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Ergodic properties of Brownian motion under stochastic resetting
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We study the ergodic properties of one-dimensional Brownian motion with resetting. Using generic classes
of statistics of times between resets, we find respectively for thin- or fat-tailed distributions the normalized or
non-normalized invariant density of this process. The former case corresponds to known results in the resetting
literature and the latter to infinite ergodic theory. Two types of ergodic transitions are found in this system. The
first is when the mean waiting time between resets diverges, when standard ergodic theory switches to infinite
ergodic theory. The second is when the mean of the square root of time between resets diverges and the properties
of the invariant density are drastically modified. We then find a fractional integral equation describing the
density of particles. This finite time tool is particularly useful close to the ergodic transition where convergence
to asymptotic limits is logarithmically slow. Our study implies rich ergodic behaviors for this nonequilibrium
process which should hold far beyond the case of Brownian motion analyzed here.
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I. INTRODUCTION

Stochastic processes under sporadic resetting gained con-
siderable attention [1,2]. Under certain conditions, a nonequi-
librium stationary state (NESS) is found while the system still
has nonzero currents [3–6]. NESS was studied extensively for
many processes with resetting [1,2], for example, for Brow-
nian motion (BM) [3,7] and run-and-tumble processes [8].
In this work, we investigate the ergodic properties of such
a process [9–11]. In the first stage of our work, we discuss
a connection between the theory of NESS and the statistics
of renewals; in particular, we study a useful relation between
the resetting problem and the so-called backward recurrence
time [12]. This not only gives a simple point of view on
the emerging NESSs but can be used to relate this timely
problem to Dynkin’s backward time limit theorem [13] and
its extension [14].

We study BM, with times between resetting being inde-
pendent identically distributed (IID) random variables (RVs)
[4,6,15,16]. When the process is thin- or fat-tailed respec-
tively, we find the normalized or non-normalized invariant
density of this system. Using Laplace transforms, Pal, Kundu,
and Evans [4] and independently Eule and Metzger [6] found
the normalized NESS of this process. Our work sheds light
on these normalized states by connecting them to mathe-
matical limit theorems from the field of renewal theory, but
our main contribution is with respect to the less understood
non-normalized phase.

Non-normalized states were previously studied in the con-
text of infinite ergodic theory, in both the math [17] and the
physics literature [18–23]. Here our goal is to show how
this tool is used in the context of the resetting paradigm.
More specifically we find alternative ergodic transitions in
this system. The first is anticipated, and it is found when the
mean time between resetting diverges. The second takes place
when the mean of the square root of time between resetting
diverges. In this case the properties of the infinite measure are

modified, as also are the relations between time and ensemble
averages. As explained below, this second transition is related
to a competition between two mechanisms of return to the
origin, namely, will the resetting control the return process,
or will it be the diffusion process itself? So our goal is to
explain the rich phase diagram of the ergodic properties in
this system. We focus on the best-studied case, the underlying
motion being BM, but while limiting ourselves to an example,
the tools presented are general.

This paper is organized as follows. In the next two sections,
we present the model and recap statistical properties of the
backward time. NESS is discussed in Sec. IV followed by
the calculation of the moments of the process in Sec. V.
Section VI contains the uniform approximation and the frac-
tional integral equation relating the density to the Green
function of BM. We then briefly discuss a special case,
the sharp resetting in Sec. VII. Section VIII presents the
time-integrated observables, while Sec. IX gives the detailed
calculation of occupation time statistics. We end with discus-
sion and summary.

II. MODEL AND FORMAL SOLUTION

We start with a simple relation between the density of the
reset-free process and the density of the process with resetting.
For that aim, we will use three probability density functions
(PDFs). Let f (B, t ) be the PDF of the backward recurrence
time B at time t , ρ(x, t ) the PDF of the position x of the
particle at time t , and G(x, t ) the Green function of the walker
in the absence of reset. We now explain the basic properties of
these functions and their significance.

A tagged particle performs one-dimensional BM between
resetting events, hence

G(x, t ) = exp(−x2/4Dt )√
4πDt

(1)
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FIG. 1. Schematics of BM with resetting. Since BM is Marko-
vian the backward recurrence time B controls the position of the
restarted walker at time t . For short times, statistical properties of
B will obviously depend on t ; the only exception is when the waiting
times are exponentially distributed. If the time t is long, a steady
state of the random variable B is found provided that the mean time
between resets is finite. This in turn will determine the steady-state
statistical properties of the stochastic process x(t ). When the mean
time between resetting events diverges we are in the domain of
infinite ergodic theory.

and D is the diffusion constant. This is the propagator of a
free BM without resetting, the particle starting on the origin
x = 0, at t = 0. The resetting is to the position x = 0, which
is also the origin of the process. The waiting times between
resetting events are independent identically distributed (IID)
random variables (RVs) drawn from a common PDF of the
waiting times ψ (τ ). Thus at time t = 0 the particle starts on
the origin x(t )|t=0 = 0, we draw a positive resetting time from
ψ (τ ) denoted τ1, and the particle performs a free BM in the
interval of time (0, τ1), finally reaching some random position
x(τ−

1 ) (the superscript – indicates a time just prior to the reset).
Then the particle’s position is reset to zero x(τ+

1 ) = 0, and the
process is then renewed, namely, we draw a second waiting
time τ2 also from ψ (τ ), etc. When this process is continued
we get the sequence of IID RVs, {τ1, τ2, τ3, . . . }, i.e., the
waiting times between resetting events, which are needed to
construct the path of the particle.

We are interested in the PDF of the position of the particle
at time t denoted ρ(x, t ). Let x(t ) be the stochastic process
describing the location of the particle. Since BM is a Marko-
vian process, x(t ) is connected to the time the last reset to
x = 0 was made. This last reset event is at time t − B and
B is called the backward recurrence time (see schematics in
Fig. 1). Clearly, B is a RV, whose statistical properties in
general depend on t while 0 � B � t . In the process just
described x(t ) = x f (B) where x f (B) is the position of a reset
free BM at time B, with the initial position x = 0. Hence
from the well-known properties of BM, x(t ) for the resetting
process is a product of two independent random variables

√
B

and ξ ,

x(t ) = (DB)1/2ξ, (2)

where ξ is a Gaussian RV with zero mean and variance
〈ξ 2〉 = 2. This allows for efficient sampling of the density
of an ensemble of the noninteracting particles. In simulations
below, we generate the backward time using the renewal pro-
cess to determine statistically the location of a particle at the
measurement time t , and repeating this many times we can
find the sample density.

The backward time is defined according to

N∑
i=1

τi + B = t, (3)

where N is the random number of resets in the time inter-
val (0, t ); see again schematics in Fig. 1. Then using the
Fourier x → k transform of ρ(x, t ) and Eq. (2), F[ρ(x, t )] =
〈〈exp(ik

√
DBξ )〉ξ 〉B = 〈exp(−k2DB)〉B where we used the

fact that B and ξ are independent RVs, and that the PDF of
ξ is Gaussian. We then have

F[ρ(x, t )] =
∫ t

0
f (B, t ) exp(−k2DB) dB, (4)

and as mentioned f (B, t ) is the PDF of B. Hence inverting
back to x space, the formal solution to the problem reads

ρ(x, t ) =
∫ t

0
f (B, t )G(x, B) dB. (5)

Luckily statistics of B are well studied in the context of re-
newal theory; in particular, the PDF f (B, t ) is studied in [12].
Specifically, the Laplace transform of f (B, t ) is given in terms
of the Laplace transform of ψ (τ ) in [12], and some further
details will be provided below.

To study nonequilibrium steady states we soon focus on the
long-time limit of Eq. (5). Before doing so we note that the
approach is not limited to BM in dimension one; in essence,
many other transformations of B might be considered: for
example, consider BM in a force field [24,25] with resetting,
models of biochemical proof reading [26,27] or anomalous
diffusion [28–33], a gas of particles [34], deterministic pro-
cesses, etc. As explained below the waiting time strategy just
described is identical to a much studied time-varying rate
approach [4,6]. In all these problems the backward recurrence
time plays a crucial role; hence we will soon recap some of its
properties.

In this paper we will focus on two classes of resetting pro-
cesses. The first are processes with a smooth PDF ψ (τ ) of the
reset times, when the positive integer moments of the waiting
times are finite. The most studied example is ψ (τ ) = exp(−τ )
for τ > 0, and we have set here the mean waiting time to
be unity. We will also discuss briefly deterministic resetting
ψdet (τ ) = δ(τ − τdet ), which is a special case. The second
class of PDFs have a power-law tail for large τ ,

ψ (τ ) ∼ (τ0)ατ−1−α and 0 < α < 1. (6)

As is well known, these PDFs belong to the domain of at-
traction of Lévy’s laws, and the big jump principle [35] holds
instead of standard large deviation theory. In particular, the
mean waiting time diverges, and in that sense, the process is
scale-free. Other cases like α = 1 and 1 < α < 2 are also of
interest, but due to space considerations will not be presented
here.

III. STATISTICS OF THE BACKWARD
RECURRENCE TIME

In the long-time limit the measurement time t typically
falls in a time interval which is longer than the average; see
a viewpoint on this issue in [36]. This time interval straddling
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time t is a sum of the forward recurrence time (time between t
and the first renewal after t) and the mentioned backward time
(time between t and the previous reset event). The steady-state
(ss) PDF of B for nonlattice PDFs of resetting time is [12,13]

f ss(B) = 1 − ∫ B
0 ψ (τ ) dτ

〈τ 〉 , (7)

and 〈τ 〉 = ∫∞
0 τψ (τ ) dτ is the mean time between resetting.

When ψ (τ ) is exponentially decaying, the distribution of B
is f (B) = exp(−B), and hence is the same as that of the
distribution of the time between resetting. More precisely in
the long-time limit f (B, t ) reaches this steady state, provided
that the mean time between resets 〈τ 〉 is finite (class number
one above), and hence

lim
t→∞〈τ 〉 f (B, t ) = 1 −

∫ B

0
ψ (τ ) dτ = Iss(B). (8)

Here we call Iss(B) the invariant steady state, which is di-
mensionless and also a perfectly normalizable function. What
happens when 〈τ 〉 diverges?

If α < 1 (class 2), then as shown by Wang et al. [14] the
PDF of B satisfies

lim
t→∞〈τ ∗(t )〉 f (B, t ) = 1 −

∫ B

0
ψ (τ ) dτ = I∞(B). (9)

For a brief recap of this and other basic results see Sec. VI.
Equation (8) and Eq. (9) appear similar, but they are not. In
Eq. (9) 〈τ ∗(t )〉 ∝ t1−α is increasing with measurement time
(see below). Still the invariant densities Iss(B) and I∞(B)
have the same functional dependence on the waiting time
PDF, though I∞(B) is called an infinite invariant density
since it is not a normalizable function. Since by definition on
the left-hand side of Eq. (9) we take a perfectly normalized
function f (B, t ) and multiply it by a monotonically increasing
function of time and take the long-time limit, the integration
of I∞(B) over B > 0 diverges. This is because I∞(B) ∝ B−α

and 0 < α < 1, and hence it is a nonintegrable function due
to its large B behavior.

Equations (8) and (9) are valid for any finite B in the limit
of long measurement times. However, especially when 0 <

α < 1 the case when B scales with measurement time must
also be considered, namely, when B ∝ t and t is made large.
This limit was studied by Dynkin, who found [12,13]

f (B, t ) ∼ 1

t
Dyn

(
B

t

)
, (10)

and the scaling function reads

Dyn(y) = sin πα

π

1

yα (1 − y)1−α
, 0 < y < 1. (11)

This formula shows that the most likely events are obtained
when y ∼ 0 or y ∼ 1, where the Dynkin PDF diverges, cor-
responding to either very short B compared to t or B of the
order of t . Note that when α = 1/2 we find the arcsine law
attributed to Lévy.

We see that for α < 1 we have two limiting laws, one for
B fixed and measurement time long, and the other when the
ratio B/t is fixed. The use of these laws, for example, for the
calculations of expectation values, depends on the observable

of interest. We will later study observables that are integrable
with respect to the infinite density, and show how infinite
ergodic theory plays a special role for the nonequilibrium
steady states.

Note that Eqs. (9) and (11) are related as they have to
match. To see this, using Dynkin’s limit theorem, with B 
 t
we have

f (B, t ) ∼ 1

t

sin πα

π

1

(B/t )α
. (12)

On the other hand using Eq. (6), I∞(B) ∼ (τ0)αB−α/α

for large B. Since f (B, t ) ∼ I∞(B)/〈τ ∗(t )〉 = (τ0)αB−α/

α〈τ ∗(t )〉 we easily find

〈τ ∗(t )〉 = π (τ0)α

α sin πα
t1−α. (13)

This is exactly the expression found in [14]. Note that roughly
speaking 〈τ ∗(t )〉 is a mean time between resets, in the sense
that if we integrate only up to t 〈τ ∗(t )〉 ∝ ∫ t

τψ (τ ) dτ ∼ t1−α

as indeed we have found. More precisely, let 〈N〉 be the
averaged number of resets in the time interval (0, t ). Then in
the long-time limit [12]

d〈N〉
dt

∼
{

1
〈τ ∗(t )〉 when 0 < α < 1

1
〈τ 〉 otherwise.

(14)

Thus 1/〈τ 〉 and 1/〈τ ∗(t )〉 are the long-time rates of the under-
lying renewal process; namely d〈N〉, which is the probability
of observing a reset event in the time interval (t, t + dt ), is
given by dt/〈τ ∗(t )〉 for 0 < α < 1 and by dt/〈τ 〉 otherwise.
Thus using Eqs. (8), (9), and (13) we summarize

lim
t→∞

f (B, t )( d〈N〉
dt

) = S(B), (15)

and S(B) is the survival probability, i.e., the probability of not
performing a reset in time B,

S(B) = 1 −
∫ B

0
ψ (τ ) dτ =

∫ ∞

B
ψ (τ ) dτ. (16)

Equation (15) gives the invariant density of the backward
time, be it either normalizable or not.

IV. NESS

Using the statistical properties of the backward time we are
now ready to explore the density of a packet of particles, in the
long-time limit. Different limits must be considered, depend-
ing on the existence of the mean time between resetting. We
will show that the cases 0 < α < 1 and 1/2 < α < 1 must be
distinguished.

A. Normalized invariant density

We now consider thin-tailed waiting time PDFs of the first
class. The nonequilibrium steady state, ρss(x) is based on the
long-time limit of the distribution of B using Eqs. (5), (7), and
(16):

lim
t→∞〈τ 〉ρ(x, t ) = 〈τ 〉ρss(x) =

∫ ∞

0
S(B)

exp
(− x2

4DB

)
√

4πDB
dB.

(17)
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For example, setting D = 1/2 and using ψ (τ ) = exp(−τ ) so
〈τ 〉 = 1 and hence S(B) = exp(−B) we find the result in [3]
ρss(x) = exp[−√

2|x|]/√2, which exhibits the typical non-
analytical behavior at |x| → 0. The latter is a rather general
feature of NESS, since if we expand the Gaussian in Eq. (17)
to second order in x, the x2 term will diverge, since S(0) = 1
and B−3/2 is nonintegrable at B → 0. Pal et al. [4] derived
a formula for the steady state, which is identical to Eq. (17)
without invoking the backward recurrence time and using
Laplace transforms (see also [6]). In Appendix A we make the
comparison between the two results and explain the different
notations. Experimental studies in this regime can be found in
[7,37]

B. Scaling solution 0 < α < 1

Clearly when 〈τ 〉 diverges we need a different approach.
In this case we do not have a steady-state solution; instead,
we find for the typical behavior of x a scaling solution that
depends on time, and this holds when x ∝ √

t and both x and√
t are large. Inserting Dynkin’s limit theorem (10) in Eq. (5)

we find

ρ(x, t ) ∼ 1

t

∫ t

0
Dyn

(
B

t

)
G(x, B) dB. (18)

Making this equation explicit, we use Eqs. (1) and (11) and a
simple change of variables to obtain

ρ(x, t ) ∼ gα (ξ )√
2Dt

with ξ = |x|/
√

2Dt . (19)

The scaling here is x ∝ √
t , hence it is diffusive, which is valid

for 0 < α < 1. The scaling function is

gα (ξ ) = sin πα

π

∫ 1

0

exp
(− ξ 2

2η

)
ηα (1 − η)α

dη√
2πη

. (20)

This function does not depend on the fine details of the model,
i.e., on the waiting time PDF, beyond the parameter α. After a
change of variables, we find

gα (ξ ) = 1√
2π
(1 − α)

U

(
α,

1

2
+ α,

ξ 2

2

)
e−ξ 2/2, (21)

where we used the Tricomi function also called the Kummer
function of the second kind. This equation was derived with
a different approach by Nagar and Gupta [15]. Here we have
emphasized the connection between the resetting problem and
Dynkin’s limit theorem, a worthwhile observation since in
many fat-tailed resetting problems, the scaling solution for
the stochastic process will depend on this law; for example, if
we replace the Gaussian propagator of free diffusion G(x, B)
with a propagator of anomalous type, similar laws will
follow.

The behavior of the scaling solution in the vicinity of the
resetting point x = 0 is of interest. Exploiting the small ξ limit

of the Kummer function we have [38]

gα (ξ ) ∼

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2α−1√
π


(α− 1
2 )


(1−α)
(α)
1

ξ 2α−1
1
2 < α < 1

− 1√
2π3/2 (2 ln ξ − γ − 3 ln 2) α = 1

2


( 1
2 −α)√

2
(1−α)π
0 < α < 1

2

,

(22)

where γ is the Euler-Mascheroni constant. We see that
the scaling solution, when ξ → 0, exhibits a transition at
α = 1/2. When 0 < α < 1/2 the scaling function at x = 0,
namely, gα (ξ = 0), is a constant, and as Eq. (21) shows this
constant diverges when α → 1/2 from below. Further, when
α → 0 we find ρ(x = 0, t ) ∼ g0(ξ = 0)/

√
2Dt = 1/

√
4πDt ,

which is the expected result since for α → 0 the solution
ρ(x, t ) is the Gaussian PDF describing free BM.

As a stand alone, Eqs. (19) and (22) indicate that ρ(x, t ) →
∞ when x → 0 (or ξ → 0) and when 1/2 < α < 1. Clearly,
this is an unphysical effect. The density of the particles ρ(x, t ),
for thin-tailed distributions on the origin x = 0, is always
finite for any t > 0, and with power-law distributed times
between the resetting, we expect an even lower density, since
particles can escape to larger distances. We therefore need an
alternative approach for this small x limit, which as we show
now is described by an infinite invariant density. Roughly
speaking, when x is small, the corresponding backward time
B is also small, and as we showed, deviations from Dynkin’s
limit law are present, which will translate into the small x limit
of ρ(x, t ).

C. Non-normalized invariant density 1/2 < α < 1

Consider 1/2 < α < 1 and insert Eq. (9) in Eq. (5) us-
ing Eq. (16). We find an expression which looks similar to
Eq. (17)

lim
t→∞〈τ ∗(t )〉ρ(x, t ) =

∫ ∞

0
S(B)

exp
(− x2

4DB

)
√

4πDB
dB = Ĩ∞(x).

(23)

Of course, the major difference if compared with Eq. (17)
is that on the left-hand side of Eq. (23) we have the effec-
tive time-dependent mean resetting time 〈τ ∗(t )〉. The integral
converges or diverges if 1/2 < α < 1 or 0 < α < 1/2, re-
spectively, and hence here we treat the former case while the
latter will be presented soon. The function Ĩ∞(x) defined in
Eq. (23) is the non-normalizable nonequilibrium steady state
of x, as the integration over x of this function diverges. The
formula is valid for any finite x in the long-time limit. Note
that we use the convention that the argument in the parenthe-
sis defines the infinite density of interest, thus I∞(B) is the
infinite density of B while Ĩ∞(x) is the infinite density of x.
Finally, one can show that the scaling solution and the infinite
invariant density match for intermediate x as they should.
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D. Non-normalized invariant density 0 < α < 1/2

What is the infinite density for 0 < α < 1/2? Using
Eq. (19)

lim
t→∞

√
2Dtρ(x, t ) = gα (0) = Ĩ∞(x), (24)

and the constant gα (0) is given in Eq. (22). Here the infinite
density is x independent so it is clearly a non-normalizable
function, as the integration over x from minus infinity to infin-
ity diverges. The infinite density here does not depend on the
structure of the waiting time PDF and, hence, is very different
if compared to the invariant densities found for thin-tailed
distribution, namely, the normalized state, found in Eq. (23).

E. Plotting

Note that in Eq. (23) we used the ever-increasing timescale
〈τ ∗(t )〉 to define the non-normalized state, while for the case
0 < α < 1/2 we used the diverging length scale

√
2Dt . These

infinite densities are certainly not probability densities, and
their use will be explained later; in fact, the units of the
infinite density can be either the inverse of time or inverse
of length, depending on the value of α. In general, infinite
densities are defined up to some arbitrary constant (since
these functions are not normalized we have some freedom
in the definition). This does not pose any problem, as long
as one recalls the basic definitions. For example, to visualize
the infinite density in simulations, we plot the density ρ(x, t )
times

√
2Dt for finite x and increased time, amd the solution

in the long-time limit will approach Ĩ∞(x) for 0 < α < 1/2.
Or we plot 〈τ ∗(t )〉ρ(x, t ) for a finite range of x, and then as
we increase measurement time the solution will approach the
asymptotic infinite density (23). Of course, as t is increased,
most of the particles are actually diffusing far from the origin.
Thus, in practice, if t is too long and the number of trajectories
in simulation is not large enough, it will be hard to visualize
the infinite densities. To meet this sampling challenge we plot
now the non-normalized states for representative cases.

F. Examples

In the examples below we use the Pareto PDF of resetting
times,

ψ (τ ) = α(t0)ατ−(1+α) for τ > t0. (25)

In this case

〈τ ∗(t )〉 ∼ (π/ sin πα)t1−α, (26)

where we used Eqs. (6) and (13) and we set t0 = 1 and
D = 1/2. It follows from Eq. (23)

Ĩ∞(x) =
∫ 1

0

exp
(− x2

2B

)
√

2πB
dB +

∫ ∞

1
B−α

exp
(− x2

2B

)
√

2πB
dB.

(27)
For x = 0 we find

Ĩ∞(0) =
√

2

π

α

α − 1
2

. (28)

FIG. 2. The infinite density vs x for α = 3/4. From simulations,
we plot the histogram for the density ρ(x, t ) multiplied by 〈τ ∗(t )〉
vs x. Increasing time we see that results converge to the theoreti-
cal prediction, namely, the solid line presenting the infinite density
Ĩ∞(x), Eq. (30). For large x, Ĩ∞(x) � 1/|x|1/2, Eq. (31), hence this
invariant density is not normalized. The infinite density exhibits a
typical cusp on the origin. Also shown is the scaling solution (22)
for time 107 (dashed line). The latter is a good approximation for
diffusive scales, namely, when x of the order t1/2, but for small x
presented here, the scaling solution clearly fails. We use the Pareto
PDF of times between resets with t0 = 1 and D = 1/2. We have used
1.3×106 trajectories. Inset: We present the large x, and the data for
various times do not collapse on a master curve, unlike the small x
shown in the main figure.

Hence for 1/2 < α < 1 the density on the origin

ρ(0, t ) ∼ Ĩ∞(0)

〈τ ∗(t )〉 (29)

is decreasing with time, and the divergence of the scaling
solution (22) at ξ = x = 0 is not relevant, since as mentioned
that solution is not valid in this regime. For the example,
α = 3/4 Eq. (27) gives

Ĩ∞
α=3/4(x) = |x|

[
erf

( |x|√
2

)
− 1

]
+
√

2

π
e− x2

2

+ 

(

1
4

)− 

(

1
4 , x2

2

)
21/4

√
π

√|x| , (30)

where we use the error function and the incomplete Gamma
function. This invariant density is plotted in Fig. 2 together
with finite-time numerical simulations. As shown the infinite
density exhibits a cusp on the resetting point x = 0, which is
found also for resetting problems with a normalized invariant
density. For large x we have

Ĩ∞
α=3/4(x) ∼ 


(
1
4

)
21/4

√
π

√|x| . (31)

This expression can be shown to match the small x behavior
of the scaling solution (22). Similarly, in Fig. 3 we study the
case α = 1/4. As predicted by theory the infinite density is
structureless, namely, it is equal to a constant. This is clearly
unlike what we see in Fig. 2, so the transition at α = 1/2 is
evident.
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FIG. 3. The infinite density vs x for α = 1/4. From simulations,
we plot the histogram for the probability density ρ(x, t ) multiplied
by

√
2Dt , unlike the case α > 1/2 where we use 〈τ ∗(t )〉, as shown

in Fig. 2. The solid line is the theory, the infinite density Ĩ∞(x) (24),
namely, Ĩ1/4(x) = g1/4(0) = 
(1/4)/

√
2
(3/4)π � 0.6659. Now

the infinite density is simply a constant, and the cusp found for
α = 3/4 in Fig. 2 is not present. Further, clearly a constant invariant
density is not normalized. We use the Pareto PDF of times between
resets with t0 = 1 and D = 1/2. We have used 108 trajectories.

V. THE MOMENTS

Moments of stochastic processes are used extensively to
characterize data and hence will be studied here as well. In the
context of infinite ergodic theory, one treats two classes of ob-
servables: those that are integrable with respect to the infinite
density and those that are not. The basic issue is that we have
for 0 < α < 1 two limiting laws, the infinite densities and the
scaling solution. As shown in this work some of the statistical
averages are calculated based on the former and some with
respect to the latter. This classification of observables is also
important when the ergodic theory is considered.

A. Thin-tailed distributions

Using Eq. (2) the moments of the process satisfy

〈x2m(t )〉 = Dm〈ξ 2m〉〈Bm〉, (32)

and here m = 0, 1, 2, . . . . We used the fact that odd moments
of x(t ) vanish from symmetry. Recall that the PDF of ξ is
Gaussian with zero mean and variance equal to 2, PDF(ξ ) =
exp(−ξ 2/4)/

√
4π . In the normalized steady state, when we

deal with thin-tailed PDFs of resetting times, the moments of
B become time-independent and so do the moments of x(t ).
For example,

〈x2〉ss = 2D〈B〉ss. (33)

and in general 〈x2m〉ss = Dm〈ξ 2m〉〈Bm〉ss, where

〈ξ 2m〉 = 4m
(m + 1/2)√
π

. (34)

In turn, the moments of B are determined by the moments
of ψ (τ ) using Eq. (7). We use the Laplace transform ψ̂ (s) =∫∞

0 exp(−sτ )ψ (τ ) dτ , and similarly f̂ssB(s) is the Laplace
pair of fss(B). Using the convolution theorem and Eq. (7),

f̂ssB(s) = 1 − ψ̂ (s)

s〈τ 〉 . (35)

The Laplace transforms are also moment-generating func-
tions; hence expanding for small s,

ψ̂ (s) = 1 − s〈τ 〉 + s2 〈τ 2〉
2

+ · · · , (36)

where 〈τm〉 are the moments of the times between resets and
similarly

f̂ssB(s) = 1 − s〈B〉ss + s2 〈B2〉ss

2
+ · · · . (37)

Inserting Eqs. (36) and (37) in Eq. (35) we find

1 − s〈B〉ss + s2 〈B2〉ss

2
+ · · ·

=
1 −

(
1 − s〈τ 〉 + s2 〈τ 2〉

2 − s3〈τ 3〉
3! + · · ·

)
s〈τ 〉 . (38)

Comparing terms of the same order we have 〈B〉ss =
〈τ 2〉/(2〈τ 〉), 〈B2〉ss = 〈τ 3〉/(3〈τ 〉), and in general 〈Bm〉ss =
〈τm+1〉/[(m + 1)〈τ 〉]. From Eq. (32) we find

〈x2〉ss = D
〈τ 2〉
〈τ 〉 (39)

and more generally

〈x2m〉ss = 4m

(m + 1)



(
m + 1

2

)
√

π

Dm〈τm+1〉
〈τ 〉 . (40)

B. Fat-tailed distributions

Equation (32) is still valid when 0 < α < 1. Noticing that
Bm is nonintegrable with respect to the infinite density (9),
since the latter decays like B−α for large B, we realize that
the moments are determined by the large x behavior of the
propagator ρ(x, t ), when the scaling presented in Eq. (21)
is diffusive. One may in principle find the moments 〈x2m(t )〉
using the properties of the Kummer function; however, there is
no need for that. Equation (32) is still valid, and the moments
increase with time, for example,

〈x2(t )〉 ∼ 2D〈B(t )〉Dyn. (41)

In turn, the moments of the backward recurrence time are
obtained using Dynkin’s limiting law [Eqs. (10) and (11)]. For
m = 0, 1, . . . we use∫ 1

0

ym−α

(1 − y)1−α
dy = 
(α)
(m − α + 1)

m!
, (42)

and hence

〈Bm(t )〉Dyn ∼ 
(m − α + 1)

m!
(1 − α)
tm. (43)

Then we find the diffusive type of scaling for the moments,

〈x2m(t )〉 ∼ Dm〈ξ 2m〉〈Bm(t )〉Dyn, (44)

which is made explicit with Eqs. (34) and (43). In the limit
α 
 1 we have 〈Bm(t )〉Dyn ∼ tm since then the resetting is
extremely sparse, and as expected the moments 〈x2m(t )〉 are
determined by free diffusion.

We see that the moments of the process are determined by
the scaling solution of B Eq. (10), and hence are not sensitive
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to the details of the waiting time PDF ψ (τ ). This is because
the moments explore the large x part of the density ρ(x, t ).
Observables of another class, considered in the next section,
are integrable with respect to the non-normalized state. These
do not exhibit diffusive scaling, and their ergodic properties
are of special interest as they are related to the non-normalized
NESS found here.

VI. FRACTIONAL INTEGRAL EQUATION
FOR THE DENSITY

The goal of this section is to find a valid approximation
for ρ(x, t ) in the limit of long times; this should hold both for
large and small x. As we showed, the infinite density approach
works well for small x, and the scaling solution works well for
large x, so now we want to marry the two solutions, using a
uniform approximation. Further, close to the transition α =
1/2 the convergence to asymptotic results is extremely slow,
and this can be overcome with the uniform approximation.

We focus on fat-tailed PDFs of waiting time (6), ψ (τ ) ∼
(τ0)ατ−1−α , and 0 < α < 1. As usual, we will use the Laplace
transform of this function, for small s [9,12,39],

ψ̂ (s) ∼ 1 − bαsα + · · · , where bα = (τ0)α

(1 − α)

α
.

(45)

We start with a recap of a handful of known results from the
field of renewal processes [12,14,40] which are used in this
study. Our goal is to find an improved approximation for the
statistics of the backward time, with which we can find the
sought-after uniform approximation for ρ(x, t ). This will lead
to an interesting connection between the resetting problem
and fractional calculus.

A. Statistics of number of jumps

Let Pt (N ) be the probability for N renewals in the period
(0, t ). Using the convolution theorem of Laplace transform

P̂s(N ) = 1 − ψ̂ (s)

s
[ψ̂ (s)]N , (46)

where P̂s(N ) is the Laplace t → s transform of Pt (N ). The
mean number of jumps is 〈N (t )〉, and its Laplace pair reads
[60]

〈N̂ (s)〉 =
∞∑

N=0

NP̂s(N ) = ψ̂ (s)

s[1 − ψ̂ (s)]
. (47)

Inserting Eq. (45) and inverting to the time domain

〈N (t )〉 ∼ sin πα

π

(
t

τ0

)α

, (48)

where we used the reflection formula for the 
 function.
Equation (48) obeys (14).

B. Backward time statistics

A technique for finding the distribution of the backward
recurrence time is given in [12], and it is based on dou-
ble Laplace transforms. Let fB(t, B) be the PDF of B and

f̂B(s, u) = ∫∞
0 dt

∫∞
0 dt exp(−st − uB) fB(t, B). Without any

approximation

f̂B(s, u) = 1 − ψ̂ (s + u)

s + u

1

1 − ψ̂ (s)
. (49)

Here ψ̂ (s + u) = ∫∞
0 exp[−(s + u)τ ]ψ (τ ) dτ . In principle, if

we can invert this formula to the double time domain, i.e., t
and B, we can find ρ(x, t ) using Eq. (5). Using Eq. (45), in the
limit when s → 0 and u → 0 their ratio remaining finite,

f̂B(s, u) ∼ s−α (s + u)α−1. (50)

This equation is independent of the fine details of the waiting
time PDF besides α. The inversion to the time domain is
carried out in [12] yielding Dynkin’s limit theorem [Eqs. (10)
and (11)]. If the mean waiting time is finite, one uses Eq. (49)
to find Eq. (8). Technically this is done by considering the
limit s → 0 while leaving u fixed, which in turn, upon Laplace
inversion, gives the long-time limit of the problem.

Switching back to 0 < α < 1 such that the mean waiting
time diverges, we consider Eq. (49) in the limit s → 0 and u
finite [14]. Using Eq. (45),

f̂B(s, u) ∼ 1 − ψ̂ (u)

u

1

bαsα
. (51)

Inverting to the (t, B) domain one finds Eq. (9). This describes
the statistics of finite B when t is made large.

C. Example α = 1/2

To demonstrate this behavior we consider an example. Let

ψ (τ ) = exp
(− 1

2τ

)
√

2πτ 3/2
; (52)

hence α = 1/2. This PDF is called the one-sided Lévy stable
distribution with index 1/2, and is known as a van der Waals
profile. In this case

√
τ0 = √

2/π and 〈τ ∗(t )〉 = √
2πt1/2.

Using Eq. (9) we find

lim
t→∞〈τ ∗(t )〉 f (B, t ) = Erf

(
1√
2B

)
, (53)

where we introduce the error function. Recall that
Erf(1/

√
2B) ∼ 1 for B → 0 and Erf(1/

√
2B) ∼ √

2/πB−1/2

for large B. Hence the B integration of this infinite invariant
density diverges

∫∞
0 Erf(1/

√
2B) dB = ∞, due to the large B

limit.
We now consider finite-time simulations to demonstrate

the result. Generating the sequence of waiting times we find
the statistics of B using 107 samples. The random waiting
times are given by τ = 1/G2, where G is a Gaussian random
variable with zero mean, whose PDF is exp[−G2/2]/

√
2π

[42]. Generating such a normally distributed random variable
with a computer program is a standard routine. Hence it is
easy to generate the realizations of the renewal sequence and
sample the random variable B on a computer.

In Fig. 4 we plot the typical fluctuations of B which are
captured by Dynkin’s limit theorem’ in fact, since α = 1/2
we find the arcsine law. To do so we plot the histogram of the
random variable B/t , which is clearly bounded in the unit in-
terval. One sees the well-known U shaped histogram, meaning
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FIG. 4. Numerical simulations for the PDF of the rescaled back-
ward recurrence time 0 < B/t < 1 for α = 1/2 converge to the
arcsine law. Deviations from this well-known behavior are presented
in Fig. 5.

that small B and large B are by far more likely if compared to
the mean which in the long-time limit is 〈B/t〉 = 1/2. Small
deviations from the asymptotic theory are observed on the left,
and those are rare events.

To study these we focus on 0 < B < 3 
 t . Here the in-
finite density is a valid approximation while the arcsine law
is clearly invalid. In Fig. 5 we plot the normalized histogram
for the backward time, namely, the sample estimation of the
PDF of B, multiplied by 〈τ ∗(t )〉 vs B. The numerical result
matches Erf(1/

√
2B) without any fitting, indicating that also

for finite-time simulations the non-normalized result is a good
approximation.

D. Uniform approximation for B

We have considered already the PDF of B, fB(B, t ) in two
limits. The typical behavior (10), when B is scaled with time t

FIG. 5. Numerical simulations for the PDF of the backward re-
currence time B, multiplied by 〈τ ∗(t )〉, perfectly match the prediction
based on the infinite invariant density (53). Note that 0 < B < 3
while t = 104, hence the figure presents the small B behavior of
the density. Here α = 1/2, hence the arcsine law (11) describes
the typical fluctuations of B; however, as shown and as expected it
fails here (it works fine in the large B regime). As a stand alone
the arcsine law predicts that the density will diverge when B → 0,
which is clearly not the case for any finite t . In simulations, we use
107 realizations of the renewal process. The PDF of waiting times is
given in Eq. (52); hence 〈τ ∗(t ) = √

2πt .

and the rare events (9). An important scale of ψ (τ ), is roughly
speaking the time beyond which ψ (τ ) ∼ (τ0)ατ−1−α is a valid
approximation. For the Pareto distribution (25) this timescale
is t0, while for the one-sided Lévy stable law (52) it is of order
unity. For B larger than this timescale the two solutions match,
as mentioned already.

Now we present a simple uniform approximation for the
density of B:

fUni(B, t ) =
{

S(B)
〈τ ∗(t−B)〉 0 < B < t

0 otherwise
. (54)

This is obtained by matching the two solutions mentioned
above. Equation (54) holds for large t . By construction, for
large B, we have S(B) ∼ (τ0/B)α/α, and hence this solution
matches Dynkin’s limit theorem (10), while for small B it
yields Eq. (15). We find the uniform approximation for the
density of reset particles. Using Eqs. (5) and (54),

ρUni(x, t ) =
∫ t

0
dB

S(B)G(x, B)

〈τ ∗(t − B)〉 . (55)

This is one of the main results of the paper as it provides both
the large x limit of the density ρ(x, t ) (described also by the
scaling solution) and the small x limit (given by the infinite
density). Employing Eq. (13) for 〈τ ∗(t )〉 and the definition of
the left-sided fractional Riemann-Liouville integration,

0D−α
t g(t ) = 1


(α)

∫ t

0
g(t ′)(t − t ′)α−1 dt ′, (56)

we find

(τ0)α|
(−α)|ρUni(x, t ) = 0D−α
t [S(t )G(x, t )]. (57)

This equation holds far beyond the case of Brownian motion.
It connects the survival probability, the propagator for reset
free motion, and the density of the spreading particles. It
describes both the small x limit which is dominated by small
B statistics as well as the scaling solution to the problem,
discussed previously. Note that the inverse operation of the
fractional integration is a fractional derivative; hence we may
use Marchaut’s formula to find, at least in principle, the prod-
uct S(t )G(x, t ), from the density of an ensemble of particles
undergoing the resetting process.

E. The transition case α = 1/2

Using α = 1/2 as an example and for the waiting time PDF
(52) we have from Eq. (16) the survival probability S(B) =
Erf(1/

√
2B), and 〈τ ∗(t )〉 = √

2πt , as mentioned. Therefore
the uniform approximation reads

ρUni(x, t ) =
∫ t

0
dB

Erf
(

1√
2B

)
G(x, B)

√
2π (t − B)

, (58)

where we used D = 1/2. This for large x describes well the
typical fluctuations given by the arcsine law for B,

ρArcsine(x, t ) =
∫ t

0
dB

G(x, B)

π
√

B
√

t − B
, (59)

which is the same as Eq. (18) for α = 1/2. This approximation
diverges on the origin x = 0 namely, in the vicinity of the
resetting point, while in reality and according to Eq. (58) such
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FIG. 6. Numerics for the PDF of the position x for an ensem-
ble of particles undergoing the resetting process with α = 1/2. We
focus on the small x behavior, namely, the vicinity of the resetting
point x = 0. The uniform approximation (58) perfectly matches the
simulations, while the scaling solution (59) describing the typical
fluctuations (large x) fails. Here t = 103, the resetting time PDF is
Eq. (52), and we used 107 realizations.

behavior is not found. The two solutions are used in Fig. 6,
where the numerics clearly demonstrates that the uniform
approximation is the valid theory. Both the uniform solution
and numerics exhibit a cusp in the density close to x = 0.

Using Eq. (58) we obtain the probability of
finding the particles in the interval (−1, 1). We use∫ 1
−1 exp[−x2/(2B)] dx/

√
2πB = Erf[1/

√
2B] to find

ProbUni(−1 < x < 1) = 1√
2π

∫ t

0

Erf2
[

1√
2B

]
√

t − B
dB. (60)

This integral is solved numerically and compared with Monte
Carlo simulations in Fig. 7 showing the validity of the uniform
approximation. We compare this solution to the one obtained
using the description of the typical fluctuations, namely, using
the scaling function gα (ξ ) with α = 1/2. Recall that this solu-
tion does not depend explicitly on the waiting time PDF ψ (τ )

FIG. 7. Probability of occupying the interval −1 < x < 1 for
a resetting process to the origin x = 0 vs time. Here we use the
one-sided Lévy distribution (52) to model the time intervals between
resetting, so α = 1/2, which is the transition exponent. Simulations
nicely match the uniform approximation (60), while the theory based
on typical fluctuations (61) does not work so well. Here D = 1/2 and
for simulations we use 2×107 trajectories.

besides α of course, unlike the uniform approximation. Using
Eq. (22) and D = 1/2,

Probtypical(−1 < x < 1)

� −
∫ 1

−1
dx

1√
2tπ3/2

[2 ln |x|/√t − γ − 3 ln 2]

=
√

2√
tπ3

(ln t + 2 + γ + 3 ln 2). (61)

This solution is plotted in Fig. 7 where its performance
compared with the uniform approximations is shown to be
weak. The ln(t ) logarithmic behavior in (61) indicates the
particularly slow nature of convergence to asymptotic re-
sults, strengthening the need for the uniform approximation
at this transition case α = 1/2. We also integrated Eq. (59)
in the interval −1 < x < 1 to estimate Prob(−1 < x < 1).
This solution works slightly better than the simple analytical
expression Eq. (61) yet still not matching the uniform approx-
imation (60). It is not plotted to avoid burdening the eye.

F. Uniform approximation: An example

We now check the predictions of the uniform approxima-
tion using the Pareto distribution for waiting times and α =
1/4 so ψ (τ ) = 0.25τ−5/4 for τ > 1, otherwise ψ (τ ) = 0. In
this case, from Eq. (6), (τ0)1/4 = 1/4, and using Eq. (13)
〈τ ∗(t )〉 = √

2πt3/4. The survival probability is S(B) = 1 if
B < 1 and S(B) = B−1/4 for 1 < B; hence, using Eq. (55), we
have for t > 1

ρUni(x, t ) =
∫ 1

0

G(x, B) dB√
2π (t − B)3/4

+
∫ t

1

G(x, B) dB√
2πB1/4(t − B)3/4

.

(62)

This solution should be compared with the one obtained using
the scaling solution (18),

ρ(x, t ) ∼ 1√
2π

∫ t

0

G(x, B) dB

(t − B)3/4B1/4
, (63)

which is valid when x and t are large while ξ = |x|/√t is
finite and we set D = 1/2. This gives according to Eq. (19)
ρ(x, t ) ∼ g1/4(ξ )/

√
t where the scaling function g1/4(ξ ) is

presented in Eq. (21). Recall that from the infinite density (24)
we have the approximation, valid for finite x and large t ,

ρ(x, t ) ∼ g1/4(0)√
2Dt

= 
(1/4)
√

t√
2
(3/4)π

� 0.66593√
t

. (64)

In Fig. 8 we make the comparison between the various ap-
proximations. The figure shows that for finite time t , the
uniform approximation works very well. Of course, for the
very long-time limit the simulation results will converge to the
theoretical prediction of the infinite density, which is given by
the straight line in the figure.

We also find the probability that the particle is in the inter-
val −1< x [<] 1 at time t . Using

∫ 1
−1 G(x, B)dx = Erf[1/

√
2B]

we have for the uniform approximation

ProbUni(−1 < x < 1)

=
∫ 1

0

Erf
[

1√
2B

]
dB

√
2π (t − B)3/4

+
∫ t

1

Erf
[

1√
2B

]
dB

√
2π (t − B)3/4B1/4

. (65)
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× ×
× ×

FIG. 8. Infinite density vs x for using the Pareto PDF for waiting
times with α = 1/4 and t0 = 1. In simulation we plot the histogram
for the probability density ρ(x, t ) multiplied by

√
2Dt . In solid lines

the uniform approximation (62) for intermediate times, and in dashed
lines the infinite density Ĩ∞(x) � 0.6659, Eq. (24). Here D = 1/2
and we use 108 trajectories.

These integrals can be numerically computed using programs
like Mathematica or Maple. On the other hand from Eq. (64)
we have

Prob(−1 < x < 1) � 0.66592|�x|/√t,

where |�x| = 2 is the length of the interval −1 < x < 1 under
study.

Figure 9 clearly demonstrated the useful aspect of the
uniform approximation as it captures the approach to the
asymptotic limit, i.e., the straight line in the figure.

VII. THE SPECIALNESS OF SHARP RESTART

We will soon study the ergodic properties of the process,
with emphasis on fat-tailed resetting processes. Before doing
so we comment on a thin-tailed case, the well-studied sharp
restart.

A natural question is to what extent can we squeeze the
steady state distribution of x? Of course, fast resetting will
simply put the particle always on the origin. If we fix 〈τ 〉

×

FIG. 9. Probability of occupying the interval −1 < x < 1 times√
t as a function of time. The points belong to the data from Fig. 3

and Fig. 8, while the solid line represents the uniform approximation
(65). Times between resets follow a Pareto PDF with t0 = 1, α = 1/4.
D is 1/2, and we use 108 realizations.

to some nonzero value, the narrowest steady state PDF of x
will be naively found when ψ (τ ) = δ(τ − 〈τ 〉). This strat-
egy is called sharp restart, and its NESS was studied in [6].
Further, sharp restart is optimal for search [43,44] and hence
studied extensively [45]. In this case, the variance of x is
〈x2〉ss = D〈τ 〉, which is smaller than any other 〈x2〉ss [given by
Eq. (39)] found with another choice of ψ (τ ), since in general
〈τ 2〉/〈τ 〉 � 〈τ 〉 and hence sharp restart gives the minimum of
the dispersion.

However, sharp restart implies the nonexistence of NESS.
To see this note that at any time t is slightly larger than
an integer times 〈τ 〉, the particle is on x � 0. In contrast
just before these times, the PDF of x is a Gaussian with
variance, 2D〈τ 〉. In short, for stroboscopic resetting, which
starts at time t = 0, we have no NESS, in the sense that the
PDF of x is time-dependent, with a periodicity which is the
sharp time between resets. One can claim that if the restart
is nearly sharp, i.e., if we have a narrow but analytical PDF
of ψ (τ ) around some 〈τ 〉, namely, some small uncertainty in
the resetting times, the process will converge to the NESS.
While this is correct, this convergence will take very long,
and the narrower the PDF of reset times, around the sharp
reset time 〈τ 〉, the longer the relaxation towards the NESS will
be. Another option for obtaining a NESS, for lattice PDFs of
resetting time, is to randomize the initial clock; however, this
option is not part of this work.

VIII. ERGODIC THEORY

So far we have studied useful approximations for the den-
sity of particles. We now study the ergodic properties of the
process. Consider an observable, namely, a functional of the
stochastic path of the resetting process, O[x(t )] [46,47]. The
time averages are denoted by

O(t ) = 1

t

∫ t

0
O[x(t ′)] dt ′, (66)

while the ensemble average is 〈O(t )〉 = ∫∞
−∞ O(x)ρ(x, t ) dx.

For thin-tailed PDFs of resetting times, excluding sharp
restart, the time and ensemble averages are identical in the
long-time limit

lim
t→∞O(t ) = 〈O〉ss (67)

and

〈O〉ss =
∫ ∞

−∞
O(x)ρss(x) dx, (68)

where the normalized NESS density ρss(x) is defined in
Eq. (17). We did not prove this expected result, but some
arguments as to why it is correct are given below. Note that in
Eq. (68) we have assumed that the integral on the right-hand
side does not diverge, namely, that the observable O(x) is
integrable with respect to the normalized steady state. So far
in this section 〈τ 〉 was finite; what is the ergodic theory when
this mean time diverges?

For fat-tailed resetting times, with 0 < α < 1 infinite er-
godic theory holds. This means that the non-normalized
steady state will play a special role in the evaluation of the
time averages. First, consider the ensemble averages: in the
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long-time limit we find two types of behaviors. For 1/2 <

α < 1 using Eq. (23),

〈O(t )〉 =
∫ ∞

−∞
O(x)ρ(x, t ) dx ∼

∫∞
−∞ O(x)Ĩ∞(x) dx

〈τ ∗(t )〉 , (69)

where we use Eq. (23), so ρ(x, t ) ∼ Ĩ∞(x)/〈τ ∗(t )〉. Similarly
using Eq. (24) for 0 < α < 1/2,

〈O(t )〉 ∼
∫∞
−∞ O(x)Ĩ∞(x) dx√

2Dt
. (70)

We have assumed that the integrals do not diverge, namely,
that the observable is integrable with respect to the infinite
invariant density Ĩ∞(x). Equations (69) and (70) show that
while Ĩ∞(x) is not normalized, it is used to obtain ensemble
averages. More precisely

lim
t→∞〈τ ∗(t )〉〈O(t )〉 =

∫ ∞

−∞
O(x)Ĩ∞(x) dx if 1/2 < α < 1,

lim
t→∞

√
2Dt〈O(t )〉 =

∫ ∞

−∞
O(x)Ĩ∞(x) dx if 0 < α < 1/2;

(71)

thus 〈τ ∗(t )〉 and
√

2Dt replace normalizing factors.
As an example of an integrable observable consider

O[x(t )] = θ (a < x(t ) < b), (72)

where θ (a < x(t ) < b) is the pulse function; namely, it is
equal unity if the condition in the parentheses holds, otherwise
it is zero. Since the integral

∫ b
a Ĩ∞(x) dx is finite, for finite a

and b, the observable is called integrable, and we will now use
this observable to discuss time averages.

A. Example

As an example consider the case α = 3/4 with the Pareto
PDF discussed in Sec. IV F with D = 1/2. The observable
of interest is the pulse function θ [−3 < x(t ) < 3]. Using the
infinite density (30),

〈τ ∗(t )〉〈θ [−3 < x(t ) < 3]〉 ∼
∫ 3

−3
Ĩ∞

α=3/4(x) dx. (73)

The integral is solved numerically, and we find

lim
t→∞〈τ ∗(t )〉〈θ [−3 < x(t ) < 3]〉 = 8.91711 . . . (74)

and 〈τ ∗(t )〉 is given in Eq. (26) with α = 3/4. As mentioned,
〈θ [−3 < x(t ) < 3]〉 is the probability that a member of an en-
semble of particles occupies the domain [−3, 3] at time t . This
prediction is tested in Fig. 10 showing that the non-normalized
invariant density is the tool of choice to compute ensemble
averages of integrable observables.

B. Time averages

The time integration over the pulse function observable
(72) is the total time a trajectory x(t ′) spends in the domain
[a, b] during the measurement time interval (0, t ); it will be
denoted T̃ . For example, [a, b] can be a domain in space
including the resetting point or not. The total time the particle
spends in [a, b] is called the occupation time or the residence

× × × ×

FIG. 10. Time evolution of 〈θ [−3 < x(t ) < 3]〉 times 〈τ ∗(t )〉
Eq. (26) for a Pareto PDF with α = 3/4 and t0 = 1. The solid line
represents the long-time limit Eq. (74). Here D = 1/2, and we have
used 106 trajectories.

time [48–50]. For thin-tailed distributions of resetting times,
and using the ergodic hypothesis,

lim
t→∞

∫ t
0 θ (a < x(t ′) < b) dt ′

t
=
∫ b

a
ρss(x) dx, (75)

which is the probability a member of an ensemble of particles
in NESS occupies the domain. We will treat this observable
for the case α < 1 below.

We now treat an integrable observable not restricting
ourselves to an example. Then the ensemble-averaged time
average

〈O(t )〉 ∼ 1

t

〈∫ t

0
O(t ′) dt ′

〉
, (76)

which is found by averaging many of the underlying pro-
cesses, over time and over independent trajectories. Since the
ensemble average in any experiment is simply a sum over a
finite sample, we may replace the order of time and ensemble
average, and then

〈O(t )〉 =
∫ t

0

[∫∞
−∞ ρ(x, t ′)O(x) dx

]
dt ′

t
. (77)

As before, in the long-time limit we replace the density ρ(x, t )
with the infinite density using Eq. (23), e.g. for 1/2 < α < 1,

〈O(t )〉 ∼
∫ t

0

[ ∫∞
−∞

Ĩ∞(x)
〈τ ∗(t ′ )〉O(x)dx

]
dt ′

t
. (78)

In the numerator we can identify the ensemble average ob-
tained with integration over the infinite density (69). Further,
the time integration is straightforward, using Eqs. (69) and
(70) we find

lim
t→∞

〈O(t )〉
〈O(t )〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for ψ (τ ) thin-tailed

1
α

1
2 < α < 1

2 0 < α < 1

. (79)

We see that the time and ensemble averages are related to
one another. For α < 1 they are calculated using the infinite
density otherwise by the normalized invariant density of the
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FIG. 11. Ratio between the ensemble-averaged time average and
the ensemble average vs time. The observable is the pulse function
(72) in the interval −10 < x < 10. We present numerical results for
the Pareto reset time PDF with t0 = 1 with α = 1/4 and α = 3/4. In
solid lines the long-time limit of 〈T 〉/〈θ〉, Eq. (79). In the inset figure,
we present the same results but for α near the transition point below,
α = 0.45, and above, α = 0.55. We can see that the agreement is not
so good due to the slowing of the convergence near the transition in
agreement with what is observed also in Fig. 12. Here D = 1/2 and
we have used 107 trajectories.

NESS. The prefactors found for α < 1 stem from simple time
integration. We see that when α = 1 and α = 1/2 there is an
ergodic transition in the system which, in principle, is easy to
detect when α is tuned (the result in the first line holds for any
distribution of resetting times, even a distribution that decays
like a power law α > 1, in such a way that the mean resetting
time is finite). In Fig. 11 we show the comparison between the
predictions in Eq. (79) with finite time simulations, showing
excellent agreement without fitting.

Infinite ergodic theory deals also with the limiting laws of
the distribution of time averages. We define a dimensionless
variable

η = O
〈O〉 , (80)

where clearly the mean of η is unity. In what follows we
assume that the observable is integrable, namely, the nonzero
denominator is obtained in theory from the invariant density
using Eqs. (69), (70), and (79) though a direct measurement
in, e.g., an experiment or simulation is also a good possibility.
For thin-tailed waiting time PDFs, η in the long-time limit is
not fluctuating. In other words, its distribution is a δ function
centered on unity.

C. Fluctuations of time averages

Consider the integral over the pulse function Eq. (72),

η =
∫ t

0 θ (−a < x(t ) < a) dt

〈∫ t
0 θ (−a < x(t ) < a) dt〉 = T̃

〈T̃ 〉 . (81)

Namely, we are interested in the statistics of the occupation
time T̃ in [−a, a] when the observation is in (0, t ). Of course,
the interval [−a, a] contains the resetting point x = 0. In
Eq. (81) η is normalized in the sense that its mean is unity.

The function θ [−a < x(t ) < a] takes the value 1 when x(t )
is in the domain [−a, a], 0 otherwise. By randomly switch-
ing between the values 1 and 0, the observable undergoes a
dichotomous two-state process. What is the physical mecha-
nism of the return into the domain [−a, a]? One possibility
is that the resetting brings the particle back into the domain.
For example, just before a resetting event, the particle might
be positioned at x(t ) > a, but after resetting, it is sent back
to −a < x = 0 < a. Alternatively, the particle returns to the
domain via the process of diffusion alone. We have here a
competition between these two mechanisms of return. Recall
that the PDF of resetting times is given by a fat-tailed law
(6) while the PDF of first passage time of BM in an infinite
domain in dimension one decays like (time)−3/2 [51], in the
absence of resetting. Hence we might expect a transition in
the ergodic properties of the system when α = 1/2, which is
also noticed in the behavior of the infinite invariant densities
discussed above.

To quantify this behavior we use the EB parameter [52],
defined as

EB = 〈η2〉 − 〈η〉2

〈η〉2
= 〈T̃ 2〉 − 〈T̃ 〉2

〈T̃ 〉2
. (82)

An analysis of the EB parameter starts in the next section,
and more details are found in Appendixes B and C. In the
long-time limit

EB =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

απ − 1 + 1
2

[
π
(1−α)

( 1

2 −α)

]2
, 0 < α < 1/2

2
2(1+α)

(1+2α) − 1, 1/2 < α < 1

0, thin-tailed PDFs

. (83)

When the mean of the resetting time PDF is finite there is
no ergodicity breaking as the PDF of η converges to a delta
function and EB = 0. In contrast if 0 < α < 1 we have two
types of behaviors. Note that when α → 0, we have EB =
(π/2) − 1 � 0.57. As shown below, just after Eq. (89) this
is the value of the EB parameter for free BM (see also Ap-
pendix B).

When 1/2 < α < 1 the fluctuations we find are related to
the fluctuations of the number of resets in the time interval
(0, t ). More specifically recall that N is the random number
of resets in the time interval (0, t ). The EB parameter for this
observable is well known [52],

EB = 〈N2〉 − 〈N〉2

〈N〉2
= 2
2(1 + α)


(1 + 2α)
− 1, (84)

which is valid for 0 < α < 1 and in the long-time limit. We
see that the fluctuations of the time averages are related to
the fluctuations of the number of resettings; however, this is
true only when 1/2 < α < 1. The intuitive explanation is that
when 1/2 < α the return to the domain [−a, a] is dominated
by resetting and not by diffusion. Further, the time spent inside
the domain [−a, a] is statistically short compared to the time
outside the domain, and so are the fluctuations of the latter that
dominate the statistics of the time averages. The same is not
true for thin-tailed PDFs where the mean times in and outside
of the domain are both finite. Hence in the latter case we find
ordinary ergodicity.
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FIG. 12. EB parameter, describing the fluctuations of the time
averages, vs α. Numerical results for the occupation time T for
the reset process are presented, where we used D = 1/2, a = 0.1
the Pareto reset time PDF, with t0 = 1. For 1/2 < α < 1, the EB
parameter is the same as that for N (triangles), the number of resets
up to time t . Close to the transition point α = 1/2 we see deviations
from theory, due to finite sampling and slowing of the convergence.
When 0 < α < 1/2 the fluctuations are nontrivial, and we observe a
minimum for the EB parameter. Here we have used 105 trajectories
evolved to t = 1010. We used Eq. (83) (Analytic II) and Eq. (84)
(Analytic I) to present the theory.

To summarize, one can say that for 0 < α < 1/2 the fluctu-
ations are less trivial if compared to other cases. As mentioned
more technical details are provided below. In Fig. 12 we
present numerical results for the EB parameter. We observe
a minimum for the EB parameter found also in the context of
a study of laser cooling [21]. The convergence of finite time
simulations is poor close to the critical value of α = 1/2, an
effect that could be studied further.

IX. CALCULATING OCCUPATION TIME STATISTICS
WITH CTRW FORMALISM

The study of time averages is related to the theory of
functionals of stochastic processes as the observable, which
is a function of the random path, is integrated over time. The
theory of Brownian functionals with resetting was studied in
[53,54]. Here one of our main goals is to show how tools from
continuous time random walk (CTRW) theory can be applied
for this aim.

As mentioned, we call the time spent by the resetting
process x(t ) in the spatial domain [−a, a], within the time
window (0, t ), T̃ , where the resetting is to the origin x = 0.
The PDF of this random variable will be denoted P(T̃ , t ). For
standard ergodic processes, and in the limit of long times, we
expect that this PDF becomes a narrow distribution, centered
around the mean, as mentioned already. However, when α < 1
this is not true anymore. To analyze this issue, we use a tool
developed by Montroll, Weiss, and others in the context of
CTRWs [39]. The same tool was used to study the ergodic
properties of subrecoil laser-cooled gases [21]. Here the first
goal is to relate between statistics of occupation times of
Brownian motion and those of the occupation times of the
reset process. Second, we derive the basic formulas of infi-
nite ergodic theory from a well-known approach and further

provide simple intuitive formulas for averages. We start with
a recap of occupation time statistics for Brownian motion.

A. Occupation time for Brownian motion

Consider reset free Brownian motion xBM(t ) starting at the
origin x = 0. The occupation time of the process is

TBM(t ) =
∫ t

0
θ [xBM(t ′)] dt ′. (85)

Here and in what follows we use θ [xBM(t )] = θ [−a <

xBM(t ) < a] as a short-hand notation. The mean of the pulse
function is obtained from the Gaussian packet

〈θ [xBM(t )]〉 =
∫ ∞

−∞
G(x, t )θ [x] dx. (86)

Hence the mean occupation time is 〈T (t )〉BM =∫ t
0 〈θ [xBM(t ′)]〉 dt ′, and using Eq. (1) it is easy to show

that

〈T (t )〉BM = t + a
√

t√
πD

exp

(
− a2

4Dt

)

−
(

t + a2

2D

)
Erfc

(
a√
4Dt

)
. (87)

In the long-time limit

〈T (t )〉BM ∼ 2a√
πD

t1/2. (88)

The distribution of the occupation time of Brownian motion
is discussed further in Appendix B. Using the Feynman-Kac
formalism [55,56], the PDF of the occupation time in the long-
time limit is half a Gaussian

PDFBM(T |t ) ∼
(

D

πa2t

)1/2

exp

(
−DT 2

4a2t

)
. (89)

The Laplace transform of the finite time solution is presented
in Appendix B. The long-time limit of the EB parameter
is EB = (〈T 2〉BM − 〈T 〉2

BM)/〈T 〉2
BM = (π/2) − 1, namely, the

same as the reset process (83) when α → 0.

B. Occupation time for the resetting problem

The occupation time of the reset process T̃ (t ) =∫ t
0 θ [x(t ′)] dt ′ is now considered. With the notation for time

averages (66) and for the pulse function observable O = T̃ /t .
Let QN (T̃ , t ) dt dT̃ be the probability that the N th resetting
event takes place in the time interval (t, t + dt ) when the
value of the occupation time is within (T̃ , T̃ + dT̃ ). This
function is given by the iteration rule

QN+1(T̃ , t ) =
∫ T̃

0
dT ′

∫ t

0
dτQN (T̃ − T ′, t − τ )φ(T ′, τ ).

(90)

Here φ(T ′, τ ) is the joint PDF of the resetting interval τ , i.e.,
the time between consecutive resets, and the occupation time
in the same interval T ′. According to Eq. (3) the resetting
process is defined with a sequence of time intervals between
resettings

{τ1, τ2, . . . , τN , B}.
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Within each resetting interval τi we have an occupation time
Ti in the spatial domain (−a, a). Given the reset time interval
τi, statistical properties of Ti are determined by the laws of
Brownian motion. Clearly, the occupation time for the reset
process is

T̃ =
N∑

i=1

Ti + TB. (91)

TB is the occupation time in the interval (−a, a) gained in
the backward time B. The sets {Ti} and {τi} are separately
composed from IID random variables; however, Ti and τi are
mutually dependent. The longer is τi the longer Ti is, in a
statistical sense. The joint PDF of the pair is

φ(T, τ ) = ψ (τ )PDFBM(T |τ ), (92)

where here we use the PDF of occupation times for Brownian
motion without restarts.

Equation (90) describes the basic property of the process.
To arrive in T̃ at time t when the previous resetting took
place at t − τ , the previous value of T̃ , at the moment of the
previous resetting, was T̃ − T . Notice that in Eq. (90) time t
denotes a dot on the time axis, on which a resetting took place
(see details below). Solving Eq. (90) is possible with the help
of the convolution theorem of a Laplace transform. Let

Q̂N (p, s) =
∫ ∞

0
dT̃

∫ ∞

0
dt exp(−pT̃ − st )QN (T̃ , t ) (93)

be the double Laplace transform of QN (T̃ , t ) where p ↔ T̃
and s ↔ t are Laplace pairs. The convolution theorem and
the iteration rule give Q̂N+1(p, s) = Q̂N (p, s)φ̂(p, s) where
φ̂(p, s) is the double Laplace transform of φ(T, τ ). Using
the seed, Q0(T̃ , t ) = δ(T̃ )δ(t ), reflecting the initial condition,
namely, that the resetting process starts at time t = 0, we have

Q̂N (p, s) = [φ̂(p, s)]N . (94)

The PDF P(T̃ , t ) is in turn given by

P(T̃ , t ) =
∞∑

N=0

∫ T̃

0
dT ′

B

∫ t

0
dBQN (T̃ − T ′

B, t − B)�(TB, B).

(95)

Here we summed over the number of restarts N and consid-
ered the fact that the observation time t is found at a time
B after the last resetting event in the sequence. We further
integrate over the backward recurrence time. Finally, the sta-
tistical weight function is

�(TB, B) = S(B)PDFBM(TB|B), (96)

where, like before, S(B) = ∫∞
B ψ (τ )dτ is the survival prob-

ability, i.e., the probability of not resetting. We will soon
use the Laplace B → s transform of this function Ŝ(s) =
[1 − ψ̂ (s)]/s where ψ̂ (s) is the Laplace transform of ψ (τ ).

Now we again use the convolution theorem. Let P̂(p, s) be
the double Laplace transform of P(T̃ , t ). Using Eq. (95),

P̂(p, s) =
∞∑

N=0

Q̂N (p, s)�̂(p, s), (97)

where

�̂(p, s) =
∫ ∞

0

∫ ∞

0
exp[−TB p − Bs]

× S(B)PDFBM(TB|B) dTB dB. (98)

Inserting Eqs. (94) and (97) and summing the geometric se-
ries,

P̂(p, s) = �̂(p, s)

1 − φ̂(p, s)
. (99)

In the context of CTRW such an equation is used to analyze
the positional PDF of the packet of particles, though then usu-
ally one invokes a Fourier-Laplace transform [39,57–59]. The
inversion of the formal solution Eq. (99) to the (T̃ , t ) domain
is a significant problem, which can be tackled analytically in
the long-time limit. In particular, from the definition of the
Laplace transform

P̂(p, s) =
∫ ∞

0
dT̃

∫ ∞

0
dt exp[−pT̃ − st]P

(
T̃ , t

)
=
∫ ∞

0
(1 − pT̃ + · · · )dT̃

∫ ∞

0
dte−st P(T̃ , t )

= 1

s
− p〈T̃ (s)〉 · · · ,

where we used the normalization condition for P(T̃ , t ) and
〈 ˆ̃T (s)〉 is the Laplace t → s transform of the mean occupation
time 〈T̃ (t )〉. Another way to write this is

〈 ˆ̃T (s)〉 = −∂P̂(p, s)

∂ p
|p=0. (100)

Using the Montroll-Weiss-like equation (99) we find

〈 ˆ̃T (s)〉 = − ∂p�̂(p, s)|p=0

1 − φ̂(p = 0, s)
− ∂pφ(p, s)|p=0�̂(p = 0, s)

[1 − φ(p = 0, s)]2
.

(101)

A similar approach can be used to find the variance of the
occupation time; however, here will will study only the mean.

We use φ̂(p = 0, s) = ψ̂ (s), �̂(p = 0, s) = [1 − ψ̂ (s)]/s,
and

∂pφ̂(p, s)|p=0 = −
∫ ∞

0
exp(−sτ )〈T (τ )〉BMψ (τ ) dτ, (102)

where

〈T (τ )〉BM =
∫ ∞

0
T PDFBM(T |τ ) dT (103)

is the mean occupation time of a Brownian motion in (−a, a),
in the time interval (0, τ ). Similarly

∂p�̂(p, s)|p=0 = −
∫ ∞

0
exp(−sB)〈T (B)〉BMS(B) dB.

(104)
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Using Eqs. (101), (102), and (104) we find

〈 ˆ̃T (s)〉 =
∫∞

0 〈T (τ )〉BMψ (τ )e−sτ dτ

s[1 − ψ̂ (s)]︸ ︷︷ ︸
T1(s)

+
∫∞

0 〈T (B)〉BMS(B)e−sB dB

1 − ψ̂ (s)︸ ︷︷ ︸
T2(s)

. (105)

This formula relates the mean occupation time of the resetting
process, the mean occupation time of the restart-free Brown-
ian motion, and the waiting time ψ (τ ). We note that Eq. (105)
can be generalized to other observables beyond the occupation
time. The two contributions defined in this equation, T1(s) and
T2(s), describe contributions to the occupation time before
and after the last reset event in the sequence.

1. Mean occupation time 1/2 < α < 1

To analyze the long-time behavior of the mean occupation
time we consider the small s limit, following a standard ap-
proach by considering Eq. (45), which holds for 0 < α < 1.
We now need to distinguish between three cases. A short
calculation, valid when 1/2 < α < 1, will convince the reader
that the leading term, when s → 0 in Eq. (105) reads

〈 ˆ̃T (s)〉 ∼
∫∞

0 〈T (τ )〉BMψ (τ ) dτ

bαs1+α
, (106)

and only T1(s) is contributing to this limit. Inverting to the
time domain we find in the long-time limit

〈T̃ (t )〉 ∼ tα


(1 + α)bα

∫ ∞

0
〈T (τ )〉BMψ (τ ) dτ. (107)

Noticing that the average number of restarts is 〈N (t )〉Res ∼
tα/bα
(1 + α) we have

〈T̃ (t )〉 ∼ 〈N (t )〉Res〈〈T 〉BM〉Res, (108)

where the mean of the occupation time, within a resetting
period, averaged over the resetting time is

〈〈T 〉BM〉Res =
∫ ∞

0

∫ ∞

0
T PDFBM(T |τ ) dT ψ (τ ) dτ. (109)

In Eqs. (108) and (109) we distinguish between averages over
the resetting time and averages over the Brownian motion
within each interval. Equation (108) is expected; a main point
to notice is that it is not valid when 0 < α < 1/2. Since
〈T (τ )〉BM ∼ τ 1/2, when averaging over ψ (τ ) ∝ τ−1−α , the
integral in Eq. (109) diverges when α < 1/2, a case soon to
be treated.

Equation (108) remains valid for the case where the mean
of the waiting time between resets is finite, for example,
when ψ (τ ) is an exponential function. The difference is
that 〈N (t )〉Res ∼ t/〈τ 〉, where 〈τ 〉 is the mean time between
restarts.

How is Eq. (106) related to the non-normalized invariant
density when 1/2 < α < 1? We use the pulse function (72) of

a Brownian path without resetting

〈T (τ )〉BM =
〈∫ τ

0
θ [x(t ′)]d t ′

〉
BM

=
∫ τ

0
〈θ [x(t ′)]〉 dt ′

=
∫ τ

0

∫ ∞

−∞
θ [x]G(x, t ′) dx dt ′ (110)

as mentioned already. Using Eq. (108) the occupation time for
the resetting process is

〈T̃ (t )〉 ∼ 〈N (t )〉Res

∫ ∞

0
dτ

∫ ∞

−∞
dxG(x, τ )θ (x)[−∂τ S(τ )],

(111)

where we apply ψ (τ ) = −∂τ S(τ ). Integrating by parts, and
employing Eq. (23),

〈T̃ (t )〉 ∼ 〈N (t )〉Res

∫ ∞

−∞
θ (x)I∞(x) dx, (112)

which for the observable of interest, namely, the pulse
function reads 〈T̃ (t )〉 ∼ 〈N (t )〉Res

∫ a
−a I∞(x) dx. By defini-

tion 〈T̃ (t )〉/t = 〈θ [x(t )]〉 and hence the CTRW approach
and Eq. (112) yield the same result as in Eq. (79) utilizing
Eqs. (14) and (69) and the long-time identity ∂t 〈N (t )〉Res/α =
〈N (t )〉Res/t .

2. Mean occupation time 0 < α < 1/2

We now analyze the case 0 < α < 1/2. Here contribu-
tions to the mean occupation time stem from both terms in
Eq. (105), namely, now the backward recurrence time is large
in a statistical sense, in a way that it contributes to the av-
eraged observable also in the long-time limit. In the small s
limit, we use the asymptotic formula (88) and find employing
Eq. (105) and 1 − ψ̂ (s) ∼ bαsα

T1(s) ∼ 2a√
πD

∫∞
0 τ 1/2(τ0)ατ−1−α exp(−sτ ) dτ

bαs1+α
, (113)

where we used Eq. (6). Inserting the definition of bα given in
Eq. (45) and integrating we find for small s

T1(s) ∼ 2αa


(1 − α)
√

πD

(1/2 − α)s−3/2. (114)

Inverting to the time domain we find

T1(t ) ∼ 4a

π
√

D


(1/2 − α)

|
(−α)| t1/2. (115)

The second contribution is analyzed similarly, in particular
employing Eq. (88),

T2(s) ∼ 2a√
πD

∫∞
0

√
BS(B) exp(−sB) dB

bαsα
. (116)

Using S(B) ∼ (τ0)ατ−α/α obtained from Eq. (6), integrating,
and then inverting to the time domain we find

T2(t ) ∼ 4a

π
√

D


(3/2 − α)


(1 − α)
t1/2. (117)

Summing Eqs. (115) and (117) we get the mean occupation
time

〈T̃ (t )〉 ∼ 2a

π
√

D


(1/2 − α)


(1 − α)
t1/2. (118)
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When α → 0 we obtain the same result as found for Brownian
motion, Eq. (88), while in the limit α → 1/2 this expression
diverges signaling the transition.

The same result can be obtained from the infinite density
approach. Since the occupation time is the time integral of the
pulse function

〈T̃ (t )〉
t

∼ 2〈θ (x)〉, (119)

where we used Eq. (79), which gives the prefactor 2. The
average 〈θ (x)〉 is with respect to the infinite invariant density
as in Eq. (70):

〈θ (x)〉 ∼
∫∞
−∞ θ (x)I∞(x) dx√

2Dt
. (120)

As mentioned in Eq. (24) the infinite density is a constant in
this case. It is then easy to show that the results obtained with
the CTRW approach are the same as those found with the
infinite density method. Of course, this is what is expected,
though here once we have the infinite density, the calculation
is straightforward, as is the case of ergodic processes, where
time integration is replaced with a phase space integration. In
Appendix B we continue with this line of study and calculate
the fluctuations of the time averages, which are needed to
obtain the EB parameter.

X. DISCUSSION

Relating the NESS to the limiting laws of the backward
recurrence times [12–14] was our starting point. This is a
valuable tool for many restart models, where the reset erases
the memory of the process, and is not limited to BM. As
studied in [41] the erasure of memory, which is clearly valid
for a Markovian BM, is not the general rule. Using statistics
of the backward recurrence time we simplified main expres-
sions for NESS (that previously relied on Laplace transforms)
and obtained results which were found previously with other
methods [4,6,15]. We also added ingredients to the resetting
literature.

The tools of infinite ergodic theory and the non-normalized
NESS are employed to obtain general ergodic aspects of the
restart process. The invariant densities can be normalized
or non-normalized, but their functional dependence on the
survival probability appears similar. Thus, by controlling the
distribution of resetting time we can explore either the stan-
dard ergodic phase or the theory of infinite ergodic theory.
The timescale 〈τ ∗(t )〉 and the length scale

√
2Dt are used

to relate the infinite density Ĩ∞(x) with the probability den-
sity ρ(x, t ), for 1/2 < α < 1 and 0 < α < 1/2, respectively
[see Eqs. (23) and (24)].

The behaviors of both time and ensemble averages were
addressed. When dealing with thin-tailed distributions the
standard ergodic picture emerges. The exception is sharp
restart, which has no NESS. The case of sporadic resetting
with fat-tailed distributed resetting times was the main focus
of this study. A statistical theory of the time averages works
as follows. When α < 1 we first check that the observable
is integrable with respect to the non-normalized state. In this
case we find the ensemble average using the infinite invariant

density. Once this is known, we use Eq. (79) to obtain the
ensemble average of the time average 〈O〉. We then studied
the fluctuations of the time averages, focusing on an integrable
observable, namely, the pulse function. The time integral of
this observable is the total time spent in an interval, called the
occupation time. The fluctuations exhibited nontrivial effects,
and a transition in the EB parameter was found for α = 1/2.
Additionally, α = 1/2 marks a transition in the structure of
the infinite invariant density itself. We further pointed out that
when 1/2 < α < 1 the EB parameter of the time average is
the same as the one computed for the fluctuations of the num-
ber of renewals. This implies that the fluctuations in this phase
are universal, and independent of the observable, as long as
it is integrable; however, we did not prove this statement. In
contrast, when 0 < α < 1/2 the fluctuations of time averages,
and the EB parameter, depend on the observable and hence
nonuniversal.

We speculate that this type of transition is generic and
can be found similarly in other processes. As we showed,
in our case the transition is found when α matches the
exponent describing the PDF of first passage times of a Brow-
nian motion on a line in the absence of resetting. The latter
well-known PDF, with absorption at, e.g., x = 0, decays like
(first passage time)−(1+β ) and β = 1/2 in dimension one. In
many other processes β �= 1/2, for example, for diffusion in a
potential that grows like the log of the distance, subdiffusive
CTRW, random walks on some fractals or comb structures,
etc. We believe that when α = β < 1 the resetting process
might exhibit a transition similar to what we found here, but
the details and the generality of this statement must be worked
out. Finally, we have studied the uniform approximation, for
both B and for the coordinate x of the reset particle. This
approach gives the probability density ρ(x, t ) for small and
large x and was shown to yield statistical quantities also for
intermediate timescales. It tackles the problem of slowing
down when α = 1/2. From this excellent approximation, we
find the fractional equation (57), which is a simple tool for the
calculation of ρ(x, t ).

XI. CONCLUSIONS

We showed how the analysis of the statistics of the back-
ward recurrence time solves the NESS of the restart process.
Two types of invariant densities are present in this prob-
lem. These are the normalized and non-normalized invariant
densities, for thin-tailed or fat-tailed resetting time PDFs,
respectively. We uncovered two ergodic transitions. The first
takes place when the mean waiting time diverges. The second
is found when α = 1/2. At this critical value of α the infi-
nite density changes its structure. Further, the EB parameter
exhibits a nonanalytical behavior. Thus both time and ensem-
ble averages have vastly different behaviors when α < 1/2
compared to 1/2 < α < 1. Physically this ergodic transition
is found due to the competition between return mechanisms
to the origin. We also found slow convergence to asymptotic
limits. To tackle this issue we used the uniform approxima-
tion. We use a simple fractional integral equation to this end,
connecting fractional calculus to the calculation of the density
of particles.
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APPENDIX A

If 〈τ 〉 is finite, our results for the NESS reduce to those
found previously by Pal, Kundu, and Evans (PKE) [4]. PKE
consider BM under a time-modulated resetting protocol. The
rate of resetting is r(t ), and it is a function of time t since
the last reset event. We fix the resetting position at x = 0. To
see that this model is the same as the one considered here, we
identify S(τ ) = exp[−R(τ )] where R(τ ) = ∫ τ

0 r(t ′) dt ′; hence
the PDF of times between resetting is

ψ (τ ) = − d

dτ
S(τ ) = r(τ ) exp[−R(τ )]. (A1)

PKE find the NESS using Laplace transforms

ρss(x) = lim
s→0

Q̂(x, s)

Ĥr (s)
. (A2)

In the numerator Q̂(x, s) = ∫∞
0 dt exp[−st − R(t )]G(x, t ) and

G(x, t ) is the Gaussian Green function of the BM (1). Since as
mentioned exp[−R(t )] is the survival probability, S(t ) in our
notation, and taking the s → 0 limit, we get

lim
s→0

Q̂(x, s) =
∫ ∞

0
S(τ )G(x, τ ) dτ. (A3)

This is the same as the function on the right-hand side of
Eq. (17). Further using PKE’s results,

lim
s→0

Ĥr (s) =
∫ ∞

0
dτe−R(τ )

=
∫ ∞

0
dτS(τ ) = −

∫ ∞

0
dττ

dS(τ )

dτ
= 〈τ 〉. (A4)

Hence we see that PKEs result (A2) is the same as Eq. (17).

APPENDIX B

Consider one-dimensional Brownian motion starting at
x0. The PDF of the occupation time, in the spatial domain
(−a, a), is denoted PDFBM(T |t ). Clearly, this PDF is a func-
tion of x0 though, in the main text, we study x0 = 0. Let
gx0 (p; t ) be the Laplace transform

gx0 (p; t ) =
∫ ∞

0
exp(−pT )PDFBM(T |t ) dT . (B1)

The backward Feynman-Kac equation reads [56,61]

∂t gx0 (p; t ) = D
∂2gx0 (p; t )

∂ (x0)2
− pθ [x0]gx0 (p; t ). (B2)

As is well known this is the Schrödinger equation for imagi-
nary time. In this analogy pθ [x] acts like a potential of force,
a square barrier in our case. Initially gx0 (T, t ) = δ(T ) since
the occupation time is zero at the initial time, and hence
employing the Laplace transform we get gx0 (p; t )|t=0 = 1. We
now consider a second Laplace transform

gx0 (p; s) =
∫ ∞

0
exp(−st )gx0 (p; t ) dt . (B3)

The variables in the parentheses of the function define the
space we are working in. Using Eq. (B2) and the initial con-
dition

sgx0 (p; s) − 1 = D
∂2gx0 (p; s)

∂ (x0)2
− pθ [x0]gx0 (p; s). (B4)

Using the pulse function, θ (x0) = 1 in −a < x0 < a otherwise
zero, we have three regions:

gx0 (p; s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c0 exp
(

x0
√

s√
D

)
+ 1

s x0 < −a

c1 exp
(

x0
√

s+p√
D

)
+ c2 exp

(
− x0

√
s+p√
D

)
+ 1

s+p −a < x0 < a

c3 exp
(
− x0

√
s√

D

)
+ 1

s x0 > a

. (B5)

Here c0, c1, c2, c3 are constants independent of x0. Since gx0 (p; s) = g−x0 (p; s) from symmetry, c1 = c2 and c0 = c3. We use the
boundary at x0 = −a and from the continuity condition

c0 exp

(
−a

√
s√

D

)
+ 1

s
= c1

[
exp

(
−a

√
s + p√
D

)
+ exp

(
a
√

s + p√
D

)]
+ 1

s + p
. (B6)

Further from the continuity of the fluxes at the boundary namely, ∂x0 gx0 (p; s)|x0=−a−ε = ∂x0 gx0 (p; s)|x0=−a+ε when ε → 0, we get

c0
√

s exp

(
−a

√
s√

D

)
= −2c1

√
s + p sinh

(
a
√

s + p√
D

)
. (B7)

Solving and setting x0 = 0, which greatly simplifies the solution, we find

g0(p; s) = p

s(s + p)
[
cosh

(
a
√

s+p√
D

)
+
√

1 + p
s sinh

(
a
√

s+p√
D

)] + 1

s + p
. (B8)
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Setting p = 0 we have g0(0, s) = 1/s which is the normaliza-
tion condition. As usual, we have the expansion

g0(p; s) ∼ 1

s
− p〈T̂ (s)〉BM + p2〈T̂ 2(s)〉BM

2
· · · . (B9)

Hence the small p expansion of Eq. (B8) yields the moments
of the occupation time for x0 = 0. For example,

〈T (s)〉BM =
1 − exp

(
−a

√
s√

D

)
s2

. (B10)

The inverse Laplace transform gives Eq. (87). The second
moment 〈T 2(s)〉BM is similarly found using a program like
Mathematica, though the expression is already cumbersome.
Focusing on the long-time limit, we consider the small s
expansion and find 〈T̂ 2(s)〉BM ∼ 2a2/(Ds2) inverting yields
〈T 2(t )〉BM ∼ 2a2t/D, which in turn gives EB = (π/2) − 1 as
mentioned in the text. Finally, to find the long-time limit, we
expand the solution for small s and p finding

g0(p; s) ∼
√

D/a2s−1/2

p +
√

D/a2s1/2
. (B11)

Inverting from p → T and then s → t we find the half Gaus-
sian PDF of the occupation time Eq. (89).

APPENDIX C

1. Mean square occupation time

From the PDF of the occupation time in the Laplace space,
the mean square occupation time may be found from

〈T̃ 2(s)〉 =
[

∂2P̂(p, s)

∂ p2

]
p=0

. (C1)

Using Eq. (99) we find

∂2P̂(p, s)

∂ p2
= ∂pp�̂

1 − φ̂
+ 2

∂p�̂∂pφ̂

(1 − φ̂)2
+ �̂∂ppφ̂

(1 − φ̂)2
+ 2

�̂(∂pφ̂)2

(1 − φ̂)3

(C2)

and from Eqs. (92) and (98) we get

∂ppφ̂|p=0 =
∫ ∞

0
e−sτψ (τ )〈T 2(τ )〉BM ≡ I2(s) (C3)

and

∂pp�̂|p=0 =
∫ ∞

0
e−sBS(B)〈T 2(B)〉BM ≡ I∗

2 (s). (C4)

Defining ∂pφ̂|p=0 = −I1(s) and ∂p�̂|p=0 = −I∗
1 (s) and from

(C1) and (C2) we have

〈T̃ 2(s)〉 = I∗
2 (s)

1 − ψ̂ (s)
+ 2I1(s)I∗

1 (s)

(1 − ψ̂ (s))2

+ I2(s)

s(1 − ψ̂ (s))
+ 2I1(s)2

s(1 − ψ̂ (s))2
(C5)

and the mean occupation time given in Eq. (100) can be
rewritten as

〈T̃ (s)〉 = I∗
1 (s)

1 − ψ̂ (s)
+ I1(s)

s(1 − ψ̂ (s))
. (C6)

2. Exponential resetting

Let us obtain first the mean occupation time and the mean
square occupation time for exponential resetting. Considering
ψ (τ ) = re−rt we find I1(s) = r〈T̂ (s + r)〉BM, I∗

1 (s) = 〈T̂ (s +
r)〉BM, I2(s) = r〈T̂ 2(s + r)〉BM, I∗

2 (s) = 〈T̂ 2(s + r)〉BM. In
consequence, (C6) has the form

〈T̃ (s)〉 =
(

r + s

s

)2

〈T̂ (s + r)〉BM.

In the long-time limit s → 0

〈T̃ (s)〉 � r2

s2
〈T̂ (r)〉BM

so that in the real time

〈T (t )〉 � 〈T̂ (r)〉BMr2t = t (1 − e−a
√

r/D).

Analogously,

〈T̃ 2(s)〉 =
(

1 + r

s

)2[
〈T̂ 2(s + r)〉BM

+ 2r

(
1 + r

s

)
(〈T̂ (s + r)〉BM)2

]
,

which in the limit s → 0

〈T̃ 2(s)〉 � 2
r4

s3
(〈T̂ (r)〉BM)2

so that in the real time

〈T 2(t )〉 � t2(1 − e−a
√

r/D)2.

We see that 〈T 2(t )〉 = 〈T (t )〉2 so that EB = 0.

3. Long-tailed resetting

a. Mean occupation time

Now we consider the long-tailed resetting PDFs using

ψ (τ ) =
{

0, τ < t0
(τ0)ατ−1−α, τ > t0

(C7)

and

S(τ ) =
{

1, τ < t0
(τ0/τ )αα−1, τ > t0

, (C8)

where t0 = α−1/ατ0. We compute the terms I1, I∗
1 , I2, and I∗

2
separately. For t � t0,

I1(s) � (τ0)α
2a√
πD

∫ ∞

0
τ−1/2−αe−sτ dτ

= (τ0)α
2a√
πD



(

1
2 − α

)
s1/2−α

, (C9)

which holds for 0 < α < 1/2. Alternatively, if we consider
the limit s → 0 in the exponential term of I1(s), e−sτ � 1 and
we have

I1(s) � (τ0)α
2a√
πD

∫ ∞

α−1/ατ0

τ−1/2−α dτ = 2aτ
1/2
0 α1− 1

2α

(α − 1/2)
√

πD
,

(C10)
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which holds for 1/2 < α < 1. On the other hand for t � t0,

I∗
1 (s) � (τ0)α

2a

α
√

πD

∫ ∞

0
τ 1/2−αe−sτ dτ

= (τ0)α
2a

α
√

πD



(

3
2 − α

)
s3/2−α

, (C11)

which holds for 0 < α < 1. With the quantities I1 and I∗
1

we can compute the mean occupation time from (C6). In
particular, for 0 < α < 1/2 and using Eqs. (100), (C9), and
(C11),

〈T̃1(s)〉 ≡ I∗
1 (s)

1 − ψ̂ (s)
� 2a√

πD



(

3
2 − α

)

(1 − α)s3/2

and

〈T̃2(s)〉 ≡ I1(s)

s
(
1 − ψ̂ (s)

) � 2a√
πD

α

(

1
2 − α

)

(1 − α)s3/2

.

Adding both terms we readily find

〈T (t )〉 � 2a

π
√

D



(

1
2 − α

)

(1 − α)

t1/2 for 0 < α < 1/2.

For 1/2 < α < 1 we make use of Eqs. (C10) and (C11) to get
the same result for 〈T̃1(s)〉 as above but now

〈T̃2(s)〉 � 2aτ
1/2−α

0 α2− 1
2α√

πD(α − 1/2)
(1 − α)s1+α

so that

〈T (t )〉 � 2aτ
1/2
0 α1− 1

2α√
πD(α − 1/2)
(1 − α)
(α)

×
(

t

τ0

)α

for 1/2 < α < 1.

b. Mean square occupation time

We need to compute I2 and I∗
2 analogously. First, we note

from Eq. (89) that

〈T 2(t )〉BM � 2a2

D
t .

If we consider e−sτ � 1 in the limit s → 0 the integrals in
I2 and I∗

2 converge for α > 1 and α > 2, respectively. Then,

this approximation does not hold in our range of interest of
the values of α. Instead, we consider the limit t � t0. From
Eqs. (C3) and (C7)

I2(s) � 2a2

D
(τ0)α

∫ ∞

0
e−sτ τ−α dτ = 2a2(τ0)α

D


(1 − α)

s1−α
,

(C12)

which holds for 0 < α < 1. Analogously, from Eqs. (C4) and
(C8)

I∗
2 (s) � 2a2(τ0)α

αD

∫ ∞

0
e−sτ τ 1−α dτ = 2a2(τ0)α

αD


(2 − α)

s2−α
,

(C13)

which holds also for 0 < α < 1. The first and third terms of
Eq. (C5) are of the same order and both behave as s−2 in the
limit s → 0. These terms can be added using Eqs. (C12) and
(C13) to find

I∗
2 (s)

1 − ψ̂ (s)
+ I2(s)

s[1 − ψ̂ (s)]
= 2a2

Ds2
. (C14)

Plugging Eqs. (C9), (C10), and (C11) together with Eq. (C14)
into the expression (C5), we find

〈T 2(t )〉�

⎧⎪⎨
⎪⎩

2a2

D

[
1 + 2α
2( 1

2 −α)
π
2(1−α)

]
t, 0 < α < 1/2

8a2τ0
πD

α4− 1
α

(α−1/2)2
2(1−α)
(1+2α)

(
t
τ0

)2α

, 1/2 < α < 1
.

(C15)

c. EB

From the definition of the ergodicity breaking parameter
EB given in Eq. (82) one has

EB = 〈T 2(t )〉
〈T (t )〉2 − 1.

In the long-time limit we can make use of the expressions
above to find EB:

EB =
⎧⎨
⎩απ − 1 + 1

2

[
π
(1−α)

( 1

2 −α)

]2
, 0 < α < 1/2

2
2(1+α)

(1+2α) − 1, 1/2 < α < 1

.

This is given in Eq. (83).
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