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Abstract: While approaches based on physical grounds (such as the drift-diffusion model—DDM)
have been exhaustively used in psychology and neuroscience to describe perceptual decision making
in humans, similar approaches to complex situations, such as sequential (tree-like) decisions, are still
scarce. For such scenarios that involve a reflective prospection of future options, we offer a plausible
mechanism based on the idea that subjects can carry out an internal computation of the uncertainty
about the different options available, which is computed through the corresponding Shannon entropy.
When the amount of information gathered through sensory evidence is enough to reach a given
threshold in the entropy, this will trigger the decision. Experimental evidence in favor of this entropy-
based mechanism was provided by exploring human performance during navigation through a maze
on a computer screen monitored with the help of eye trackers. In particular, our analysis allows us
to prove that (i) prospection is effectively used by humans during such navigation tasks, and an
indirect quantification of the level of prospection used is attainable; in addition, (ii) the distribution of
decision times during the task exhibits power-law tails, a feature that our entropy-based mechanism
is able to explain, unlike traditional (DDM-like) frameworks.

Keywords: decision making; entropy; eye-tracking

1. Introduction

In our daily life, we constantly find ourselves in situations that imply making decisions:
“What I am going to eat, which film will I see, or will I be on time for the next bus?”. In
all of these situations, we need to evaluate the different options available as a way to
elucidate the best one. While exploring such situations would lie within the field of
psychology, in recent years, there has been a growing interdisciplinary interest in decision
making. Determining the neural correlates of decision mechanisms constitutes an important
subject in cognitive and behavioral neuroscience [1–4]. In addition, the mathematical study
of decision strategies and their comparison with subjects’ performance represents an
important subject in game theory and econophysics [5,6]. Last but not least, ideas from
statistical physics and complex systems have also made their way into the field. While
most contributions to date focus on decision making at the level of groups or collectives
(see [7–11] for some reviews), tentative works suggesting physical principles that could be
involved in individual decisions also exist [12–16].

Up until now, large efforts have been made to understand the dynamics and char-
acteristics of perceptual decisions, that is, those in which sensory information provides
direct evidence about what the correct option is, such as in the famous random dot motion
task [17,18]. So, a correspondence between such sensory information and the neuronal
responses responsible for the accumulation of evidence in the brain is assumed to be iden-
tifiable in some way. Alternatively, value-based or preferential decision making involves
situations in which a deliberative and subjective (up to a certain level) process is necessary
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to reach a decision, such as when a subject is asked to choose between two food items. In
such cases, neural correlates obviously become more difficult to identify.

A different class of decision making corresponds to the case in which an objectively
correct option does exist, but this option cannot be trivially identified from sensory infor-
mation alone because successively coupled decisions arranged in a tree-like fashion are
involved. Following some of the existing literature (see [19,20]), we will denote this as
sequential decision making. This requires a higher cognitive capacity and a slower and
more reflective response by the subject in order to process the information. Hence, these
situations are essentially restricted to humans (and maybe some other higher organisms).
They include tasks such as playing board games, such as chess, or solving mazes or tasks
presented in some intelligence tests. All of these examples involve decisions in which a
tree-like structure of future possibilities must ideally be built by the subject. In the present
work, we will use the term prospection to denote such hypothetical, or mental, simulations
of future events [21–23].

For the case of perceptual decision making, most theoretical frameworks that aim to
explain the underlying dynamics lie within the accumulator framework. According to this,
cognitive evidence (described through some effective stochastic variable) is gained over
time until it reaches a given threshold, which then triggers a decision. The paradigmatic
example is the drift-diffusion model (DDM) [24], where the relative evidence in favor
of the different options is assumed to follow a Brownian diffusion process, with a drift
that accounts for the trend towards the correct option. Nowadays, it is widely accepted
among psychologists that the success of the DDM is overwhelming [25,26], though in
many cases, this requires non-trivial modifications or extensions, such as time-dependent
thresholds [27] or dynamic changes in the drift [28]. Furthermore, recent works have shown
that value-based decisions can also be accommodated within this framework provided that
the thresholds are assumed to progressively collapse over time [29,30].

On the contrary, stochastic mechanisms that are able to capture the dynamics for
sequential decision making are much less frequent due to their complexity (see [31–33]
for some significant exceptions). Here, we will provide experimental evidence that these
processes in humans are compatible with a stochastic framework in which computational
information (computed through Shannon’s entropy) may be implicitly computed by the
individual as a mechanism for assessing the uncertainty about options before making a
decision. To illustrate this, we studied the performance of subjects during a particular task
of navigation through a maze on a computer screen in combination with eye-tracking data
to assess the corresponding behavioral dynamics. We did not introduce any explicit costs
for prospecting or analyzing information, as there were no time constraints present in the
task. Thus, we posed an extreme situation in which decisions were mostly driven by the
optimization of the prospection process.

In Section 2, we will present our information-based framework and discuss its main
conceptual differences from accumulator models that are used for perceptual decision
making. In Section 3, we will show our experimental results to describe the performance of
the subjects in the navigation task. A comparison of this performance with that shown by
virtual (random-walk) algorithms that are able to prospect information ideally allows us
to infer the level of information that humans really process during the task. This reveals
that human performance can only be explained if prospection is actually being used in the
task, and we can even quantify that level of prospection. Next, we explore the statistical
properties of the decision times observed during the task to provide quantitative evidence
that human performance is compatible with the entropy-based mechanism proposed here.
The conclusions from these results are then discussed in Section 4, and the experimental
and numerical methods employed for the analysis are detailed in Section 5.

2. Theoretical Framework

A relevant problem in decision making is the establishment of a criterion for identify-
ing when we have enough information to discriminate between alternative options, e.g.,
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options A and B for a binary decision. This can be accounted for by sequential analysis.
Let xn = {x1, x2, . . . , xn} be a set of independent samples or observations that provide
some information about the options. Then, we want a termination or stopping criterion to
determine when xn provides a sufficient level of evidence in favor of (or against) one of
the options.

A famous solution to this problem is the Sequential Probability Ratio Test (SPRT)—
originally developed by Abraham Wald [34]—which minimizes the size n of the set required
to accept or reject one of the options with a fixed level of reliability. Given xn, we can map
all of its information into the cumulative probabilities pA,n and pB,n, which we assign
to options A and B, respectively (with pA,n = 1− pB,n if the two options are mutually
exclusive). The SPRT criterion establishes that a decision can be reliably made as soon as
the cumulative log-likelihood function

Wn = ln
(

pA,n

pB,n

)
(1)

exceeds (or falls below) a given threshold Wth. Consequently, the SPRT criterion establishes
that there is a minimum amount of evidence required to decide. The DDM can be seen as
a particular continuum implementation of the SPRT [34,35]. In controlled experiments of
perceptual decision making, the sample set xn corresponds to direct sensory evidence that
is mapped into the probabilities pA,n, pB,n in a relatively easy manner. For example, xn can
typically account for visual evidence in favor of one of the options.

2.1. Entropy Refinement

In a sequential decision-making context, the existence of a mapping between the
sensory evidence and the probabilities pA,n, pB,n is far less obvious. Gazing at one of the
options, for example, does not necessarily translate into an increase in its probability.

To overcome this difficulty, here, we hypothesize that the option that is being observed
by the subject is being used to assess the decision tree that would result from choosing
that option. That is, we assume that sensory evidence provides information about the
prospection process that the subject is performing. The mechanism that we propose for this
works as follows. Using, as above, the binary example for illustration, we define EA,n and
EB,n as the payoffs estimated from that prospection process after the sensory information xn
has been gathered. We initialize the system by setting EA,0 = EB,0 = 0 (no a priori payoffs
are assigned to any option). Then, sensory-evidence accumulation begins through a first
sample x1 (e.g., the individual starts by prospecting option A, and so a set of the possible
future paths starting from option A are analyzed). The corresponding EA,1 is updated as
the average payoff that would result from following the paths prospected (see Figure 1).

As a second assumption, we will consider that the updated payoffs EA,n and EB,n are
interpreted by the subject as an estimation of their actual average values (so correlations
or higher-order statistics in the payoffs are internally neglected by the subject). Following
the prescriptions from the maximum entropy principle (MEP) [36], if the only information
available from a set of stochastic variables (the payoffs EA,n and EB,n, in this case) is
their average values, then the most neutral, or unbiased, choice of a probability map
pi,n = pi,n(Ei,n) that one can build is

pi,n =
eβEi,n

Zn
, (2)

where β is a positive constant (which appears as a Lagrange multiplier when applying the
formalism of the MEP) and Zn, a normalization factor for guaranteeing that ∑i pi,n = 1.

According to all of this, we will consider that the Boltzmann-like distribution (2)
is used by subjects to map payoffs into the probabilities pA,n or pB,n as a result of the
prospection process (see Figure 1). Within this hypothesis, β−1 represents a characteristic
measure of how different the payoffs for option A or B should be to yield significantly
different probabilities for the two options.
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Figure 1. Scheme of the mechanism proposed for prospection and evaluation of updates during
sequential decision making. Starting from no a priori payoffs for any option, the sensory information
determines the region of the decision tree that is being prospected by the individual (option A
in the example shown). Prospected paths (path deriving from option A that is emphasized) lead
to a first update of the payoff EA,1 given by the average payoff that would result from the paths
prospected. These payoffs are then used to evaluate the cumulative Shannon entropy by using
canonical probabilities (see the text for details).

Finally, we need to introduce a termination or stopping criterion by which the decision
will be triggered. We argue that a plausible mechanism for sequential decisions must
be based on assessing the amount of information that the probability distribution (2)
contains. The most direct way to compute such information is, obviously, Shannon’s
entropy Sn = −∑i pi,n log (pi,n) (with i = A, B for binary decisions). As a result, we
propose the following termination rule:

• If Sn > Sth: continue prospecting;
• Else: accept the option i satisfying max

i
[pi,n].

That is, a threshold Sth in the Shannon entropy is introduced to trigger the decision in
favor of the most likely option at that moment. At this point, we remember that Shannon’s
entropy reaches its maximum value when no information is still available (so pA,0 = pB,0),
and its value decreases as long as greater evidence in favor of one particular option is
gained according to the mechanism specified in Figure 1.

So, the evidence accumulation mechanism typically associated with the DDM is here
replaced with an entropy refinement mechanism (see Figure 2). Actually, we note that this
idea is not completely novel, but other authors in the literature have previously discussed
similar mechanisms [37–39]. Interestingly, we note that combining (1) and (2) leads to
Wn = β(EA,n − EB,n), so the SPRT can be interpreted, under the mapping (2), as a termina-
tion criterion based on a threshold in the difference between the estimated payoffs.

Figure 2. Scheme for the accumulator and reliability mechanisms. (a) Payoff estimation during
successive prospected samples n. (b) Evolution of Wald’s ratio Wn according to the payoff estimators
(the decision is made at nd when Wn reaches the threshold Wth). (c) Evolution of Shannon’s entropy
Sn according to the payoff estimators (the decision is made at nd when Sn reaches the threshold Sth).
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2.2. Working Example

Before testing our ideas against experimental data, though, we will illustrate some
properties of the entropy refinement mechanism (ERM) through an idealized working ex-
ample. Our intention is to identify some relevant and measurable differences in the
decision-making process that allow us to discriminate between the ERM and the traditional
approaches based on the DDM or the SPRT.

If a subject has to choose between options A and B (whose actual payoffs read µA
and µB, respectively), this will be done by successively sampling/prospecting information
from the two options to obtain the estimates EA,n and EB,n (with n again representing the
number of samples). For simplicity, we assume that every sample i provides a new piece
of information εA,i and εB,i about options A and B, respectively, which can be represented
as stochastic Gaussian variables with means µA and µB, as well as the unit variance. So,
the information obtained provides an approximation of the actual values µA and µB, and
the estimated payoffs can be computed through the averages EA,n = 1

n ∑n
i=1 εA,i and

EB,n = 1
n ∑n

i=1 εB,i. This is in agreement with our assumption above that an individual
essentially uses prospection to obtain an averaged estimation of the actual payoffs.

Once we have EA,n and EB,n, we can compute (using (2)) the corresponding Shannon
entropy and determine whether a particular threshold Sth is reached to trigger the decision
or go on with the information sampling instead.

The main magnitude that we will explore is, as usual, the statistics of the decision
times, that is, the number of samples n required to trigger the decision. Note that many
works on decision making focus on the average values of the decision time, or, alternatively,
histograms of the decision time are fitted to gamma distributions [40,41]. However, to
discriminate between the ERM and an accumulator (DDM-like) mechanism, here, we will
rather focus on exploring the behavior at the tail of the probability distribution of decision
times. Previous works based on ideas similar to that of the ERM have suggested that this
mechanism can account for power-law distributions of decision times [42,43], so this can
represent a significant difference from other mechanisms in which such distributions often
decay exponentially.

Accordingly, we carry out numerical experiments by using the rules above and com-
pare the distributions of decision times for the ERM and for an accumulator scheme that,
as in the SPRT, uses the fact that the difference between the payoffs |EA,n − EB,n| reaches a
threshold Wth as a termination criterion instead.

The results obtained are illustrated in Figure 3 as a function of the values of µA and
µB and of the thresholds Wth and Sth. In summary, we find that the SPRT exhibits a
decision time distribution that depends strongly on the distance between the means of the
payoffs d ≡ µA − µB (Figure 3e), and for most situations, it eventually decays exponentially
(though transient power-law behaviors with exponents of −1.5 are also found). Instead,
for the ERM, the distribution exhibits a power-law behavior P(n) ∝ n−3 for a wide range
of situations. Remarkably, the power-law behavior with the −3 exponent persists when
considering decisions between more than two options; in the Supplementary Material, we
show equivalent results for decisions between four possible options.

So, at this point, we have at least one qualitative difference that we can use to discrimi-
nate between the SPRT and the ERM.



Entropy 2022, 24, 1819 6 of 16

Figure 3. (a) Probability distributions for the stochastic variables εi,n (with n being the number of
samples and where i labels the options A and B). The means µA, µB represent the actual payoffs
for each option. (b) Evolution of the estimator Ei,n as a function of the number of samples n. (c)
Evolution of the cumulative Wn with the number of samples n and with β = 1. (d) Evolution of the
Shannon entropy Sn with the number of samples n and with β = 1. (e) Probability distribution for
the number of samples to reach Sth or Wth for the ERM and the SPRT, respectively, and for different
distances d ≡ µA − µA. We simulated 107 decisions to obtain these distributions. The thresholds
were set to Sth = 0.5 and Wth = 0.25n.

3. Experimental Results

We designed a particular task of navigation through a maze on a computer screen,
where a correspondence between sensory (visual) information and prospection could be
reasonably expected. Subjects were asked to visit the maximum possible number of nodes of
a discrete lattice containing 49 nodes in 49 moves while taking into account that moves were
only possible between nodes connected through bonds (marked as lines; see the left column
in Figure 4). So, they had to progressively develop a strategy to reach regions/nodes of
the lattice that remained unexplored. Moves were carried out by clicking with the mouse
on the node to which one wanted to move next. To explore the subjects’ performance in
the task under different levels of difficulty, three different visual representations were used
(rectangular, circular ordered, and circular disordered; see the left column in Figure 4).
However, all of the structures presented to the subjects were topologically identical in order
to facilitate the comparison of the results; only the visual representation changed from one
to another. Further details about the experimental design and protocol are provided in
Section 5.

Connecting the experiment with our theoretical framework, every move from one
node to another was considered as a single decision, and the nodes observed before a
decision were considered as the successive information samples {x1, x2, . . . , xn} that the
subject was gathering. Finally, the estimated payoffs Ei,n (with i representing the specific
options available) would be taken as the average number of newly visited sites that would
result from following the paths prospected.

Commercial eye trackers were used during the task to determine where the subjects
were gazing. From that information, we inferred the possible future paths and decision
trees that the subjects were mentally exploring. While we could not know the specific paths
that the human subjects were prospecting (or whether they were really prospecting) directly
from the eye-tracking data, we used the fraction of time for which the participants gazed at
regions of the lattice as a proxy for this. So, we assumed that the number of prospected
paths related to choosing one specific option was proportional to the time for which the
subject gazed at that particular option (see Section 5.2 for details).
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Figure 4. Scheme of the experimental setup. First column: Visualization of the 49-node lattice used
for the navigation task. The solid lines indicate the bonds allowed between neighbor nodes. Second
column: A realization of an individual trajectory within the lattices (the color code denotes the
time; see the legend). Third column: Eye fixations obtained during the previous trajectory from
eye-tracking data.

3.1. Overall Performance in the Navigation Task

The overall performance of the individuals was computed as the number of nodes
that a subject was able to cover during the entire trajectory of 49 moves (Figure 5a).
For the rectangular level, the subjects visited an average of 37.1± 3.8 nodes (that is, 75.7% of
the total of 49 nodes). For the circular-ordered level, they covered 29.1± 4.8 nodes (59.4%),
and for the circular-disordered graph, they covered 26.4± 4.8 nodes (53.9%). These results
confirm that the navigation task (and, thus, the sequential decisions involved) largely
depended on the visual representation of the nodes in the lattice, with more complex
representations preventing the subjects from planning their trajectories ahead of time (thus
suppressing or reducing prospection). Furthermore, analyzing the performance as a func-
tion of the averaged decision time showed us that a higher performance was not a result of
spending more time before deciding (Figure 5b), but the difficulty of the task seemed to be
the main reason for this (note that the decision time is here defined as the time between
consecutive moves).

3.2. Eye-Tracking Data Captured Prospection Dynamics

We next analyzed the information gathering during the task with the help of the
eye-tracking data. We define the distance db as the minimum number of moves required
to go from the current node of the lattice to the one at which an individual is gazing. The
probability distributions of this variable were again found to be completely different for the
three levels of visual organization (Figure 5c). Then, it was clear that the individuals could
not prospect equally in the three cases. While for the rectangular level, a large amount
of time was invested in gazing at nearby nodes, for the two circular levels (especially
for the disordered one), frequent gazes at distant nodes were observed. These must be
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attributed either to (i) distractions caused by the presence of nodes that were close on the
screen configuration, though they were not easily accessible from the current one, or (ii) the
difficulty in easily identifying the nodes that would be available in the next few steps.
Ideally, an efficient prospection of the future paths should combine an intensive exploration
of closer nodes and a smaller (but non-negligible) exploration of further ones. We illustrate
this in the inset of Figure 5c, where the cumulative probability of gazing at nearby nodes
(defined as those with db ≤ 4) is shown to drastically decrease as a function of the visual
difficulty of the task.

Figure 5. (a) Performance of human subjects in the task for the three levels of visual organization
presented in Figure 4. (b) Averaged decision times for the three levels. (c) Distribution of the distance
db between the current node and nodes gazed at between moves (inset: cumulative probability
that the nodes gazed at satisfy db ≤ 4). (d) Performance of a virtual walker in comparison with
the experimental ones, with regions II, III, and IV accounting for virtual walker performances that
were better than those of humans in the R, CO, and CD cases, respectively. (e) Best fit (lines) for the
experimental distribution of performances (symbols) obtained from the virtual walker algorithm (see
the text for details of the fit). (f) Evolution of the performance during the 49-move trajectories obtained
from the experimental trajectories (symbols) and the virtual walkers with the best-fit parameters
(lines). The virtual walker trajectories corresponded to the average behavior after performing 103

simulations. The colored region corresponds to the standard error of those simulations.

3.3. Quantifying Prospection during Navigation

As a way to quantify and refine the ideas above, we compared the subjects’ perfor-
mance in our task to that of virtual subjects that followed an algorithm that was able to
automatically prospect all of the information of the paths available within a certain number
of moves dp (called the prospection length). So, the extreme case dp = 0 would correspond to
a subject that was not able to prospect any information and, thus, carried out a blind random
walk through the lattice; a virtual subject with dp = 1 would only be able to discriminate
whether first-neighbor nodes had been visited in the past or not, and so on. As dp increased,
these virtual subjects (walkers) then had the ability to avoid their own previous paths in
order to avoid revisits to those nodes. Using the number of unvisited sites available to com-
pute the payoffs Ej,n and computing the move probabilities through (2), we then used rules
that were equivalent to standard models of self-avoidance in statistical physics, such as in
the true self-avoiding random walk [44–46] and the self-attracting random walk [47–49].
The implementation details for these rules are provided in Section 5.
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To increase the level of realism of these virtual walkers and facilitate the comparison
with the experimental data, we additionally considered that they were only able to keep
in memory whether a particular node had been visited or not for a characteristic time
τm. For large values of τm, the memory remained unaltered, and so all visited sites were
remembered, while for small values of τm, nodes that had been visited in the distant past
were forgotten.

We compared the performance of the virtual and human subjects to infer the prospec-
tion abilities that were presumably being used by the human subjects in the experiment as
a function of the level of the visual organization/representation. In particular, by exploring
a reasonable range of dp and τm values in the algorithm, we observed that the parameter
phase space could be divided into four regions (see Figure 5d). For region I, the algorithm
produced an average number of visited nodes that was lower than that of the individuals
in any of the experiments. Region II produced a performance that lay between the results
obtained for circular ordered and circular disordered. Region III overcame the results for
the circular-ordered performance, but not for the rectangular performance. Region IV,
finally, outperformed all of the experimental results.

Hence, we concluded that relatively large values of both τm and dp were necessary
for the virtual walkers to equal or improve the performance of the human subjects in the
rectangular level. This confirmed that the subjects in this case remembered the previously
visited nodes during the task and efficiently predicted future paths. The prospection
ability, in particular, is indispensable for justifying the performance seen in the experiments.
Instead, for the circular structures, the individuals were probably not able to prospect
the paths to distant nodes (information gathering was less efficient, as suggested before
in Figure 5c); in consequence, the value of dp necessary to reproduce their performance
was not necessarily high (though some level of memory τm was still necessary). In the
Supplementary Material, we explore the case in which dp was not a fixed value, but followed
a certain probability distribution, and for that case, our conclusions remain unaltered.

Next, we determined the values of dp and τm that provided the best fit to the dis-
tribution of performances obtained from the experiments (see Figure 5e). These were
(i) τR

m = 70, dR
p = 5, (ii) τCo

m = 7, dCo
p = 3, and (iii) τCd

m = 5, dCd
p = 2, for the rectangular (R),

circular-ordered (Co), and circular disordered (Cd) levels, respectively.
From this, we analyzed the evolution of the performance throughout the task between

humans and the virtual walkers with the fitted parameters (Figure 5f). The performance
increased almost linearly in the beginning (where avoiding visited nodes was relatively
easy), but the growth slowed down as time advanced and trajectory overlaps appeared.
The experimental curves (symbols) and those obtained from the virtual walkers (lines)
with the fitted parameters agreed almost perfectly. This is an indirect confirmation that the
behavior of virtual walkers with prospection was able to accurately reproduce the dynamic
performance of human subjects throughout the experiment.

3.4. Human Decisions during Maze Navigation Are Compatible with the ERM

The working example explored in Section 2 yielded a power-law scaling (with expo-
nent −3) for the tail of the decision time distributions within the ERM framework. Actually,
this result is not specific to that particular example (based on Gaussian estimations of the
actual payoffs). Using the virtual random walks with prospection described in the previous
section, we obtained exactly the same behavior (Figure 6d) with a wide range of parameter
values for dp, τm, and Sth, so we can infer that this represents a rather general property of
the proposed ERM mechanism (in the Supplementary Material, a study of robustness is
carried out to check that this result does not critically depend on the parameter choices in
the model).

To check if the performance of the human subjects in the navigation task also showed
the same scaling, we used the eye-tracking data from the experiments to analyze the
distributions of (i) the time between consecutive moves in the experiment, tm, (ii) the time
during which the subjects gazed at the same patch, tg, and (iii) the number of different
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nodes gazed at before making the next move, ng. The first value would represent our best
estimation of the decision times in the experiment, while the other two were also provided
as alternative measures for the sake of completeness.

The results found showed consistent evidence in favor of a power-law scaling with
an exponent close to −3 for the three cases of tm, tg, and ng (Figure 6a–c). It is especially
remarkable that the results obtained for the three levels of visual organization (rectangular,
circular ordered, and circular disordered) were the same, despite the human performance in
these three cases being clearly different (Figure 5). This suggests that a common underlying
mechanism for decision making was used by the subjects in the experiments, though their
different levels of difficulty led to differences in the performance. While the time range over
which the power-law scaling extended was not very wide (since the decision times in the
experiment only spanned two orders of magnitude), the fits were quite robust; only longer
decision times (for which statistics were not very significant, since very few decisions
extended over so much time) showed significant departures from it. Furthermore, we
remark again that SPRT frameworks often predict gamma distributions of decision times
with exponential decays, so they would be unable to explain these results.

Figure 6. Distributions of time between consecutive moves tm (a), the time spent gazing at a given
node tg (b), and the number of patches gathered between consecutive movements ng (c) obtained
from the experimental data. (d) Distribution of the number of prospections n performed by a virtual
random walker with Sth = 0.5. In all cases, the exponent obtained from a power-law fit to the
distributions is highlighted, with the different colors representing the difficulty levels of R, CO,
and CD.

3.5. Information Statistics at the Moment of the Decision

As mentioned above, the SPRT criterion with canonical probabilities (2) is equivalent to
assuming that a decision is triggered once the payoff difference |EA,i − EA,i| reaches a given
threshold. Our data clearly show that this estimator, if computed from the experimental
data at the moment of making the decision/move, increases monotonically with the time
that is necessary to make the decision. So, longer decisions involve longer evidence
accumulation (Figure 7a), which is in clear contradiction with the criteria of the SPRT.

Instead, when plotting the Shannon entropy (computed from the procedure above)
at the moment of the decision, for long decision times, it tended to a value that was
approximately constant. The statistical significance of this result was verified by testing the
null hypothesis that the entropy was non-constant (see the figure’s caption for details). In
addition, we have checked that the statistics of decisions did not vary significantly between
the first moves and last moves of the trajectory, so the idea that our results were due to
non-stationary effects in the task can be discarded (see the Supplementary Material).
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Hence, S could be reasonably considered as a trigger of the decision, at least for
longer decisions (Figure 7b). Shorter decisions (<2 s), instead, were probably induced
by an automatic response by the subjects, who sometimes planned their decisions ahead
for multiple steps and, thus, moved to the next node according to prior information that
was already gathered during the previous move. We stress that the −3 power-law scaling
discussed above was essentially obtained for longer decision times in the same range, too.
So, it seems reasonable that our model essentially captured the moves made at the instants
in which information acquisition was carried out, but not subsequent moves that were
made automatically by the subjects.

Figure 7. (a) Maximum relative evidence between the options at the moment of the decision. Linear
fits (for times larger than 3 s) are given by f (x) = 0.26x + 1.14 (R), g(x) = 0.26x + 1.69 (CO), and
z(x) = 0.16x + 2.21 (CD). (b) Shannon’s entropy Sn at the moment of the decision. The horizontal
lines correspond to the averaged entropy for times > 3 s (0.168 (R),0.131 (CO), and 0.130 (CD). A
statistical test is given for the null hypothesis that the entropy was non-constant for times > 3 s. The
corresponding p-values are p = 0.82 (R), p = 0.69 (CO), and p = 0.92 (CD).

4. Conclusions

Navigation efficiency in higher organisms (humans, in particular) must take into
account the fact that they are able to prospect the future outcomes of their available
options and process the corresponding information in order to reach a decision. Here,
we explored this idea within the context of human navigation through mazes in which
non-local information was available through visual inspection (and, thus, information was
processed in a tree-like fashion prior to the decision).

Our analysis (based on comparing the performance of human subjects with that of
virtual walkers with the ability to prospect future paths) provided evidence that prospection
was necessarily being used by humans, at least in the levels of visual organization that
enabled it (especially in the rectangular one). In addition, an approximate quantitative
characterization of that prospection capacity (dp) and the associated memory skills (τm)
was obtained, thus reaching an estimation of the quantity of information that the humans
were really managing during the task.

Furthermore, the distribution of time between moves—or gazing time—together with
the study of the values for the entropy at the moment of the decisions allowed us to think
that the ERM can account for how information is being processed by the subjects during
the task to a significant extent, especially for (longer) decisions that are made after a subject
decides to stop and gather new information. In this respect, we stress that, traditionally,
the mean time taken to make a decision, as well as the ratio of the time corresponding to
choosing option A or B (for binary decisions), has been studied in detail by psychologists.
On the contrary, the tails and the details of the decision time distributions are rarely explored
in decision-making experiments. Here, we have shown that such statistical details can
provide very significant information about the dynamics of decisions that are being used.

Regarding the −3 value of the power-law exponent found for the ERM formalism
and from the experiments, a formal justification of its origin remains to be found. For the
specific navigation task studied here, decision times must be understood as the sum of
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the time that an individual had gazed at each node before making a new move. Then, to
explain the power-law scaling, one should argue that either (i) the distribution of time for
which the subject kept looking at a given patch or (ii) the number of patches that were
gazed at between decisions must have power-law tails. It is, however, the case that both
distributions present that scaling (see Figure 6a,b). So, the underlying mechanism yielding
the power-law distribution for decision times is apparently a non-trivial combination of
both. It is still not clear how general these results may be, or if they appear as a consequence
of the specific conditions in our experiment. However, we stress that similar results have
also been found in other experiments of human navigation through mazes [50], so, all
together, this raises the need for a deeper and more systematic exploration of these ideas in
the future.

Finally, it is remarkable that all of this information about sequential decision making
in humans was obtained simply with the help of eye-tracking data and the monitoring of
the decision time exhibited by subjects on a computer screen, which required only easily
available technologies. It is likely that the combination of such methods and data with
EEG or other advanced physiological sensors could be used to refine our ideas and provide
more reliable estimates of the dynamics during sequential tasks. We hope that our results
can stimulate further research in this line.

5. Methods
5.1. Experimental Design

A total of 18 clinically normal adults (10 women and 8 men) aged from 18 to 45 carried
out the experiment. Informed consent was obtained from all participants. All experimental
protocols were approved by the Universitat Autònoma de Barcelona and by its ethics com-
mittee. All experiments were carried out in accordance with the guidelines and regulations
that were applied at that time by the Catalan and Spanish Governments. In the first part
of the task, the subjects were presented with a discrete 7 × 7 regular lattice on a screen
(Figure 4, upper panel on the left). The patches were linked through bonds connecting them
only to neighbor patches (4 paths per node, except for the boundaries, where paths were
only 2 or 3). However, we removed some of the bonds between nodes (20% of them, always
preventing isolated regions in the structure from being formed) in order to introduce some
level of heterogeneity in the lattice (Figure 4, left column).

The subjects were asked to visit the maximum number of patches of the resulting
lattice within 49 moves if they started from the center of the structure (one step was defined
as a transition between connected nodes in the graph). They were not required to complete
the trajectory in any given time, so time constraints were not present in the task, and
information processing could be extended as much as desired by the subject. They could
move to neighbor nodes in the lattice by clicking with the mouse on the patch to which
they wanted to move next (Figure 4, middle columns, showing some realizations of the
resulting trajectories). Heterogeneity in the lattice then made the process non-trivial (for a
homogeneous regular lattice, the optimal strategy would be simply to perform a ladder-like
trajectory until all nodes were covered).

To facilitate visualization of the options available upon each decision, the current
node of the individual was depicted in a different color (green, with the rest of the nodes
appearing in blue), and the possible moves available at each moment were emphasized
(with thicker solid lines). On the contrary, the subjects had no visual guides to distinguish
between previously visited and non-visited patches, so they could only use their memory
skills to avoid overlaps and increase their performance.

To assess the subjects’ performance under different levels of difficulty, the nodes
in the rectangular lattice were then visually reorganized in a circular way. In one case
(circular ordered), in the circle, we kept the order of the rows of the first rectangular graph
(Figure 4, middle row). For the other (circular disordered), we placed the nodes according
to a circular structure, but with random reorganization of nodes (Figure 4, lower row).
We remark that, topologically, the three structures were completely identical, but visually



Entropy 2022, 24, 1819 13 of 16

different. Additionally, we rotated the rectangular structure by 90◦, 180◦, and 270◦ (with
the corresponding circular-ordered and circular-disordered reorganizations) to randomize
the task (so, 12 cases in total, all with the same topological structure, were presented to
each subject). The final dataset then comprised 216 trajectories with a mean duration of
77.1± 2.9 s each.

As a proxy for information prospection during the task, we used eye fixations mea-
sured with a commercial eye tracker (Tobii X2-30, at 30 Hz). An eye fixation corresponded
to a visual gaze on a single location on the screen (see the right column in Figure 4 for a
visual trajectory example for each structure). We used this to analyze (i) the number of
nodes at which the subject gazed between consecutive steps and (ii) the time for which they
continued to gaze at particular patches. For this, each node was assumed to be represented
by a circle of radius 0.05 (once the screen size was normalized to 1) around the center of the
node, so all eye fixations lying within the circle were assumed to indicate that the subject
was gazing at that particular node. This circle size prevented the assignment of fixations of
the subject on different nodes at the same time.

5.2. Payoff Estimation from Experimental Trajectories

Using the square lattice as an example, at each time step, we divided the lattice into
four equivalent regions starting from the current node (see Figure 8), so that each eye
fixation that lay in a particular region would be assumed to contribute to the update of
the payoff of the corresponding option (A, B, C, or D). If the individual, for example, was
gazing for some time at the region corresponding to option A, then these samples were
used to update the payoff EA,n according to the rule depicted in Figure 1. To do so, we
generated a number of prospecting paths (of a given length dp) proportional to the gazing
time at random, and we computed the average number of newly visited sites that would
result from those prospecting paths. The average overall prospecting paths obtained from
{x1, x2, . . . , xn} for each option (e.g., option A) determined the estimated payoff (e.g., EA,n).

For the circular lattices, we used exactly the same rule of implementation. As a result,
the regions corresponding to each option (A, B, C, or D) were not regular, but could be
disjoint and/or show different shapes depending on the specific configuration of the nodes.

5.3. Virtual Walkers with Prospection

An algorithm for generating virtual random walks with prospection over the lattice
used in the experiment was proposed as a reference model against which to compare the
experimental data. Our virtual walkers were able to estimate the convenience of moving to
a neighbor node j by assigning successive values εj,1, εj,2, . . . to that node by prospecting
hypothetical paths that would use that node as a starting point. So, at each time step, the
walker prospected one particular path (chosen at random from all of the possible ones) of a
fixed length dp (prospection length) starting from each of the neighbor nodes. The specific
value εj,n assigned to the n-th prospected path for the neighbor node j corresponded to
the fraction of non-visited nodes that the path would cover, with εj,n = 1 representing a
prospected path for which all sites were still unvisited and εj,n = 0 representing a path for
which all nodes had already been visited before. So, the corresponding payoff associated
with that neighbor node j (after n paths had been prospected) reads Ej,n = 1

n ∑n
i=1 εj,i, in

analogy with the working example discussed above.
Once the payoffs were defined, the procedure described in Section 2 could then

be applied within the lattice to generate our virtual random walks. After each single
prospection of one path in each direction, the walker computed the corresponding Shannon
entropy Sn = ∑n

i −pj,i ln pj,i; if the computed value fell below a fixed threshold Sth, the
walker made the decision (that is, a move) by choosing the node with the highest probability
(we checked that choosing the node according to the probabilities pj,i instead led to very
similar results). On the contrary, if Sn > Sth, then the prospection process continued.
However, in practice, we introduced a rule such that the maximum number of prospections
was limited to 100 to avoid (extremely unusual) situations in which Sn would never decay
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below Sth because all options persistently exhibited very similar payoffs (this rule did not
significantly modify any of the results reported here).

Figure 8. Schematic representation of how to estimate evidence from experimental gazes. The
asterisks denote eye fixations, so all fixations lying in the same quadrant of one option (e.g., option A)
provide evidence in favor of that option.

Distributed prospection lengths.
Assigning a constant prospection length dp to all of the prospected paths may seem

rather unrealistic. Human subjects were expected to prospect paths with different lengths
depending on the specific situation instead (complexity, number of choices available, etc.).
The results in Figure 6b also support this, as the number of patches that were gazed at
exhibited a variation that spanned almost one order of magnitude.

We then studied our virtual random-walk algorithm for the case in which a distribution
of dp was introduced instead of a constant value. In particular, we tried a distribution
P(dp) ∝ 1

dγ
p

(for dp ≥ 1 and with γ going from 0 to ∞), with ∑∞
dp=1 P(dp) = 1 to guarantee

normalization. The results, which are summarized in the Supplementary Material, clearly
show that the conclusions obtained were, thus, qualitatively the same as those presented
for the fixed dp values in the main text.

Robustness of the distribution of decision times on the entropy threshold Sth.
We reported above that the decision time for the walker exhibited a power-law dis-

tribution with an exponent of −3. An analysis to check that this exponent remained ap-
proximately constant independently of the memory and prospection parameters dp and τm,
as well as the threshold Sth, was carried out by using our virtual random-walk algorithm.
According to the results found (see the Supplementary Material), the conclusions reached
in the article remained quite robust. Only when very large or very small values of S were
considered (which would represent the case in which decisions were either made almost
immediately with barely any information gathering or in which an extremely large amount
of information would be necessary to trigger a decision) did the ∼n−3 scaling break down.
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