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a b s t r a c t

We present an exact analytical result on ultra-slow diffusion by solving a Fokker–Planck

equation, which describes anomalous transport in a three dimensional (3D) comb. This 3D

cylindrical comb consists of a cylinder of discs of either infinite or finite radius, threaded on a

backbone. It is shown that the ultra-slow particle spreading along the backbone is described

by the mean squared displacement (MSD) of the order of ln (t). This phenomenon takes place

only for normal two dimensional diffusion inside the infinite secondary branches (discs).

When the secondary branches have finite boundaries, the ultra-slow motion is a transient

process and the asymptotic behavior is normal diffusion. In another example, when anoma-

lous diffusion takes place in the secondary branches, a destruction of ultra-slow (logarithmic)

diffusion takes place as well. As the result, one observes “enhanced” subdiffusion with the

MSD ∼ t1−α ln(t), where 0 < α < 1.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The transport of particles in inhomogeneous media ex-

hibits anomalous diffusion. This phenomenon is well estab-

lished [1–4] and reviewed (see e.g., [5–9]). A comb model is

a simple description of anomalous diffusion, which however

reflects many important transport properties of inhomoge-

neous media. The comb model was introduced as a toy model

for understanding anomalous transport in low dimensional

percolation clusters [10–12]. It is a particular example of a

non-Markovian phenomenon, which is also explained in the

framework of continuous time random walks [11,13,14].

Anomalous diffusion on the two dimensional (2D) comb

is described by the 2D probability distribution function (pdf)

P = P(x, y, t) of finding a particle at time t at position y along

the secondary branch that crosses the backbone at point x.

The transport is inhomogeneous, namely, for y �= 0 diffusion
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in the x direction is absent, and diffusion on a 2D comb-like

structure is described by the Fokker–Planck equation [12]

∂t P(x, y, t) = Dxδ(y)∂2
x P(x, y, t) + Dy∂

2
y P(x, y, t) . (1)

Here Dxδ(y) is the diffusion coefficient in the x direction,

and Dy is the diffusion coefficient in the y direction. The δ-

function in the diffusion coefficient in the x direction im-

plies that diffusion occurs along the x direction at y = 0 only.

Thus, this equation describes diffusion along the backbone

(at y = 0) where the secondary branches (fingers) play a role

of traps. The comb model with infinite secondary branches

(fingers) describes subdiffusion in the x direction1 with the

mean squared displacement (MSD) 〈x2(t)〉, which grows by

power law ∼ t1/2 [10–12]. For the finite secondary branches,

subdiffusion is a transient process until time t0, and after a

transient time scale t > t0 the transport along the backbone

corresponds to normal diffusion with the MSD 〈x2(t)〉 ∼ t [5].

It is convenient to work with dimensionless variables

and parameters. This can be obtained by the re-scaling
1 Note that there is normal diffusion in the y direction in Eq. (1).
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Fig. 1. Schematic representation of the 3D cylindrical comb. The backbone

coincides with axis x and the discs, belonging to the y–z plane, are threaded

on the backbone and form a continuous cylinder.

2 This relation in the time and Laplace domains is established in Eqs. (7)

and (8). By analogy with the 2D comb, this formal presentation of the solu-

tion in the convolution form follows from the Laplace transform of Eq. (3). It

is tempting to understand this case in complete analogy with the 2D comb

of Eq. (1), as well, where one assumes that the solution is the multiplication

of the independent probability distribution functions in the Laplace domain

G̃(y, z, s) · F̃ (x, s). However, for the 3D comb the situation is more sophisti-

cated. Namely, as we show in Section 2.2, the solution G̃(y, z, s) is singular

at (y, z) = (0, 0). Therefore, F̃ (x, s) is not simply related to the distribution

function P̃(x, y = 0, z = 0, s). However, in the time domain this relation can

be easily established, using formal solution in the convolution form (5).
with relevant combinations of the comb parameters [Dx] =
cm3

sec and [Dy] = cm2

sec , such that the dimensionless time and co-

ordinates are

D2
xt/D3

y → t, Dxx/Dy → x, Dxy/Dy → y/
√

D, (2)

where D can be considered as a dimensionless diffusion co-

efficient for the secondary branch dynamics.

In this paper we consider anomalous ultra-slow diffu-

sion in a three dimensional cylindrical comb, which consists

of a continuous cylinder of discs threaded on the x axis, as

it is shown in Fig. 1. Recently, the ultra-slow phenomena

were attracted much attention in biological search problems

with long-range memories [15,16]. In the continuous time

random work, ultra-slow diffusion is known as a result of

super-heavy-tailed distributions of waiting times, see details

of a discussion in Refs. [17,18,20] and numerical results in

Refs. [19,20]. These heavy-tailed distributions result in the

ratio 〈x2(t)〉/tα → 0 at t → ∞, which tends to zero, in con-

trast with subdiffusion, where this ratio limits to a constant

value. We show that the MSD exhibits a logarithmic behav-

ior in time 〈x2(t)〉 ∼ ln (t), which is a result of the transver-

sal branch dynamics in the 2D space. This behavior has been

discussed in the framework of scaling arguments for the re-

turn probability [5,21], which are based on the fractal dimen-

sion d of the transversal branch structure and the spectral

dimension ds, which is defined by decay of the return prob-

ability ∼ t−ds/2 [8,22] and 〈x2(t)〉 ∼ t1− ds
2 for ds < 2 [21]. As

it is shown in Ref. [21], 〈x2(t)〉 ∼ ln (t) for ds = 2. Therefore,

it is instructive to present a rigorous result by solving analyt-

ically the Fokker–Planck equation in the three dimensional

space within the cylindrical comb geometry constraint, when

d = 2.

2. Dynamics in a cylindrical comb: an infinite comb

model

We consider a 3D cylindrical comb [7,21], shown in Fig. 1,

in the framework of a standard formulation of the comb

model (1) for the 3D case. Therefore, the random dynamics

on this structure is described by the 3D distribution function

P = P(x, y, z, t), where the x-axis corresponds to the back-

bone, while the dynamics on the two dimensional secondary

branches is described by the y and z coordinates. The diffu-

sion equation in the dimensionless variables and parameters

reads

∂t P = δ(y)δ(z)∂2
x P + D(∂2

y + ∂2
z )P . (3)
The natural boundary conditions are taken at infinity, where

the distribution function and its first space derivatives van-

ish. The initial condition is

P0 ≡ P(x, y, z, t = 0) = δ(x)δ(y)δ(z). (4)

2.1. Analysis in the time domain

The formal solution of Eq. (3) can be presented in a con-

volution form

P(x, y, z, t) =
∫ t

0

G(y, z, t − t ′)F (x, t ′)dt ′ , (5)

where G(y, z, t) is the propagator for two dimensional diffu-

sion in the secondary branches, while F(x, t) relates to the

solution along the backbone2. Taking into account the cylin-

drical symmetry, one obtains for the y–z plane

G(y, z, t) ≡ G(r, t) = 1

4πDt
exp

(
− r2

4Dt

)
, (6)

where r2 = y2 + z2. To define the MSD in the x direction, one

needs to find a reduced distribution P1(x, t) by integrating

solution (5) over y and z taking into account that the element

of differential area is dydz = dθ rdr. From Eq. (6), one obtains

P1(x, t) =
∫ ∞

−∞
P(x, y, z, t)dydz

=
∫ t

0

[∫ ∞

0

rdr

∫ 2π

0

dθG(r, t − t ′)
]

F (x, t ′)dt ′

=
∫ t

0

F (x, t ′)dt ′ . (7)

In the Laplace space, this expression establishes a relation be-

tween P̃1(x, s) = L̂[P1(x, t)] and F̃ (x, s) = L̂[F (x, t)]. This rela-

tion reads

F̃ (x, s) = sP̃1(x, s) . (8)

The initial condition for the reduced distribution is P1(x, t =
0) = δ(x). Using relation (8), one obtains an equation for

P̃1(x, t). Integrating Eq. (3) over y and z, and taking into ac-

count Eqs. (5), (6) and (8), one obtains

sP̃1(x, s) = 1

4πD
∂2

x L̂[t−1]sP̃1(x, s) + δ(x) . (9)

Note that the Laplace transform of t−1 exists as a principal

value integral [23]. Fourier transforming Eq. (9), one obtains

¯̃P1(k, s) = 4πD

s(4πD + k2L̂[t−1])
. (10)
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3 It is worth noting that this does not mean that the solution does not ex-

ists, and that the singularity of G̃(r, s) at r = 0 does not mean the absence of

the solution as well. Moreover, the existence of the Laplace transform (17)

ensures the existence of the Laplace solution G̃(r, s) in the entire disc, in-

cluding r = 0 as well as Eq. (17) ensures the conditions when Plancherel’s

theorem holds.
4 Obviously, this corresponds to shifted arguments y and z in the input Eq.

(3) without touching the comb geometry ∂t P = δ(y)δ(z)∂2
x P + D[∂2

(y0−y)
+

∂2
(z0−z)

]P , where y2
0 + z2

0 = R2. Since y0 and z0 are constant values, this shift

does not change the dynamics, and this procedure can be done.
This yields the MSD in the form

〈x2(t)〉 = L̂−1
[

− d2

d k2
¯̃P1(k, s)

]
k=0

= 1

2πD

∫ +i∞

−i∞
L̂[t−1]

est ds

s
. (11)

Taking into account that L̂−1L̂
[

t−1
]

≡ t−1 and est/s =∫ t
est dt + C, where C is an integration constant of the indefi-

nite integration, one obtains

〈x2(t)〉 = 1

2πD
ln(t) + C

2πD t

= 1

2πD
ln(t) , as t → ∞ . (12)

Therefore, for the large time dynamics, ultra-slow diffusion

takes place with the MSD growing as ln (t).

2.2. Consideration in the Laplace domain

Let us consider a relation between the temporal dynam-

ics and the dynamics in the Laplace space. Performing the

Laplace transform of Eq. (3), one obtains

sP̃ = δ(y)δ(z)∂2
x P̃ + D(∂2

y + ∂2
z )P̃ + P0 . (13)

Correspondingly, Eq. (5) reads in the Laplace domain

P̃(x, y, z, s) = G̃(y, z, s)F̃ (x, s) ≡ G̃(r, s)F̃ (x, s) , (14)

where the cylindrical symmetry is taken into account in the

last term. Taking into account Eqs. (13) and (14), and intro-

ducing a new variable in the form of a scaled radius u =
r
√

s/D, one finds the solution for G̃(r, s) ≡ G̃(u) from the

equation

u2G̃′′ + uG̃′ − u2G̃ = 0 , (15)

where prime means the derivative over u. This is an equa-

tion for the modified Bessel functions I0(u) and K0(u) (see e.g.,

[24]). The solution, which satisfied the boundary condition at

infinity r = ∞, is the modified Bessel function of the second

kind

G̃(r, s) = A · K0

(
r
√

s/D

)
. (16)

It should be stressed that the Laplace inversion of K0

(
r
√

s/D

)
is exactly the solution G(r, t) in Eq. (6):∫ ∞

0

1

4πDt
exp

(
− r2

4Dt
− st

)
dt = 1

2πD
K0

(
r
√

s/D

)
. (17)

Therefore, A = 1/2πD that satisfies the normalization condi-

tion and the initial condition for G(r, t). Taking into account

solution (16), we establish the relation (8) by integrating Eq.

(14) over y and z. Using a property of integration of the mod-

ified Bessel function:∫ ∞

0

uK0(au)du = 1/a2 , (18)

one obtains

P̃1(x, s) = F̃ (x, s)

∫
dydzG̃(x, y, s) = F̃

D

∫ ∞

0

K0

(
r
√

s/D

)
rdr

= F̃ (x, s)

s
, (19)
which coincides exactly with the result in Eq. (8), and

where we also use the Laplace transform of P̃1(x, s) =
2π F̃

∫ ∞
0 G̃(r, s)rdr in Eq. (7).

Now we admit an important point of the analysis: namely

Eq. (13) cannot be integrated over the y and z, because G̃(r, s)is

singular at r = 0. In this case, F̃ (x, s) cannot be defined from this

procedure in the Laplace domain3. Therefore, to continue the

analysis, one has to return to the time domain and repeat the

analysis for the temporal dynamics, performed in Section 2.1.

This situation differs cardinally from the analysis for the 2D

comb model in Eq. (1), where the finite expression for MSD

can be obtained in the Fourier–Laplace domain.

3. Comb dynamics with finite discs: transition to normal

diffusion

To consider anomalous diffusion on finite combs, we

consider reflecting boundary conditions at r = R, such that

∂rG̃(r = R, s) = 0, which determines the absence of the prob-

ability flux in the direction normal to the boundary surface.

In this case, solution of Eq. (15) is found in the form of mod-

ified Bessel function of the first kind I0(u). Namely, making

a shift of the argument u → u = (R − r)
√

s/D in Eq. (15), one

obtains4

G̃(r, s) = I0

[
(R − r)

√
s/D

]
/I0

(
R
√

s/D

)
, (20)

which satisfies the boundary condition

d

d r
I0

[
(R − r)

√
s/D

]∣∣∣
r=R

= I1

[
(R − r)

√
s/D

]|r=R = 0 , (21)

while for r = 0, one obtains G̃(0, s) = 1. This corresponds to

a standard construction of the solution [12,25].

Integration of Eq. (13) over the y and z yields

sP̃1(x, s) = ∂2
x F̃ (x, s) + δ(x) . (22)

Again, the relation between P̃1 and F̃ can be established by

integration of I0(u) over the y–z surface of discs, which yields

2π

∫ R

0

rI0

[
(R − r)

√
s/D

]
dr = 2πR2

∫ 1

0

uI0[a(1 − u)]du .

Here we used the following variable changes u = r/R and a =
R
√

s/D. Then using another variable change w = 1 − u, one

obtains two integrals [26]

R2

a

∫ a

0

I0(w)dw − R2

∫ 1

0

wI0(aw)dw

= R2

a

[
2

∞∑
n=0

I2n+1(a) − I1(a)
]

.

Here, we are interested in the long time dynamics, when

s → 0 and a � 1, correspondingly. In this case In(a) ≈
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(
a
2

)n

/�(n + 1), and we take into account the first term with

n = 0 in the sum that yields I1(a) in the squared brackets. Fi-

nally, one obtains for the long time asymptotics5

2π

∫ R

0

G̃(r, s)rdr ≈ πR2 . (23)

This yields the following relation

F̃ (x, s) = π

R2
P̃1(x, s) . (24)

Substituting relation (24) in Eq. (22) and performing the

Laplace inversion, one obtains the Fokker–Planck equation

for normal diffusion with the diffusion coefficient π /R2

∂t P1 = π

R2
∂2

x P1 . (25)

It is worth stressing that this long time diffusion takes place

only for times larger than a transient time t > t0, where t0 =
R2/D. This situation is different from the long-time asymp-

totics observed in [17].

This result is generic for combs with finite secondary

branches (either fingers in the 2D comb, or discs in the 3D

comb). However, the finite boundary conditions for the y–z

discs result in the destruction of ultra-slow diffusion in the x

direction, as well. Mathematically, this fact follows immedi-

ately from the Laplace image G̃(r, s), which depends on the

boundary conditions. The ultra-slow motion takes place only

for normal diffusion in the infinite discs.

3.1. Scenarios of transitions from ultra-slow to normal diffusion

It is worth noting that solution (20) is the easiest way to

obtain the result on normal diffusion. However, it does not

explain the transition from ultra-slow to normal diffusion.

Moreover, from here we cannot see that this ultra-slow mo-

tion is a transient process. To observe this, let us return to the

initial Eq. (15)

u2G̃′′ + uG̃′ − u2G̃ = 0 ,

For the reflecting boundary conditions, the solution of Eq.

(15) is found in the form of a superposition of the modified

Bessel functions I0(u) and K0(u). This reads

G(u) = AK0(u) + BI0(u) , (26)

where the boundary condition yields

G′(u)

∣∣∣
r=R

= −AK1(a) + BI1(a) = 0 , (27)

where a = R
√

s/D. This boundary condition establishes a re-

lation between coefficients A = A(s) and B = B(s) as well.

There are two possibilities for the coefficients; (i) B =
AK1(a)/I1(a) and A is a constant, and (ii) A = BI1(a)/K1(a),

and B is a constant. These yield two solutions with different

combinations of the coefficients,

G1(u) = 1

2πD
K0(u) + K1(a)

I1(a)
I0(u) , (28)

G2(u) = I1(a)

K1(a)
K0(u) + I0(u) . (29)
5 This result can be obtained from Eq. (20) taking into account that

G̃(r, s) ≈ 1 for the small argument in the limit s → 0.
However, this ambiguity between G1(u) and G2(u) is easily

resolved by the physical meaning of the solutions at differ-

ent time scales. The first solution G1(u) is valid for the ini-

tial times with the large argument when s � 1. Since R >

r, the second term in this solution can be neglected, and

G1(u) = 1
2πD K0(u) corresponds to ultra-slow diffusion, stud-

ied in Section 2. This process is transient and takes place for

t � R2/D.

It is reasonable to consider the second solution for the

small argument, when s → 0. In this case the first term of

the order sln (s) is much smaller than I0(u), which is of the

order of 1. Now taking integration over y and z, we have

2π

∫ R

0

rI0(ar/R)dr = 2πR2I1(a)/a .

In the limit a → 0, the Bessel function is I1(a) ∼
a/2 [24]. Finally, one obtains exactly the result in

Eq. (23)
∫ R

0 G2(r, s)d2r = πR2 (here d2r ≡ dydz). This so-

lution corresponds to normal diffusion at times t � R2/D,

considered in the previous section.

These two solutions G1(u) and G2(u) correspond to the

initial time scale and the asymptotically large time scale cor-

respondingly. The corresponding solutions for the reduced

distribution P1(x, t) in the form of ultra-slow diffusion (8) and

normal diffusion (24) as the limiting cases, are anticipated as

well and both are obtained above, in the previous sections in

Eqs. (9) and (25) correspondingly.

Note that diffusion in the side branch discs can be anoma-

lous as well. Does this ultra-slow diffusion survive in this

case? The answer is it does not. We prove this statement in

the next section.

4. Anomalous diffusion in discs

What happens with this ultra-slow diffusion if diffusion

in the transversal disks is anomalous and described by a

memory kernel K(t)? The comb model (3) now reads as an

extension of the generalized master equation

∂t P = δ(y)δ(z)∂2
x P + D(∂2

y + ∂2
z )

∫ t

0

K(t − t ′)P(t ′)dt ′ .

(30)

The temporal kernel K(t) is defined in the Laplace domain

through a waiting time pdf ψ(t) [14,27]

K̃ = sψ̃ (s)/[1 − ψ̃ (s)] . (31)

Repeating the analysis in the Laplace domain of Section 2.2,

one obtains solution (16) in the form

G̃(r, s) = A · K0(Br) , (32)

where B =
√

s/DK(s) and A is a normalization constant.

Therefore integration (18) yields

F̃ (x, s) = B2

A
P̃1(x, s) . (33)

As already admitted above (in Section 2.2), G̃(r, s) is sin-

gular function at r = 0. Therefore, as in Eq. (13), straightfor-

ward integration of Eq. (30) over the y and z coordinates can

be performed only in the real time domain. However, the

function G(r = 0, t) does exists and correspondingly L̂[G(r =
0, t)](s) exists as well, at least as a principal value integral
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6 This situation can take place in Lévy walks in random [28] and chaotic

[29] systems (see also recent discussion in Ref. [30]).
7 We thank the anonymous referee for this useful comment.
8 Note that R and D are dimensionless parameters, which are scaled by the

transport properties Dx , Dy , Dz of media.
like in Eq. (9). Therefore, to obtain equation for P1, one has to

return to the time domain consideration for P1(r, t) by inte-

grating Eq. (30) over y and z. To be specific, let us consider

subdiffusion in the y–z discs, described by ψ̃ (s) = 1
1+(τ s)α

and correspondingly with the memory kernel

K̃(s) = s1−α/τα ,

where τ is a dimensionless characteristic time scale and 0

< α < 1. In this case B2 = sατα/D. Therefore, in the limit r

→ 0 the argument Br � 1 and Eq. (32) reads for this small

argument [24]

K0[(bs)α/2] ≈ ln
2

γ
− α

2
ln(bs) , (34)

where γ is an Euler constant and b = τ (r2/D)1/α . Now, we

perform the Laplace inversion at r → 0

G(r, t) = A

∫ i∞

−i∞
K0[(bs)α/2]est ds ≈ Aδ(t) ln

2

γ

− Ab−1 α

2

∫ i∞

−i∞
ln(p)eptb dp , (35)

where tb = t/b. The last term can be presented in a form of

an integral [23]∫ i∞

−i∞
ln(p)eptb dp = d

d tb

∫ i∞

−i∞
p−1 ln(p)eptb dp = − 1

tb

.

Finally, one obtains for t > 0 and r → 0

G(r → 0, t) ≈ Aα

2
· 1

t
. (36)

This result is independent of r and therefore, the limit r =
0 is correct. For this approximate solution, the constant A =

1
2πD is taken to satisfy the limit α = 1, which corresponds to

solution (6) at r = 0.

Repeating procedures of Section 2, namely performing

first integration over y and z in Eq. (30) and then the Laplace

transform over time, and Fourier transform over x, and taking

into account the result of Eq. (33), one obtains a modification

of Eq. (10). This reads for ¯̃P1(k, s) = L̂F̂[P1(x, t)]

¯̃P1(k, s) = 1

s + D̄αsαk2L̂[t−1])
, (37)

where D̄α = ατα/D. Repeating the argument for the infer-

ring Eq. (12), one obtains for the MSD

〈x2(t)〉 = 2D̄α

�(1 − α)

∫ t

0

ln(t ′)dt ′
(t − t ′)α � Dαt1−α ln(t) . (38)

Note that we omit here a term ∼γ t1−α, which is a slower

contribution to anomalous diffusion than the term accounted

in Eq. (38). Here Dα = 2D̄α/�(2 − α) is a generalized trans-

port coefficient. Subdiffusion with the transport exponent

1 − α is dominant. Therefore, we conclude that ultra-slow

diffusion ∼ ln (t) takes place only for α = 1 that can be real-

ized as the result of normal diffusion in the infinite secondary

branched discs.

5. Conclusion

We presented an exact analytical result on ultra-slow dif-

fusion by solving the Fokker–Planck equation in the 3D cylin-

drical comb geometry. It is shown that the ultra-slow motion
with the MSD on the x backbone is of the order of ln (t), and

it results from normal diffusion in the secondary branched

discs of the infinite radius. The technically specific point of

the analysis is the singularity of G̃(r, s) at r = 0. The integra-

tion of the comb Eqs. (3) and (30) over the y and z coordinates

is performed in the time domain, while the relation between

the reduced pdf P1(x, t) and the backbone pdf P(x, r = 0, t) is

established in the Laplace domain.

An important modification of the model is a choice of

the boundary conditions at finite radius of the discs, or fi-

nite boundary conditions, which is a realistic situation. In

this case, the physical realization of the ultra-slow trans-

port is restricted by the transient time scale t < t0 = R2/D.

In the continuous time random walk (CTRW) theory [14]

this transient time is determined from the exponential de-

cay of the tempered waiting time distributions6. In partic-

ular, the introduction of the finite boundary conditions for

the 2D comb model (1) is a geometrical realization of such

tempered waiting time pdf [31], when before time t0, both

the waiting times and subdiffusion correspond to the bound-

ary condition at infinities, while for the time t > t0, the

waiting times have finite scale and normal diffusion takes

place. The transition over time in this tempered waiting time

distribution from the short time scale t < t0 to the long

time asymptotics t > t0 is continuous [31]. For the 3D comb

model, we found solution in the composition forms (28) and

(29), which contain both ultra-slow and normal diffusions:

G(u) = A(s)K0(u) + B(s)I0(u). The reflecting boundary con-

dition chooses the coefficients in such a way that for the short

time scale s � 1 (t < t0), the second term B(s)I0(u) vanishes.

The first term A(s)K0(u) corresponds to the “super-heavy-

tailed” waiting time pdf that eventually leads to ultra-slow

diffusion along the backbone. The latter is a transient pro-

cess, since it takes place only for t < t0. In the opposite case

of the large time asymptotics, the boundary condition leads

to vanishing of the first term A(s)K0(u) for s → 0. This real-

izes in the exponential time decay of the tempered waiting

time pdf, which can be estimated by taking into account the

first two terms7 in the expansion of I0(u) in Eq. (29) for s → 0.

In this case I0

(
r
√

s/D

)
� 1 + sr2/4D [24]. Taking integration

over d2r, one obtains relation (24) in the form

F̃ (x, s) = 6D

πR3
· P̃1(x, s)

s + 12D/R2
.

After the Laplace inversion, one obtains the exponential de-

cay of the tempered waiting time pdf

ψ(t) = 6D

πR3
exp

(
− 12Dt

R2

)
,

which is specified by the comb parameters8 R and D, and

valid for the large times t � R2/D.

If the transport in the secondary branches is anomalous

diffusion (subdiffusion), the anomalous transport becomes

dominant in the backbone, as well. As the result, ultra-slow
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diffusion is replaced by the anomalous transport with the

MSD ∼ t1−α ln(t), which is more sophisticated than usual

power law subdiffusion, and we call it enhanced subdiffu-

sion. This continuous transition from the ultra-slow motion

for α = 1 to enhanced subdiffusion with 0 < α ≤ 1 is due

to anomalous diffusion in the secondary branched dynamics,

which is controlled by the transport exponent α. Since the

side-branched y–z dynamics acts as traps for the projected

motion along the x axis, the analytical form of the solution

G(r, t) is crucial for the realization of ultra-slow diffusion. The

latter takes place only for the Gaussian solution (6), when

α = 1. When α < 1, the solution of G(r, t) corresponds to sub-

diffusion in the form of Fox function [14]. This subdiffusion

leads to less extensive invasion of the side branches in com-

parison with normal diffusion that increases the probability

to return to the backbone at r = 0. Eventually, this enhances

the transport along the backbone, and therefore, the contin-

uous transition, by α, from ultra-slow diffusion to enhanced

subdiffusion takes place. In the opposite case, when trans-

port in the discs is enhanced, for example by additional ra-

dial advection, one anticipates that the transport along the

backbone can be saturated. This result was obtained numer-

ically for the 2D comb model in the framework of the CTRW

consideration [32]. From the CTRW point of view, the ana-

lytical expression of the solution G(r, t) relates to the form

of the waiting time distribution for the transport along the

backbone. In particular, only the Gaussian solution of G(r, t) in

Eq. (6) corresponds to the “super-heavy-tailed” waiting time

pdf, which leads to ultra-slow diffusion along the backbone.

This mechanism can be helpful to model ecological processes

like in generalization of an elephant random walk model [15].
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