(x,t) = ρ(x/ε,t/ε). Introducing in Eq. (6.2) the new
field Gε(x,t), defined as in the Wenzel–Kramers–Brillouin
(WKB) ansatz ρε(x,t) = exp[−Gε(x,t)/ε] with Gε(x,t) � 0,
and performing the asymptotic limit ε → 0, we obtain the
relativistic Hamilton–Jacobi equation

τ

(
∂G

∂t

)2

− �(0)
∂G

∂t
= D

(
∂G

∂x

)2

+ σ. (6.3)

This equation, with �(0) = 1 was already obtained in
Ref. [78]. The limiting function G(x,t) corresponds to
G(x,t) = limε→0 Gε(x,t) and ρε(x,t) = exp[−Gε(x,t)/ε] →
0 as ε → 0. The constant σ is given by

σ = lim
ε→0

�(ρε)

ρε
= � ′(0), (6.4)

where the prime denotes the derivative with respect to
the argument. We assume the kinetic rate function to be
of the Kolmogorov–Petrosvskii–Piskunov (KPP) type, i.e.,
F ∈ C1[0,ρ̄], F (0) = F (ρ̄) = 0, F ′(0) > 0, F ′(ρ̄) < 0, and
0 < F (ρ) � F ′(0)ρ for ρ ∈ (0,ρ̄). Then the parameter σ is a
nonzero constant for all cases. Equation (6.3) for G(x,t) can
be regarded as a Hamilton–Jacobi equation, and its solution
can be written as G(x,t) = px − H (p)t , where p = ∂G/∂x

and H = −∂G/∂t . The location of the front is determined by
the equation G(x,t) = 0, so that

v = dx

dt
= min

H

H

p(H )
. (6.5)

From Eqs. (6.3) and (6.5) the front speed is given by

v = min
H

H
√

D√
τH 2 + �(0)H − � ′(0)

=
⎧⎨
⎩

2
√

� ′(0)D√
4τ� ′(0)+�(0)2

, �(0) � 0 (diffusive regime)

√
D/τ, �(0) � 0 (ballistic speed).

(6.6)

For the following we define r = F ′(0).

A. Hyperbolic reaction-diffusion equation

For HRDEs we have �(0) = 1 and �(ρ) = F (ρ). Equation
(6.6) implies for this case,

vHRDE = 2
√

rD√
4τr + 1

<
√

D/τ, (6.7)

and the front speed never reaches the ballistic speed.

B. Reaction-telegraph equation

For RTEs we have �(0) = 1 − τr and �(ρ) = F (ρ). The
front speed is given by Eq. (6.6),

vRTE =
⎧⎨
⎩

2
√

rD
1+rτ

, r � 1/τ (diffusive regime)
√

D/τ, r � 1/τ (ballistic speed).
(6.8)

In this case the front can propagate with the ballistic speed if
the inertial time τ is larger than or equal to the characteristic
kinetic time 1/r , due to the presence of the term (3.7), which
is missing in the HRDE and mHRDE.

C. Modified hyperbolic reaction-diffusion equation

For mHRDEs we have �(0) = 1, �(ρ) = F (ρ)
[1 + τF ′(ρ)] and the front speed is given by Eq. (6.6),

vmHRDE = 2
√

rD(1 + τr)

1 + 2rτ
<

√
D/τ. (6.9)

As for the HRDE, the front speed never reaches the ballistic
speed.

D. Reaction-Cattaneo system

The front speed for the RCS (2.2a)–(2.2b) is the same
as in Eq. (6.8). To see this, we introduce the hyperbolic
scaling and the new fields ρε(x,t) = A1 exp[−Gε(x,t)/ε] and
J ε(x,t) = A2 exp[−Gε(x,t)/ε] in Eqs. (2.2a)–(2.2b) and find
the characteristic equation,∣∣∣∣H − r p

Dp 1 + Hτ

∣∣∣∣ = (H − r)(1 + Hτ ) − Dp2 = 0, (6.10)

which corresponds to the Hamilton–Jacobi equation. By using
Eq. (6.5), we obtain

v = min
H

H
√

D√
(H − r) (1 + Hτ )

=
⎧⎨
⎩

2
√

rD
1+rτ

, r � 1/τ (diffusive regime)
√

D/τ, r � 1/τ (ballistic speed),
(6.11)

as in Eq. (6.8). As for the RTE, the front can propagate with
the ballistic speed if the inertial time is larger than or equal to
the characteristic kinetic time.

E. Reaction correlated random walk system

Finally, we determine the front speed for RCRWs given
by the set of equations (3.22a) and (3.22b) with Eqs. (3.26a)
and (3.26b). The front joins the unstable state (ρ̄+,0,ρ̄−,0) =
(0,0) to the stable state (ρ̄+,1,ρ̄−,1) = (ρ̄/2,ρ̄/2), where ρ̄

is such that f +(ρ̄) = f −(ρ̄). The stationary state (0,0) is
unstable if f +(0) > f −(0), and the stationary state (ρ̄/2,ρ̄/2)
is stable if f ′+(ρ̄) < f ′−(ρ̄). By introducing the hyperbolic
scaling and the new fields ρε

±(x,t) = A± exp[−Gε(x,t)/ε],
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we obtain the characteristic equation∣∣∣∣H − γp + μ − κf +(0) + f −(0) −μ − f +(0)(1 − κ)
−μ − f +(0)(1 − κ) H + γp + μ − κf +(0) + f −(0)

∣∣∣∣ = 0. (6.12)

In this case, the Hamilton–Jacobi equation coincides with the characteristic equation for the RCS if we make the substitutions

r ≡ f +(0) − f −(0), τ ≡ 1

2μ + (1 − 2κ)f +(0) + f −(0)
, D ≡ γ 2τ. (6.13)

As shown in Eq. (4.56), 2μ + (1 − 2κ)f +(0) + f −(0) > 0 for κ ∈ [0,1], and the inertial time τ is well defined.
Then, from Eq. (6.11) the front speed is given by

v =
{

γ
√

f +(0) − f −(0)
√

2μ+(1−2κ)f +(0)+f −(0)
μ+(1−κ)f +(0) , μ � κf +(0) + f −(0) (diffusive regime)

γ, μ � κf +(0) + f −(0) (ballistic speed).
(6.14)

The front propagates with the ballistic speed if the turning
frequency is smaller than or equal to the reaction rate. In other
words, as for the RTE and the RCS, the front can propagate
with the ballistic speed if the inertial time is larger than or
equal to the characteristic kinetic time.

VII. CONCLUSIONS

We analyzed the features of five hyperbolic reaction-
diffusion systems in four main areas. As stressed in the
introduction, accounting properly for the contributions of
growth and transport in the total evolution of the density
is not a trivial task if processes are not memoryless. It is
therefore desirable for hyperbolic reaction-transport equations
to have a sound macroscopic or mesoscopic foundation. RCSs
rest on a solid foundation of thermodynamics or generalized
hydrodynamic theory. RTEs are derived from RCSs and there-
fore also have a sound foundation. A mesoscopic approach
provides an even more desirable foundation, since it ensures
that the reaction-transport equation is mathematically and
biologically or physically acceptable. RCRWs are based on a
description of the transport by a persistent random walk. These
three reaction-transport equations have a sound foundation and
fulfill criterion (I). In contrast, both the HRDE and the mHRDE
lack a macroscopic or mesoscopic foundation and do not meet
criterion (I).

Transport should play no role in the evolution of spatially
uniform states, and the reaction-transport equation should
reduce to the kinetic rate equation of the lumped system. This
is the case for RCSs and RCRWs, and for RTEs after an initial
boundary layer determined by the characteristic time of the
transport process, i.e., the inertial time τ . Furthermore, the
uniform steady states and their instability thresholds coincide
with those of the rate equation of the lumped system for
all three of these reaction-transport equations. These three
evolution equations fulfill criterion (II). The HRDE does not
reduce to the kinetic rate equation of the lumped system for
spatially uniform states, but the uniform steady states and
their instability thresholds coincide with those of the lumped
system. The mHRDE also does not reduce to the kinetic
rate equation of the lumped system for uniform states. The
instability thresholds of the uniform steady states do not always
coincide with the instability thresholds of the lumped system.
Furthermore, the mHRDE may give rise to extraneous uniform
steady states that cannot occur in the lumped system. HRDEs
and mHRDEs do not meet criterion (II).

Densities or concentrations cannot be negative, and evolu-
tion equations for such fields should preserve positivity. While
hyperbolic evolution equations in general do not preserve
positivity, RCRWs do so for proper kinetic rate functions. For
the other four hyperbolic reaction-transport equations we have
adopted as a minimal performance criterion that the density
of a pure death process must go to zero at long times. This
is the case for HRDEs, RCSs, and RTEs. The solution of the
mHRDE with first-order kinetics is unbounded for almost all
initial conditions, unless the inertial time τ is sufficiently small.
HRDEs, RCSs, RTEs, and RCRWs fulfill criterion (III), while
mHRDEs do not.

As a last area we investigated the speed with which a stable
steady state invades an unstable steady state for systems with
KPP kinetics. As the inertial time τ of the transport processes
increases and approaches the characteristic time of the kinetic
process, the front speed should approach the ballistic speed
of the individuals or particles. We further expect the front to
propagate with the ballistic speed, if the inertial character of
the transport process dominates the evolution of the system.
This corresponds to the high reaction rate regime, where the
inertial time is larger than the characteristic kinetic time. This
is exactly what we found for RCSs, RTEs, and RCRWs, i.e.,
these hyperbolic reaction-diffusion equations that have a sound
foundation, either macroscopic or mesoscopic. These hyper-
bolic evolution equations fulfill criterion (IV). In contrast, the
front speed of HRDEs and mHRDEs with KPP kinetics is
always given by the diffusive expression and never reaches
the ballistic speed. These two hyperbolic reaction-diffusion
equations do not meet criterion (IV).

In conclusion, RCSs, RTEs, and RCRWs meet all
four criteria and represent physically acceptable evolution
equations for systems of individuals or particles that undergo
interactions or reactions and dispersal with inertia. Among
these three, RCRWs should be preferred. They are the only
ones that have a mesoscopic foundation and are guaranteed to
preserve positivity.
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