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Here we provide additional details and results to support the derivations presented in the main text. Below, the
notations and acronyms are the same as in the main text and the equations, figures and citations refer to those therein.

S1. CUMULATIVE NUMBER OF SITES

In this section we detail the exact solution and the WKB approximation to Eq. (2) of the main text

dP (n, t)

dt
= q(n− 1)−βP (n− 1, t)− qn−βP (n, t). (S1)

A. Solution by Laplace transform

Here we derive Eqs. (4) and (5) of the main text by Laplace transforming Eq. (S1) and solving the resulting
recurrence equation. First we define J(n, t) = qP (n, t)/nβ , which turns Eq. (S1) into:

nβ

q

dJ(n, t)

dt
= J(n− 1, t)− J(n, t). (S2)

Transforming (S2) by Laplace in time and considering the initial condition P (n, t = 0) = δn,1, where δa,b is the
Kronecker delta, we obtain the recurrence equation

Ĵ(n, s) =
1

1 + snβ

q

Ĵ(n− 1, s) +
1

1 + snβ

q

δn,1, (S3)

where s is the Laplace variable and Ĵ(n, s) stands for the Laplace transform of J(n, t) defined as follows:

Ĵ(n, s) = Ls [J(n, t)] =

∫ ∞
0

e−stJ(n, t)dt.

Multiplying (S3) by
∏n
j=0

(
1 + sjβ

q

)
it has the form

A(n, s) = A(n− 1, s) + δn,1

n−1∏
j=0

(
1 +

sjβ

q

)
, (S4)

where A(n, s) = Ĵ(n, s)
∏n
j=0

(
1 + sjβ

q

)
has been introduced. Since P (n ≤ 0, t) = 0 one has A(0, s) = 0 and using

(S4), A(n ≥ 1, s) = 1. Inserting this result into (S3) the solution to the master equation in the Laplace domain reads

P̂ (n, s) =
nβ

q
∏n
j=0

(
1 + sjβ

q

) =
qn−1

[(n− 1)!]β
1∏n

j=1

(
s+ q

jβ

) . (S5)
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Now we need to invert (S5) by Laplace. To do this we use the Heaviside expansion theorem [59]

L−1
t

[
1

f(s)

]
=

n∑
k=1

e−akt

f ′(s = −ak)
, f(s) =

n∏
j=1

(s+ aj), (S6)

where the prime symbol stands for the derivative with respect to s. Making use of the property

f ′(s = ak) =

n∏
j=1,j 6=k

(aj − ak),

and (S6), one readily obtains for any β 6= 0

L−1
t

 1∏n
j=1

(
s+ q

jβ

)
 =

n∑
k=1

e−qt/k
β∏n

j=1,j 6=k

(
q
jβ
− q

kβ

) = (−1)n−1(n!)βq1−n
n∑
k=1

k−βe−qt/k
β∏n

j=1,j 6=k

(
jβ

kβ
− 1
) . (S7)

Finally, plugging (S7) into (S5) the exact solution for β 6= 0 has the form

P (n, t) = (−1)n−1nβ
n∑
k=1

k−βe−qt/k
β∏n

j=1,j 6=k

(
jβ

kβ
− 1
) , (S8)

which is Eq. (4) of the main text, and is valid for any β 6= 0. For β = 0, Eq. (S5) reduces to

P̂ (n, s) =
1

q
(

1 + s
q

)n ,
which after inversion by Laplace coincides with Eq. (5) of the main text

P (n, t) =
(qt)n−1

(n− 1)!
e−qt. (S9)

B. Solution by generating function

In some special cases it is more convenient to solve Eq. (S1) using the generating function approach. Particularly,
in the limit of a large number of sites, the equation in the generating function domain becomes a fractional integro-
differential equation for 0 < β ≤ 1, see below.

We define the generating function G(z, t) =
∑
n z

nP (n, t), such that

P (n, t) =
1

n!

∂nG(z, t)

∂zn
|z=0, (S10)

with initial condition P (n, 0) = δn,1 ⇒ G(n, 0) = z. Substituting Eq. (S1) into the definition of G(n, t) yields

∂G

∂t
= q

∑
n

[
zn(n− 1)−βP (n− 1, t)− znn−βP (n, t)

]
= q(z − 1)

∑
n

znn−βP (n, t)

' q(z − 1)
∑
n

D−βz zn−βP (n, t) = q(z − 1)D−βz
[
z−βG(z, t)

]
, (S11)

where D−βz is the Riemann-Liouville fractional integral defined by aD
−β
z f(z) = 1

Γ(β)

∫ z
a

(z− ξ)β−1f(ξ)dξ, and we used

the following relations

D−βz zn−β = zn
Γ(n− β + 1)

Γ(n+ 1)
= znn−β [1 +O(1/n)]. (S12)

Here, the equality on the left is valid for β ≤ 1 while the approximation on the right holds for n� 1 and is exact in
the special cases of β = 0, 1. Notably, for β < 0, i.e., when the growth rate increases in n, Eq. (S11) is a fractional
differential equation for G, while for β > 0, i.e., when the growth rate decreases in n, it is a fractional integro-
differential equation. Although Eq. (S11) is hard to solve analytically for general β, and the direct method presented
above is more suited, it can be solved for β = −1, 0, 1.
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1. Solution for β = 0

For β = 0, Eq. (S11) simplifies to ∂tG(z, t) = q(z−1)G(z, t) and is accordingly solved by G(z, t) = ze−qt(1−z). Using
Eq. (S10) we find that P (n, t) follows a Poisson distribution (S9). In particular, in this case we have 〈n〉 = qt+ 1 ' qt
and σ2

n = qt.

2. Solution for β = −1

For β = −1 a similar derivation to Eq. (S11) yields a partial differential equation for the generating function:
∂tG(z, t) = q(z − 1)z∂z[G(z, t)], whose solution is G(z, t) = z/[z + eqt(1− z)]. Using Eq. (S10) we find

P (n, t) = e−nqt
(
eqt − 1

)n−1
. (S13)

The average number of sites here is 〈n〉 = eqt, i.e., we find exponential growth, as expected for a growth rate that

is linear in n. Here, the variance is σ2
n = eqt (eqt − 1) ' e2qt = 〈n〉2, which is significantly broader than that of the

Poisson distribution. This result also agrees with Eq. (5) of the main text.

3. Solution for β = 1

For β = 1, Eq. (S11) is rewritten in explicit integro-differential form:

∂G

∂t
= q(z − 1)

∫ z

0

y−1G(y, t)dy. (S14)

Here, we Laplace transform Eq. (S14) in time

uG(z, u) = z + q(z − 1)

∫ z

0

y−1G(y, u)dy, (S15)

to obtain an integral equation. This equation can be solved iteratively by the Neumann series method [60] to give:

G(z, u) =
1

u

[
(z − 1)e

qz
u

(qz
u

)− q
u

γ

(
p+ u

u
,
qz

u

)
+ z

]
, (S16)

where γ(·, ·) is the lower gamma function. Using Eq. (S10) we can inverse Laplace transform Eq. (S16) to obtain

P (n, t) =
1

(n− 1)!

n∑
k=1

(−1)n−kkn−1

(
n

k

)
e−

qt
k , (S17)

in agreement with Eq. (5) of the main text.

C. Time dependent WKB approximation

Here we derive Eqs. (7) and (8) of the main text. We employ the time-dependent WKB approximation in the limit
of a large number of sites n� 1 [38, 39]. Substituting the time-dependent ansatz P (n, t) ∼ e−S(n,t) into Eq. (S1) and
neglecting terms of order O(n−1) we obtain a classical Hamilton-Jacobi equation for the action function S(n, t):

∂S

∂t
= H(n,

∂S

∂n
) ≡ H(n, p) , H(n, p) = q

(
1− e−p

)
n−β , (S18)

where H is the Hamiltonian and p = −∂nS is the conjugate momentum. Instead of directly solving the Hamilton-
Jacobi equations, we use the Hamilton approach for the classical equations of motion [Eq. (6)]

ṅ = qe−pn−β , ṗ = βq
(
1− e−p

)
n−β−1. (S19)

We write the action on a classical trajectory as [38]:

S = Et−
∫ t

0

pṅdt = Et−
∫ n

p(n′)dn′ (S20)
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FIG. S1. (a) The action S(x) = log(P )/ 〈n〉 as a function of x = n/ 〈n〉 and (b) the probability P (n, t) as a function of
n. In both panels β = 1, q = 1, σ = 0 and t = 1000, 1250 and 1500 (circles, triangles and x marks respectively). In (a)
only simulation results are plotted showing that the exact result and WKB approximation have a similar scaling with time
and that pre-exponential corrections are insignificant, see text. In (b) we compare simulations (symbols), exact result [black
dashed-dotted line, Eq. (S17)], WKB approximation [red dashed lines, Eq. (S23)], and WKB approximation at low energies
[blue dashed lines, Eq. (S26)]. In (c) we compare P (n, t) as a function of n for σ = 0.1 [all other parameters are similar to (a)
and (b)] with numerical solutions of Eq. (S28) (dashed lines).

where the energy E ≡ H[n(t), p(t)] is constant along a dynamical trajectory given by p(n) = log
[
q/(q − Enβ)

]
. To

find the energy we solve the equation of motion (S19) on this given dynamical trajectory, which yields

ṅ = qn−β − E. (S21)

For n � 1 and β > 0 the right hand side of Eq. (S21) varies very slowly with time [O(n−β)] (as shown below, the
energy E also scales as n−β), such that the solution for Eq. (S21) can be approximated as n = (qn−β−E)t+C. Here,
C is a slowly-varying function of time, and includes constants such that the energy corresponding to the mean-field
solution n = 〈n〉 obeys E(n = 〈n〉) = 0 [38]. Having shown that 〈n〉 ∼ t1/(1+β), we find C = 〈n〉β/(1 + β), which
indeed varies with time slower than t. Substituting this back into the equation for n and solving for the energy yields

E = q 〈n〉−β
{
x−β + [β − (β + 1)x]

}
(S22)

where we have expressed t in terms of 〈n〉 and defined x ≡ n/ 〈n〉. Substituting the energy (S22) into Eq. (S20) and
solving the integral yields

S(n, t) = 〈n〉 S(x) , S(x) =
f(x)x−β

β + 1
+ xf(x)−1/βB

[
f(x); 1 +

1

β
, 0

]
+ x log(1− f(x)) (S23)

where B(z; a, b) is the incomplete beta function, defined as B(z; a, b) =
∫ z

0
ua−1(1 − u)b−1du, and we define f(x) =

1− xβ(β(x− 1) + x). This result coincides with Eq. (7) of the main text and is valid in the limit of n� 1.

1. Low energy solution

To get better insight for the Gaussian vicinity of Pn(t), we solve Eq. (S19) in the low energy limit E � 1. This
yields an approximated solution for the energy in the form

E ' q 〈n〉−β
(2β + 1)x−2β−1

(
1− xβ+1

)
β + 1

, (S24)

where we have again expressed t in terms of 〈n〉. Equation (S24) is indeed small in the limit |x− 1| � 1, which is the
Gaussian vicinity of Pn(t). By further approximating the dynamical trajectory as p(n) ' Enβ/q + E2n2β/(2q2), we
substitute this back into Eq. (S20). Performing the integral and substituting Eq. (S24) yields the following action

S(x) '
(2β + 1)x−2β−1

(
xβ+1 − 1

)2
2(β + 1)2

. (S25)

In the limit of |x− 1| � 1 the action further simplifies to

S(x) ' (β + 1/2) (x− 1)2, (S26)
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FIG. S2. The probability P (n, t) for β = 0.5 and t = 1500. (a) No variation in β (σ = 0). We compare simulations (circles),
WKB approximation [red dashed line, Eq. (S23)], and WKB approximation at low energies [blue dashed line, Eq. (S25)]. (b)
Variability in β with σ = 0.1, compared to a numerical solution of Eq. (S28) (dashed line). In the insets of both panels are 〈n〉
and σ2

n (red and black marks, respectively) as a function of t, showing very good agreement with the theory (dashed lines).

which coincides with Eq. (8) of the main text and can be shown to solve Eq. (S18) in the limit |x− 1| � 1.
Notably, Eq. (S26) can alternatively be obtained by using the system-size expansion on the master equation [39].

This leads to the following Fokker-Planck equation

∂P

∂t
=
q

2

∂2

∂n2
(n−βP )− q ∂

∂n
(n−βP ), (S27)

which can be dealt with using the WKB ansatz, P (x, t) ∼ e−S(x,t). Performing a similar analysis as done above yields
a Hamiltonian which coincides with Eq. (S18) in the limit of p � 1 [39], eventually leading to the action given by
Eq. (S26). That is, the Fokker-Planck approximation captures the Gaussian vicinity of the distribution, but missed
its tails, see main text. In Figs. 1(a), S1 and S2(a) we compare the WKB solutions to simulations. Note that, while
in Fig. 1(a) (main text) we are able to plot the exact results, in Fig. S2(a), due to the larger values of n, the exact
result cannot be plotted with standard computational tools.

D. Individual variability

Here we analytically solve Eq. (9) of the main text in the limit of small variance σ. In the main text we write the
probability of having visited n sites at time t as [Eq. (9)]

P (n, t) =
1√

2πσ2

∫ ∞
−∞

Pβ(n, t)e−
(β−β0)2

2σ2 dβ, (S28)

which can be numerically solved (Figs. 1(b), S2(b) and S3). Analytical progress can only be made in limit of small

variance, σ <∼ 1/
√
〈n〉0, where 〈n〉0 = [(1 + β0)qt]1/(1+β0) is the mean number of sites given β = β0. For simplicity

we focus on the small energy regime, yet similar calculations can be made with the full expression for the action
[Eq. (S23)]. Substituting Eq. (S26) into Eq. (S28) yields

P (n, t) ∼ 1√
2πσ2

∫ ∞
−∞

e−
(β−β0)2

2σ2
−〈n〉0Sβ(n/〈n〉0)dβ, (S29)

where Sβ(x) is given by Eq. (S26). This integral can be solved for σ <∼ 1/
√
〈n〉0, using the saddle point approximation,

which yields

P (n, t) ∼ e−〈n〉0Sβ0 (n/〈n〉0)+〈n〉20σ
2S1(n/〈n〉0), (S30)

with

S1(x) =
(2β0 + 1) 2 ((β0 + 1) log(〈n〉0)− 1) 2

2 (β0 + 1) 4
(x− 1)2 (S31)
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FIG. S3. The probability distribution of number of sites visited at time t = 1000 for σ = 0.01, 0.05, 0.1 (see legend), based on
15000 simulations, compared to Eq. (S29) (solid lines), where the integral is approximated numerically. Note that, the averages
〈n〉 for each distribution, marked by vertical dashed lines, are only slightly affected by the change in σ.

Here, the mean number of sites obeys 〈n〉 = 〈n〉0
[
1 +O(σ2)

]
, whereas the variance obeys

σn = 〈n〉0

{
1

2β0 + 1
+ 〈n〉0 σ

2 [(β0 + 1) ln(〈n〉0)− 1]
2

(β0 + 1) 4
+O(〈n〉20 σ

4)

}
. (S32)

Thus, while inter-individual variability will almost not affect the mean number of sites, it does significantly affect the
variance of the number of sites (by a factor of 〈n〉0 compared to that of the mean), see Fig. S3.

S2. STATISTICS OF NUMBER OF VISITS TO A SITE

Here we provide details on the mean-field equation for the mean number of sites. In particular we explicitly derive
and solve this equation for all α values in the limit of t� 1, and provide evidence of a phase transition at α = 1. Our
starting point is Eq. (10) of the main text

∂Wi

∂t
= (1− Pnew) [Πi(mi − 1)Wi(mi − 1, t)−Πi(mi)Wi(mi, t)] , (S33)

where Pnew and Πi are given by Eq. (1) in the main text.

A. The case of α = 1

In the main text we assumed that Pnew → 0 and solved Eq. (S33). Here we provide a solution to the mean-field
equation without neglecting Pnew. In mean field, we obtain an equation for the first moment 〈mi〉 by multiplying
Eq. (S33) by mi and summing over all mi. For α = 1 this yields

∂ 〈mi〉
∂t

= (1− Pnew)

∞∑
mi=1

mi∑n
j=1mj

Wi(mi, t) '
〈mi〉∑〈n〉
j=1 〈mj〉

(1− q 〈n〉−β), (S34)

where we a priori (to be checked a posteriori) assume that
∑
jmj � mi for any site i such that the denominator can

be taken out of the sum over mi, and that
∑n
j=1mj '

∑n
j=1 〈mj〉. To find the value of

∑〈n〉
j=1 〈mj〉 ≡ Q we sum over

both sides of Eq. (S34) to obtain a differential equation for Q: ∂tQ = (1 − q 〈n〉−β), an equation which is solved by
Q = t− 〈n〉. Substituting this back into Eq. (S34) gives

d 〈mi〉
dt

=
〈mi〉
t− 〈n〉

(1− q 〈n〉−β), (S35)
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FIG. S4. Comparison between the value of ξ as obtained from 100 simulation of length t = 105 (symbols) to the theoretical
prediction (dashed lines). Plotted for β = 0.5 (blue crosses) and β = 1 (red triangles). In the inset we plot the relative error
between the predicted value and the one obtained in simulations.

which is solved, assuming site i is first visited at time ti [i.e., with an initial condition 〈mi〉 (ti) = 1], by [24]

〈mi〉 =
t− 〈n〉
ti − 〈n〉ti

' t

ti
. (S36)

Here 〈n〉ti is the average number of sites at time ti, and on the right we approximated the solution for t � 1 and

discarded terms of order O(t1/(1+β)). This final result agrees with the one found in the main text. Importantly, as
all sites have a linear dependence on t, we verify a posteriori that

∑
jmj � mi for any site i, as contribution from

all visited sites will not diminish at long times.

B. The case of α < 1

For α < 1 we solve the mean-field equation at t� 1 such that Pnew → 0,

∂ 〈mi〉
∂t

'
∞∑

mi=1

mα
i∑n

j=1m
α
j

Wi(mi, t) '
〈mi〉α∑n
j=1 〈mj〉α

' 〈mi〉α

Atξ
, (S37)

where, similarly to the case of α = 1, we a priori assume that
∑
j 〈mj〉α � 〈mi〉α for any site i, and we further

assume
∑〈n〉
j=1 〈mj〉α = Atξ with α < ξ < 1 (to be proved a posteriori, see below). Notably, such a scaling was found

to hold in numerical simulations. For initial condition 〈mi〉 (t = t0) = 1, Eq. (S37) is solved by

〈mi〉 '

1 +
(α− 1)

(
t1−ξ − t1−ξi

)
A(ξ − 1)

1/(1−α)

. (S38)

Note that the asymptotic scaling of this result at t� ti depends on the value of ξ, where for ξ < 1, Eq. (S38) predicts an
asymptotic scaling of 〈mi〉 ∼ t(1−ξ)/(1−α)[1+O(tξ−1)], for all sites. Now, as all sites scale similarly with t, it is evident
that

∑
j 〈mj〉α � 〈mi〉α, thus verifying our initial assumption. Using this solution for 〈mi〉, we find that up to some

unknown factor
∑〈n〉
j=1 〈mj〉α ∼ t1/(1+β)tα(1−ξ)/(1−α), entailing that ξ = α(1−ξ)/(1−α)+1/(1+β) = (1+αβ)/(1+β).

In Fig. S4 we show that this prediction agrees with simulations for two different values of β, up to a maximum
of 3% relative error. However, we note that this relative error becomes crucial when ξ is substituted back into the
scaling 〈mi〉 ∼ t(1−ξ)/(1−α) found above. Let us denote ξ0 = (1 + αβ)/(1 + β) such that ξ = ξ0(1− ε), where ε� 1 is
a small correction that depends on α and β (see Fig. S4). Substituting ξ into 〈mi〉 ∼ t(1−ξ)/(1−α) one readily obtains
(1 − ξ)/(1 − α) = β/(1 + β) + ξ0ε/(1 − α). Here, the approximation is valid only as long as β/(1 + β) � ε/(1 − α),
or alternatively 1 − α � ε [assuming β = O(1)]. As we numerically find that ε = O(10−1) this condition is hard to
satisfy as α approaches 1, and in this regime it is preferable to find ξ directly from simulations.

In Fig. S5 we plot the number of visits to the five most visited site for different values of α. We show that for α < 1
all sites converge to the same number of visits, while for α > 1 the most visited site diverges from all other sites (see
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FIG. S5. Upper panels: the mean number of visits to the five most visited sites for different values of α (different colors mark
different sites). We fit the most visited site to a power law (blue solid lines, see legend) and plot the theoretical prediction
(black dashed line, see legend). Lower panels: measuring ξ from simulations (black crosses), fit (blue solid line) and theory
(orange solid line).

below). All α values show good agreement with the theory presented above. Similarly, in the bottom panels of S5 we

show evidence for our a priori assumption that
∑〈n〉
j=1 〈mj〉α = Atξ, again with good agreement to the theory.

C. The case of α > 1

Here, in contrast to the previous cases, in the limit of t � 1 we a priori assume that 〈m〉α1 �
∑〈n〉
j=2 〈mj〉α, i.e.

at long times the most visited site dominates and contributions from all other sites diminish. We again obtain an
equation for the first moment 〈mi〉 by multiplying Eq. (S33) by mi and summing over all mi:

∂ 〈mi〉
∂t

'
∞∑

mi=1

mα
i∑n

j=1m
α
j

Wi(mi, t) '

{
1 i = 1
〈mi〉α∑n
j=1〈mj〉

α i > 1,
(S39)

where we have separated the most visited site i = 1 from all other sites, in accord with the above assumption. For
i = 1, Eq. (S39) with initial conditions m1(0) = 1 is solved by 〈m1〉 ' 1 + t ' t, i.e. we predict a linear scaling with

time. For all other sites we assume that
∑〈n〉
j=1 〈mj〉α ' 〈m1〉α ∼ tα. Plugging this into Eq. (S39) yields

〈mi〉 '

{
t i = 1

const[1 +O(t1−α)] i > 1,
(S40)

where const ∼ (1 − t1−αi )1/(1−α). Importantly, for α > 1 and β > 0 it follows that α > 1/(1 + β), such that

〈m1〉α ∼ tα � t1/(1+β) ∼
∑〈n〉
j=2 〈mj〉α, thus verifying our initial assumption. As discussed in the main text, these

results suggest a phase transition at α = 1, see Sec. S2 F.

D. Statistics of the variance of the number of visits to a site

In the main text we focus on the average number of visits to site i, 〈mi〉 (see Figs. 2, S5 and S8), and based on
the analysis shown in the main text, we compare between the results for the fruit bats and theory. In Fig. 3(c-f) we
find that during summer 〈m1〉 ∼ t0.97 and 〈m2〉 ∼ t0.99, as well as σ2

m1
∼ t1.94 and σ2

m2
∼ t2.16. In contrast, during

winter 〈m1〉 ∼ t0.89 and 〈m2〉 ∼ t0.87, as well as σ2
m1
∼ t1.96, σ2

m2
∼ t1.80. To further compare these scalings to theory

we measured the scalings numerically from simulations. These are summarized, for a specific example (β = 1), in
Fig. S6, while very similar results are obtained for other β values.
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FIG. S6. (a) The value of the exponent ζ in the scaling of the mean number of visits to site i, given by 〈mi〉 ∼ tζ . (b) The
value of the exponent γ in the scaling of the variance of the number of visits to site i, given by σ2

mi ∼ tγ . In both panels we

performed 100 simulations with t = 104, β = 1 and p = 1, and the scaling exponents are plotted for sites with different ranks
(see legends).

E. Statistics of initial site

Here we numerically study the statistics of the visits to the first visited site (that is, the one visited at t = 0), and
its correlation to the most visited site in the asymptotic limit t→∞. Due to preferential returns, the first visited site
has a significant probability to become eventually the most visited site; we will denote that probability as PF . This
probability will be largely influenced by the dynamics at the initial stage of the process; so, higher values of Pnew will
promote the exploration of new sites, reducing PF . Likewise, larger values of α strongly reinforce revisits to known
sites and will then increase PF .

While the explicit dependence of PF on Pnew and α cannot be analytically determined, it is possible to compute its
behavior in some limiting cases. For instance, for α → ∞ and finite Pnew one can assume that the most visited site
will be that one which is visited first twice (then the return probability to that site will be always arbitrarily large
compared to the other). Using again Pnew = qn−β one finds

lim
α→∞

PF = (1− q) +
1

2
q
(

1− q

2β

)
+

1

3
q
q

2β

(
1− q

3β

)
+ . . . =

∞∑
i=1

i− q
i1+β

qi−1

[Γ(i)]
β
, (S41)

where Γ(x) denotes the Gamma function. In Fig. S7 (left) we show the explicit behavior of PF as a function of α,
checking that the value predicted by (S41) (dotted line) is asymptotically approached as α increases.

The phase transition reported in the main text has also a clear counterpart in the dynamics of the first visited site.
Fig. S7 (right) shows the probability density of the random variable mF , defined as the number of visits to the first
visited site, after normalization with respect to time t (such that 0 ≤ mF /t ≤ 1). As observed, the regime α < 1 will
lead to a distribution peaked at an intermediate value of mF /t, meaning that the first visited sites will be progressively
revisited together with many other sites available. For α > 1, instead, the distribution becomes suddenly peaked at
mF /t = 0, such that in many realizations of the process there is another site which becomes the most visited at large
times. However, as α increases, PF increases as well, and eventually the distribution will exhibit a second peak at
mF /t = 1, representing the case where the first visited site receives all revisits.

F. Evidence of a phase transition

Here we prove that there is a phase transition at α = 1, with no a priori assumptions on the solution (see previous

sections and Figs. 2 and S8). To this end, we define Q ≡
∑〈n〉
i=1m

α
i , so the probability that the most visited site will

be visited again in the next time step t will be p1(t) = mα
1 /Q, and for any site in general we have pi(t) = mα

i /Q.
Next, we write an expression for the expected value of p1(t) in the next time step:

〈p1(t+ 1)〉 =
mα

1 + fα(m1)

Q+ fα(m1)
p1(t) +

〈n〉∑
i=2

mα
1

Q+ fα(mi)
pi(t), (S42)
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FIG. S7. Left: Probability PF that the first visited and the most visited site coincide asymptotically, as a function of α.
The dotted line shows the value predicted from Eq. (S41). The rest of the parameter values are β = 1 and q = 0.9. Right:
Probability distribution function of mF /t, the number of visits to the first visited site normalized with respect to the total
time. The legend shows the different values of α considered, with a transition observed between the behavior for α < 1 and
α > 1. The number of simulations is 5× 104.

where we have defined fα(mi) ≡ (mi + 1)α −mα
i . The first term on the right hand side represents the case for which

the most visited site is visited in the next time step t + 1, and the second term corresponds to the case where any
other site is chosen instead.

In the case α = 1 we have f1(mi) = 1 for any mi. Taking into account that p1(t) = mα
1 /Q, Eq. (S42) leads after

some algebra to 〈p1(t+ 1)〉 = p1(t) independently of the specific set of values {mi} we have. Thus, the probability of
revisiting the most visited site will be kept constant through time (and the same can be proved for any other site).

For α > 1 we note that fα(mi) increases monotonically with mi. This, together with the fact that p1(t) =

1−
∑〈n〉
i=2 pi(t) allow us to write the inequality

〈p1(t+ 1)〉 > mα
1 + fα(m1)

Q+ fα(m1)
p1(t) +

mα
1

Q+ fα(m2)
(1− p1(t)). (S43)

Finally, introducing p1(t) = mα
1 /Q into the previous inequality, after some algebra we obtain

〈p1(t+ 1)〉 >
[
1 +

(fα(m1)− fα(m2)(Q−mα
1 )

(Q+ fα(m1))(Q+ fα(m2))

]
p1(t). (S44)

We thus conclude that 〈p1(t+ 1)〉 > p1(t) regardless of the specific set {mi} we have. The probability of revisiting
the most visited site thus always increases with time on average, leading eventually to its dominance over the others.

For α < 1 we proceed in a similar manner. Here, fα(mi) will decrease monotonically with mi, so we can write

〈p1(t+ 1)〉 <
[
1− (fα(m2)− fα(m1)(Q−mα

1 )

(Q+ fα(m1))(Q+ fα(m2))

]
p1(t). (S45)

This leads to 〈p1(t+ 1)〉 < p1(t), such that for α < 1, on average the probability of revisiting the most visited site
will decrease with time, thus leading to a much more homogeneous distribution of revisits among all sites available.

S3. DATA COLLECTION AND ANALYSIS

The Egyptian fruit bat (Rousettus aegyptiacus, EFB) is a long-lived, widely distributed Old World fruit bat [61].
Like other fruit bats, individual EFBs tend to feed on a small subset of available trees and repeatedly revisit them for
weeks and even months [13] affirms that EFBs rely heavily on individual memory. Additionally, it has recently been
shown that EFBs obtain a ”cognitive map,” which encompasses information about a large number of tree locations,
suggesting that memory expands beyond the trees used at a given time [13]. Moreover, in order to justify the use
of a non-spatial model to adequately describe movement patterns of fruit bats, we have checked (unpublished) that
spatial distance between trees does not explain transition rates between trees. That is, bats can perform a transition
with equal probability to close or distant trees. Bats were tracked at a 0.125Hz sampling rate for an average tracking
period of 23.7 nights and up to 131 nights. The data also includes nearly all fruit trees in the study area (14,314 trees
and 18,111 orchard trees), which enabled us to identify specific tree visits.
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FIG. S8. (a) The average frequency of visits to the most visited site f1 versus α, for β = 0.5 (simulations). Each curve
corresponds to a given number of visits t (see legend). (b) fk for different sites (see legend) for β = 0.5 and t = 105.

FIG. S9. (a-b): the mean number of visits over time 〈mi〉 /t as a function of the average ti (averaged over different individual
bats), at different times t (see legend in top left panel) for summer and winter. Black dashed lines 〈mi〉 /t ∼ t−1

i correspond to
the theoretical prediction for α = 1. (c-d): variance of number of visits over time squared σ2

mi/t
2 at different times (see legend

above) for summer and winter. Black dashed lines σ2
mi/t

2 ∼ t−2
i correspond to the theoretical prediction for α = 1.

To segment the data into movements and tree visits, we first filtered raw EFB tracks for localization errors based
on the covariance matrices attributed to each ATLAS fix [62]. Localization that exceeded the highest realistic
speed threshold for this species (20 m/s) were removed. Visits to trees were defined based on track segmenta-
tion using the first-passage algorithm to determine the center of a ”cloud of fixes” where the animal has spent a
specified number of observations within a certain radius (for source code and details see https://github.com/ATLAS-
HUJI/R/tree/master/ AdpFixedPoint). Finally, the median coordinates of each cloud were related to the closest tree
in the dataset.

To make the seasonal classification most relevant for bats’ foraging, we defined winter and summer based on the
known peak of fruiting periods of the main seasonal tree species the bats frequently visit in the study area. These are
the mulberry (Morus negra) and common fig (Ficus carica) species during May-September (summer) and Chinaberry
(Melia azedarach) during November-February (winter). During each fruiting period we used 10 day periods for each
bat to ensure sufficient statistics (many of the bats did not have longer tracks during a single season). Based on the
field work it is reasonable to assume that during such 10 day periods no significant resource depletion occurs. To fit
between the data and the theory we used a standard least square fit procedure from python scipy package.

In addition to the dependence of 〈mi〉 and σ2
mi on t for the fruit bats (Fig. 3), we also checked the dependence

of these quantities on the the average ti for any site i, see Fig. S9. Notably the results in the summer are in good
agreement with the theory presented in the main text for α = 1, whereas for the winter the agreement is not as good.
This could be explained by our assessment presented in the main text that during winter α is slightly lower than 1.


