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Intermittent random walks under stochastic resetting
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We analyze a one-dimensional intermittent random walk on an unbounded domain in the presence of stochastic
resetting. In this process, the walker alternates between local intensive search, diffusion, and rapid ballistic
relocations in which it does not react to the target. We demonstrate that Poissonian resetting leads to the existence
of a non-equilibrium steady state. We calculate the distribution of the first arrival time to a target along with its
mean and show the existence of an optimal reset rate. In particular, we prove that the initial condition of the
walker, i.e., either starting diffusely or relocating, can significantly affect the long-time properties of the search
process. Moreover, we demonstrate the presence of distinct parameter regimes for the global optimization of the
mean first arrival time when ballistic and diffusive movements are in direct competition.
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I. INTRODUCTION

In recent years, significant efforts have been dedicated to
studying optimal search strategies [1] in the field of behav-
ioral ecology, both theoretically and experimentally [2–5].
A paradigmatic kind of model often invoked to capture the
characteristics of animal trajectories is that of intermittent
movement, where different motion patterns or mechanisms
are alternated in time by the organism [6–8]. One such of
these intermittent search strategies is the intermittent random
walk (IRW) which combines two distinct phases. The first
one (known as ‘extensive’ search) consists of rapid ballistic
relocations that are often unresponsive to the presence of
the target, as it is considered that these movements are used
by the animals just for choosing a new region to explore,
and cognitive abilities are partially or completely suppressed
during this transit [9]. This relocation is then followed by
a slower diffusive phase (often denoted as ‘intensive local’
search) during which the target can be in general detected if
approached [9].

IRWs represent then a natural and significant extension of
Brownian trajectories in many contexts [10]. In biological sys-
tems, they have been tested as plausible mechanisms for seed
dispersal [11] or copepod dispersal [12]. Their use in physical
systems, however, is also widespread. They have been proved,
for instance, to offer a plausible framework to describe par-
ticle trajectories at liquid-solid interfaces [13], supercooled
liquids [14], colloidal suspensions [15], or in different types
of disordered media [16–18], among many others [19]. Also,
their convenience as a mechanism to optimize energy min-
imization algorithms have also been explored [20]. Finally,
their formal connection to self-trapping and/or self-avoiding
interactions has also been suggested as a possible underlying
mechanism to explain such trajectories at microscopic scales
[21].

Theoretical studies have demonstrated that IRWs are also
an effective search strategy in a wide range of scenarios
[6,22–27]. For the case of Poissonian switching between
the relocation and diffusion modes, an optimal relationship

between the two switching rates can minimize the mean
search time for detecting a randomly localized target in
bounded domains [22]. Despite the potential interest of this
model, a handicap of IRWs when regarded as search tra-
jectories is that their mean search time is still infinite in
unbounded domains, as happens with Brownian walkers and
other strategies totally or partially controlled by a homoge-
neous Gaussian noise. As a remedy to this, the mechanism of
stochastic resetting (in which the walker returns to its initial
position after a random sojourn time, and so arbitrary depar-
tures from the target are avoided) has been advocated. In the
particular case of biological foraging, stochastic resetting can
additionally offer a new layer of realism to the mechanism of
search. Indeed, many organisms repeatedly return to a central
nest, or to previously visited sites, as a part of their regular
foraging strategies [28]. This revisiting process can then be
effectively described by introducing a stochastic resetting of
the individual/animal position to those preferential points. In
such cases, stochastic resetting is capable of turning the mean
first passage finite. Furthermore, there exists an optimal value
for the rate at which stochastic resets are executed such that
the corresponding mean first passage time attains its minimum
value [29].

In this work, we explore the main transport properties of
an IRW model combining diffusive and relocation modes and
study its dynamics under stochastic Poissonian resetting. This
will allow us to study whether the existence of an unrespon-
sive mode (with relocations during which the target cannot
be detected) modifies significantly the arrival statistics to a
target. In Sec. II we review the properties of the mean square
displacement of the walker, and the first arrival time to a
hidden target in the absence of resetting. After that, in Sec. III
we compute the non-equilibrium stationary state reached by
the system when resetting is introduced, how the statistics
of the first arrival probability get modified accordingly, and
its dependence on the initial condition chosen. An exhaustive
analysis of the optimal mean first arrival time in terms of the
characteristic parameters is performed. It reveals an interest-
ing trade-off of the switching rates between the relocation and
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diffusive states. Finally, we summarize in Sec. IV the main
conclusions of our work.

II. IRW MODEL

Let ρ+(x, t ) and ρ−(x, t ) be the probability density of a
walker at position x at time t with velocities +v and −v,
respectively. States + and − correspond to a relocation mode
in which the walker moves ballistically during a random (and
exponentially distributed) time before switching to the dif-
fusive mode. After that, the walker moves diffusively for a
random time (in which it is also able to detect the target),
also exponentially distributed, before switching back to the
relocation mode. If the probability density for the walker to
be at position x at time t moving diffusively is ρ0(x, t ), then

∂ρ+
∂t

= −v
∂ρ+
∂x

− 1

τv

ρ+ + 1

2τD
ρ0, (1)

∂ρ−
∂t

= v
∂ρ−
∂x

− 1

τv

ρ− + 1

2τD
ρ0, (2)

∂ρ0

∂t
= D

∂2ρ0

∂x2
+ 1

τv

(ρ+ + ρ−) − 1

τD
ρ0, (3)

where τ−1
D and τ−1

v are the switching rates from diffusive
to relocation mode, and from relocation to diffusive mode,
respectively. Note that the factor 1/2 in the last term of the
right-hand side of Eqs. (1) and (2) implies that when switching
from diffusion to relocation, right and left moving states are
equally probable as there is no predilect direction. Never-
theless, for systems where the left-right symmetry is broken
in the relocation phase, one can generalize Eqs. (1)–(3) by
introducing the corresponding probability, p to relocate to
the right and 1 − p to relocate to the left. Let us introduce
now the Fourier transform (denoted with a bar symbol) and
the Fourier-Laplace transform (denoted with a hat symbol) as
follows:

ρ̄i(k, t ) =
∫ ∞

−∞
e−ikxρi(x, t )dx,

ρ̂i(k, s) =
∫ ∞

−∞
e−ikx

∫ ∞

0
e−stρi(x, t )dxdt

with i = 0,+,−. Transforming Eqs. (1)–(3) by Fourier-
Laplace we can write a single equation for ρ̂0(k, s):

sρ̂0(k, s) − ρ̄0(k, 0) = −Dk2ρ̂0(k, s) + 1

τD

[
(sτv + 1) − (sτv + 1)2 − (kvτv )2

(sτv + 1)2 + (kvτv )2

]
ρ̂0(k, s) + (sτv + 1)(ρ̄+(k, 0) + ρ̄−(k, 0))

(sτv + 1)2 + (kvτv )2

+ ikvτv

(ρ̄+(k, 0) − ρ̄−(k, 0))

(sτv + 1)2 + (kvτv )2
, (4)

where ρ̄i(k, 0) is the Fourier transform of the initial condi-
tion at state i. We study two different initial conditions for
a walker located at x = x0 at time t = 0. For the first case
(case I in the following) we consider the walker being at the
diffusive state i = 0, so that ρ̄0(k, 0) = e−ikx0 and ρ̄+(k, 0) =
ρ̄−(k, 0) = 0. For the second one (case II), we consider a
walker in the relocation state with the same probability of
being at states i = +,−, so that ρ̄0(k, 0) = 0 and ρ̄+(k, 0) =
ρ̄−(k, 0) = e−ikx0/2. To facilitate reading of the article, we
will use superscripts D and v (referring to the initial state,
diffusive or ballistic, in each case) to identify our results for
cases I and II. One could also consider that after the resetting
the system is in a random phase, that is, it could be diffusing
or relocating with the same probability after resetting. This
third case is included in Appendix A as the results obtained
for it can be understood via the first two cases here presented.
The distinction between these initial conditions is relevant as
in Sec. III we show that, in the presence of resetting, the effect
of the initial condition cannot be neglected. For case I the
propagator ρ̂(k, s) = ρ̂0(k, s) + ρ̂+(k, s) + ρ̂−(k, s) reads

ρ̂D(k, s) = ρ̂D
0 (k, s)

[
1 + τv

τD

sτv + 1

(sτv + 1)2 + (vτvk)2

]
, (5)

where ρ̂D
0 (k, s) is defined as

ρ̂D
0 (k, s) = e−ikx0

s + Dk2 + 1
τD

[
1 − sτv+1

(sτv+1)2+(vkτv )2

] . (6)

Analogously, for case II these expressions are

ρ̂v (k, s) = ρ̂v
0 (k, s)

[
1 + τv

τD

sτv + 1

(sτv + 1)2 + (vτvk)2

]

+ τve−ikx0
sτv + 1

(sτv + 1)2 + (vτvk)2
, (7)

ρ̂v
0 (k, s) = ρ̂D

0 (k, s)
(sτv + 1)

(sτv + 1)2 + (vkτv )2
. (8)

To study the transport properties of this IRW, we start
by computing the mean squared displacement (MSD) of
the whole process. We also note that, due to the symme-
try of the initial conditions, the mean distance traveled is
〈x(s)〉 = 1

i [ ∂ρ̂(k,s)
∂k ]k=0 = 0, where ρ̂(k, s) is the propagator of

the whole process [Eqs. (5) or (7) depending on the initial
condition]. Then, the MSD can be computed from 〈x2(s)〉 =
−[ ∂2ρ̂(k,s)

∂k2 ]k=0. Assuming x0 = 0 for simplicity, when trans-
forming back from Laplace space the MSD reads

〈
x2(t )

〉 =
2
(

D + (vτv )2

τD

)
(
1 + τv

τD

) t + A1 + A2e− t
τv + A3e−( 1

τv
+ 1

τD
)t
,

(9)

where the coefficients Ai with i = 1, 2, 3 take different values
depending on whether the walker is initially in the diffusive
or relocation state; specific values of Ai are included in Ap-
pendix B. Note that in the large time limit, regardless of the
initial condition, the MSD is essentially diffusive and behaves
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FIG. 1. Mean squared displacement for case I (green circles) and
case II (blue triangles). In solid lines we show the analytic result,
Eq. (9), and in dots data obtained from numerical simulations. The
parameters used are D = v = 1, τD = 3.8, τv = 3.3, and x0 = 0.

according to

〈x2(t )〉 = 2
DτD + (τvv)2

τD + τv

t as t → ∞. (10)

On the other hand, for short times one recovers a diffusive
MSD for case I, while for case II is ballistic, as expected given
the initial conditions

〈x2(t )〉D ≈ 2Dt as t → 0, (11)

〈x2(t )〉v ≈
(

v2 + D

τv

)
t2 as t → 0. (12)

In Fig. 1 we have compared Eq. (9) for cases I and II with
numerical simulations. We conclude then that the switching
processes between diffusive and relocation states on affects
the transient temporal behavior of the MSD.

A. First arrival time

A widely used measure of the efficiency of a search process
is the study of the statistics of a walker arriving for the first
time at a given position where a hidden target is located, that
is, the first arrival time (FAT) when the target position is con-
sidered as an absorbing boundary. In particular, we consider
the first arrival time density (FATD) and its mean (MFAT).
As stated above, we work under the assumption that the target
can only be detected when the walker is in the diffusive phase,
as is assumed that in the relocation phase the high velocity
prevents the walker from detecting the target [9]. Considering
searchers starting from an initial position x = x0 and a target
located at x = 0 one can rewrite Eq. (3) to account for the
target

∂ρ0

∂t
= D

∂2ρ0

∂x2
+ (ρ+ + ρ−)

τv

− ρ0

τD
− f (x0, t )δ(x), (13)

while Eqs. (1) and (2) remain unchanged. Here, f (x0, t ) is
the first arrival probability density to a target at the origin.
The role of the last term in Eq. (13) is to remove the particle

when it arrives at a target placed at x = 0. To compute the
FATD we transform Eqs. (1), (2), and (13) by Fourier-Laplace
and combine them in a single equation for ρ0. Integrating
this equation over k and using that

∫ ∞
−∞ dkρ̂0(k, s) = ρ̄0(x =

0, s) = 0, we obtain the FATD for case I, denoted with the
superscript D, which reads

f̃ D(x0, s) = I (x0, s)

I (x0 = 0, s)
, (14)

where f̃ (x0, s) is the Laplace transform of f (x0, t ) and

I (x0, s) = 1

2π

∫ ∞

−∞
ρ̂D

0 (k, s)dk

= 1

2π

∫ ∞

−∞

A(k, s)e−ikx0

k4 + B(s)k2 + C(s)
dk. (15)

The coefficients A(k, s), B(s), and C(s) are defined as

A(k, s) = (1 + sτv )2

D(vτv )2
+ k2

D
, (16)

B(s) = 1 + sτD

DτD
+ (1 + sτv )2

(vτv )2
, (17)

C(s) = (1 + sτv )[sτv + sτD(1 + sτv )]

DτD(vτv )2
. (18)

The integral (15) can be rewritten in the more suitable form

I (x0, s) = 1

2π

∫ ∞

−∞

A(k, s)e−ikx0

[k2 + λ2+][k2 + λ2−]
dk

with

λ± =
[

B(s) ±
√

B(s)2 − 4C(s)

2

]1/2

. (19)

It is not difficult to show that B2(s) > 4C(s) so that λ± are
always real values. From the residue theorem, the integral can
be computed as

I (x0, s) = A(k = iλ−, s)e−|x0|λ−

2λ−(λ2+ − λ2−)
− A(k = iλ+, s)e−|x0|λ+

2λ+(λ2+ − λ2−)

= 1

2(λ2+ − λ2−)

[
φ−e−|x0|λ−

D
− φ+e−|x0|λ+

D

]
, (20)

where we have defined φ±(s) as

φ±(s) = (1 + sτv )2

(vτv )2λ±
− λ±. (21)

From this, the FATD finally reads

f̃ D(x0, s) = φ−e−|x0|λ− − φ+e−|x0|λ+

φ− − φ+
. (22)

Now, for case II, denoted with the superscript v, the FATD in
the Laplace space follows straightforwardly,

f̃ v (x0, s) = J (x0, s)

I (x0 = 0, s)
, (23)
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FIG. 2. Example of two trajectories the green one for case I and
the blue one for case II. The dashed lines represent a reset to the
initial position. The parameters used are D = v = 1, τD = 3.8, τv =
3.3, x0 = 0, and r = 0.1. In the inset, other two trajectories for the
case without reset, for cases I (blue) and II (green), respectively.

where J (x0, s) is defined as

J (x0, s) = 1

2π

1 + sτv

D(vτv )2

∫ ∞

−∞

e−ikx0

k4 + B(s)k2 + C(s)
dk

= 1 + sτv

D(vτv )2

λ+e−|x0|λ− − λ−e−|x0|λ+

2(λ2+ − λ2−)λ−λ+
. (24)

Following the same reasoning as for case I, the final expres-
sion for the first arrival distribution reads

f̃ v (x0, s) = 1 + sτv

(vτv )2

λ+e−|x0|λ− − λ−e−|x0|λ+

λ+λ−(φ− − φ+)
. (25)

If one tries to compute the MFAT as 〈T (x0)〉 =∫ ∞
0 t f (x0, t )dt it goes to infinity as walkers are not confined.

We note that this is different from the results reported pre-
viously for the IRW, e.g., in [22,25] as in there the walker
was considered to be in a finite domain or interval. Thus, it
is clear that in unbounded domains the walker needs another
mechanism apart from the IRW in order to optimize the search
of a target.

III. RESETTING

As we have shown, in unbounded domains the MFAT to
a hidden target becomes infinity. We expect, and later show,
that the presence of stochastic resetting to the initial position
yields a finite MFAT to the target, as in numerous other works
(see Refs. [29,30] for example). The process with resetting
is as follows: the walker initially starts at x0 either diffusing
(case I) or relocating (case II). After some random time the
walker is returned instantaneously to its initial position and
the movement starts again. It is worth noting that a reset
implies that the process is started all over again. This implies
that if initially the walker started diffusing, after a reset the
walker will be in the diffusing state, or vice versa if the walker
is initially relocating. In Fig. 2 we present an example of
two sampled trajectories of the IRW with stochastic resetting,
where the dashed lines reveal that a reset has taken place

(example trajectories without reset are included in the inset
of the figure for better comparison).

A. Stationary state

It is known [31] that the propagator in the presence of
resets, namely ρr (x, t ), satisfies the renewal equation

ρr (x, t ) = ϕ∗(t )ρ(x, t ) +
∫ t

0
ϕ(t ′)ρr (x, t − t ′)dt ′, (26)

where ρ(x, t ) is the propagator in absence of resets, ϕ(t ) is the
probability of a resetting at time t , and ϕ∗(t ) is the comple-
mentary probability of not having a reset up to time t , that is
ϕ∗(t ) = ∫ ∞

t ϕ(t ′)dt ′. Considering a Poissonian resetting pro-
cess, i.e., exponentially distributed resets ϕ(t ) = τ−1

r e−t/τr ,
the propagator in the presence of resets in the Fourier-Laplace
space is related to the one without resets by means of

ρ̂r (k, s) = 1 + sτr

sτr
ρ̂

(
k, s + 1

τr

)
. (27)

It is known that the presence of resets induces a non-
equilibrium stationary state (NESS) [29,30]. Hence, we
compute the long time limit of Eq. (27) in order to study the
existence and properties of such NESS:

ρ̄ (s)
r (k) = lim

s→0
sρ̂r (k, s) = rρ̂(k, s = r), (28)

where r = 1/τr is the constant reset rate and the superscript
(s) denotes that it is the stationary propagator. It is interesting
to note that since the propagator depends on the initial state of
the walker, Eqs. (5) and (7), the stationary state will also be
different if the walker was initially either at the relocation or
diffusive states. In case I,

ρ (s),D
r (x) = r

[
1

2π

∫ ∞

−∞
ρ̂D(k, s)eikxdk

]
s=r

= r

[
I (|x − x0|, r) + τv

τD
J (|x − x0|, r)

]
, (29)

where I (x, s) is defined in Eq. (15) and J (x, s) in Eq. (24).
We note that in the absence of relocations (τD → ∞) one
recovers the result in Ref. [29]. On the other hand, for case
II the propagator at the stationary state is given by

ρ (s),v
r (x) = r

[
1

2π

∫ ∞

−∞
ρ̂v (k, s)eikxdk

]
s=r

= r

[
J (|x − x0|, r) + e−|x−x0|α

2v

+ τv (rτv + 1)2

(2DτD(vτv )4

(
e−|x−x0|λ−

λ−(λ2+ − λ2−)(α2 − λ2−)

− e−|x−x0|λ+

λ+(λ2+ − λ2−)(α2 − λ2+)

+ e−|x−x0|α

α(λ2+ − α2)(λ2− − α2)

)]
, (30)

where α ≡ (rτv + 1)/(vτv ). In Fig. 3 we show the comparison
between the NESS [computed through Eqs. (29) and (30)] and
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FIG. 3. The propagator at the stationary state for both initial
conditions, case I (green circles) and case II (blue triangles) in the
system with resetting. In solid lines we present the analytic solution,
Eqs. (29) and (30), and in dots data obtained from numerical sim-
ulations. The parameters used are D = v = 1, τD = 3.8, τv = 3.3,
x0 = 0, and r = 0.1.

numerical simulations, confirming the validity of our results.
We can see that, as expected, the NESS is different depending
on the initial condition of the walker. This is a result that
we are going to recover for all other magnitudes computed
in this work. This is due to the fact that resetting makes the
walker return to the initial condition and so, its effect is not
smoothed out at long times or long distances as is expected in
IRW processes without resetting.

B. Mean squared displacement

Next, we compute the MSD when resetting is present in the
model. Multiplying Eq. (26) by x2 and integrating over x one
obtains

〈x2(t )〉r =
∫ t

0
Q(t − t ′)ϕ∗(t ′)〈x2(t ′)〉dt ′, (31)

where 〈x2(t )〉 is the MSD in absence of resetting and Q(t ) is
the resetting rate function whose Laplace transform is

Q(s) = 1

1 − ϕ(s)
= 1 + sτr

sτr
.

Inserting Eq. (9) into Eq. (31) we finally obtain that the MSD
in the presence of resetting is given by

〈x2(t )〉r = 2
D + τ 2

v v2

τD(
1 + τv

τD

) τr (1 − e−t/τr )

+ A1 + A2

1 + τr
τv

(
1 + τr

τv

e−t (τr +τv )
τr τv

)

+ A3
[
1 + τr

τv

(
1 + τv

τD

)
e−t (τr +τv+τD )

τDτr τv

]
1 + τr

τv

(
1 + τv

τD

) , (32)

where again the constants A1, A2, and A3 are as in Eqs. (B1)–
(B3) for case I and Eqs. (B4)–(B6) for case II. From Eq. (32)

0 50 100 150
t
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40

〈x
2 (

t)
〉 r
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FIG. 4. MSD in the presence of resetting for cases I (green cir-
cles) and II (blue triangles) for the system with resetting. In solid
lines we present the analytic solution, Eq. (32), and in dots data
obtained from numerical simulations. The parameters used being
D = v = 1, τD = 3.8, τv = 3.3, x0 = 0, and r = 0.1.

it can be easily checked that

〈x2(t )〉r = 2
D + τ 2

v v2

τD(
1 + τv

τD

) τr + A1 + A2

1 + τr
τv

+ A3

1 + τr
τv

(
1 + τv

τD

) , as t → ∞,

so 〈x2(t )〉r tends to a constant value as time goes to infinity,
which is expected since it is the second moment of the NESS.
In Fig. 4 we compare our analytical result (32) with numerical
simulations and see that the analytical expressions are in good
agreement with the numerical data.

C. FAT under resetting

For the case without resetting, we have seen that the MFAT
goes to infinity for a target located in an unbounded space.
But as we have mentioned above many systems can optimize
the MFAT in the presence of stochastic resetting. Following
this reasoning we proceed to compute the FATD for the IRW
under resetting. We do so in Laplace space in terms of the
FATD of the system without resetting. Following [31], let
G0(x0, t ) be the survival probability for the system without
resetting and Gr (x0, t ) the one for the system with resetting;
both magnitudes are related via a last renewal equation

Gr (x0, t ) = e−rt G0(x0, t )

+ r
∫ t

0
e−rτ G0(x0, τ )Gr (x0, t − τ )dτ, (33)

Eq. (33) in Laplace space becomes

G̃r (x0, s) = G̃0(x0, s + r)

1 − rG̃0(x0, s + r)
. (34)

In order to find the FATD, f (t ), we note that it is related to the
survival probability via f (t ) = − ∂G(x0,t )

∂t , so, from Eq. (34) the
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FIG. 5. FATD in the presence of resetting for both case I (green
circles) and case II (blue triangles) obtained from numerical simula-
tions. The dotted lines are added as a visual guide. The parameters
used being D = v = 1, τD = 3.8, τv = 3.3, x0 = 10, and r = 0.1.

FATD with resetting in Laplace space reads

f̃r (s) = (s + r) f̃0(s + r)

s + r f̃0(s + r)
, (35)

where f̃0(s) is the first passage probability density without
resetting. In principle Eq. (35) can be transformed back to real
space, via the inverse Laplace transform. In Fig. 5 we present
a particular case for the FATD for cases I and II in real space
from simulation data. We have checked that the FATD decays
exponentially, though there is not a simple relation between
the decaying constant and the model’s parameters.

We can further compute the MFAT 〈T (x0)〉r from the first
passage probability density

〈T (x0)〉r =
∫ ∞

0
t fr (x0, t )dt = G̃r (x0, s = 0)

= G̃0(x0, r)

1 − rG̃0(x0, r)
= 1 − f̃0(s = r)

r f̃0(s = r)
. (36)

Combining Eqs. (22) and (36) the expression of the MFAT
for the case I is given by

〈T D(x0)〉r = 1

r

[
φ− − φ+

φ−e−|x0|λ− − φ+e−|x0|λ+
− 1

]
, (37)

where φ+, φ−, λ+, and λ− are as in Eqs. (19) and (21) but
setting s = r. It can be seen that if the searcher does not
relocate (τD → ∞), i.e., only diffuses then λ+ 
 √

r/D and
φ− 
 0. Therefore, Eq. (37) reduces to the well-known case of
Brownian walkers with stochastic resetting [29]. Analogously,
for case II the MFAT reads

〈T v (x0)〉r = 1

r

[
(vτv )2(φ− − φ+)/(rτv + 1)

λ−1
− e−|x0|λ− − λ−1

+ e−|x0|λ+
− 1

]
. (38)

We note that this result is different from that obtained in
Eq. (37) which reveals the explicit dependence of the MFAT
on the initial condition, i.e., if the walker is initially either re-
locating or diffusing. In this case, in the limit of no relocation,

10−1 100 101

r

0

25

50

75

100

125

150

M
FA

T

Case I

Case II

FIG. 6. MFAT in the presence of resetting for both cases I (green
circles) and II (blue triangles). In solid lines we show Eqs. (37)
and (38) and in dots data obtained from numerical simulations. The
parameters used being D = v = 1, τD = 3.8, τv = 3.3, x0 = 10, and
r = 0.1.

τD → ∞, the MFAT goes to

〈T v (x0)〉 
 1

r

[
λ2

+ − λ2
−

λ+e−|x0|λ− + λ−e−|x0|λ+
− 1

]
. (39)

This shows that the MFAT is dependent on the initial con-
dition also in this limit. It can easily be understood if noticing
that τD → ∞ means that the searcher only diffuses, so for
case I the walker does not relocate. It is not the case for
case II, where the walkers relocate at rate τ−1

v before switch-
ing to diffusion state. In the opposite limit, when D = 0 the
searcher only relocates, i.e., it never detects the target so that
the MFAT Eqs. (37) and (38) diverge. Effectively, if D = 0
then λ± → ∞ and 〈T (x0)〉r → ∞. One may notice that while
〈T D(x0)〉r → 0 as x0 → 0, 〈T v (x0)〉r tends to a constant value
given by

〈T v (x0)〉r 
 1

r

[
(vτv )2

rτv + 1

(φ− − φ+)λ+λ−
λ+ − λ−

− 1

]
(40)

in the same limit. This difference arises because for case II the
walkers do a relocation first (during which target detection
is not possible), so in general this is detrimental in order to
find the target for x0 → 0. More interesting is the case for
x0 → ∞, which satisfies

〈T D(x0)〉r

〈T v (x0)〉r

 rτv + 1

(vτv )2

1

φ−λ−
. (41)

In general, 〈T D(x0)〉r �= 〈T v (x0)〉r showing that the effect
of the initial condition is not smoothed out by a long time evo-
lution. As we have mentioned this behavior can be understood
because, in the presence of resetting, the walker is consistently
returned to its initial condition during the time evolution.

D. Existence of an optimal reset rate

In Fig. 6 we compare Eqs. (37) and (38) to numerical
simulations, so we can observe the emergence of an optimal
value of r minimizing the MFAT of the IRW, as happens
for the case of Brownian walkers too [29]. In the absence of
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resetting the walker takes an infinite time to reach the target
due to the non-recurrent nature of Brownian particles. On
the other hand, for large reset rates the walker’s motion is
localized near the reset point, also resulting in a very large
MFAT. To explore analytically the existence of this optimal
rate, we analyze Eq. (37) both for small and large r. Let us
first expand the MFAT for large r. From Eqs. (17) and (18) we
have B(r) 
 r2/v2 and C(r) 
 r3/Dv2 so that

λ+ 
 r/v, λ− 

√

r/D as r → ∞. (42)

Finally,

〈T D(x0)〉r 
 1

r
e|x0|

√
r/D as r → ∞ (43)

so that the MFAT tends to infinity as r does. This is the same
behavior as in the absence of resetting. To prove that the
optimal reset rate exists we just need to verify if the MFAT
decreases with r for small values of r, this is, if the condition

lim
r→0

(
∂〈T D(x0)〉

∂r

)
< 0 (44)

is met. Expanding λ± for small r we find

λ+ 
 λ0 + O(r), λ− 
 λ1
√

r + O(r), (45)

where

λ0 =
√

1

DτD
+ 1

(vτv )2
, λ1 = τD + τv

(vτv )2 + DτD
.

After some calculations, the dominant term in the expansion
of the MFAT for small r reads

〈T D(x0)〉 
 T0√
r

as r → 0, (46)

where

T0 = λ1(vτv )2

[
(e−|x0|λ0 − 1)

(
1

λ0(vτv )2
− λ0

)
+ |x0|

(vτv )2

]
.

Finally, the condition (44) applied to Eq. (46) is equivalent to
T0 > 0, or simply

|x0|λ0

1 − e−|x0|λ0
> − (vτv )2

DτD
,

which is always fulfilled. This confirms the existence of the
optimal reset rate.

One can also prove that Eq. (38) has an optimal reset rate
following an analogous procedure. In the limit of large reset
rate r, using Eq. (42) we find that

〈T v (x0)〉 
 τre|x0|
√

r/D as r → ∞. (47)

Analogously, using Eq. (45) we find that when r → 0 the
MFAT is given by Eq. (38) and behaves as in Eq. (46) but
with

T0 = λ1

λ0

[
(vτv )2

DτD
+ λ0|x0| + e−|x0|λ0

]
.

Since T0 is positive, the optimal reset rate also exists in
this case. In Fig. 7 we present some illustrative cases of the
dependence of the MFAT with r computed from Eqs. (37) and
(38) for cases I and II, respectively, to check the existence
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FIG. 7. MFAT vs r in the presence of resetting for different
parameter values. In (a), (b), and (c) case I is represented, the MFAT
computed with Eq. (37); (d), (e), and (f) are for case II, its MFAT
computed with Eq. (38). The parameters used are D = v = 1, τD =
3.8, τv = 3.3, and x0 = 1 unless stated the contrary. In (a) and (d) the
purple curve is for τv = 0.3, the blue one for τv = 3 and the yellow
one for τv = 10. For (b) and (e) the purple curve is for τv = 0.3, the
blue one for τv = 3, and the yellow one for τv = 10. In (c) and (f) the
purple curve is for x0 = 0.5, the blue one for x0 = 1, and the yellow
one for x0 = 2. All axes are on a logarithmic scale.

of the optimal value of r. Though we are not able to find a
compact relationship between the model parameters and the
minimal MFAT, in the next section we identify numerically
the existence of different regime behaviors of the MFAT.

E. Phase space parameter exploration

We have numerically studied the MFAT behavior for dis-
tinct parameter values τD, τv , x0, and r. We have kept v = 1
and D = 1 (note that one may change x and t to nondimen-
sional variables x → x v

D and t → t v2

D ). This allows us to focus
the study on the most interesting regime in which ballistic and
diffusive movements are in direct competition.

We have centered our study on finding the combination
of parameter values that globally minimize the MFAT. The
analysis was conducted in the following manner: for a set of
(τD, τv ) in the range from 10−4 to 107 we used Eqs. (37) and
(38) to compute the MFAT for different combinations within
the ranges r ∈ [10−3, 100] and x0 ∈ [10−2, 102].

For the diffusive initial condition, two distinct phases can
be observed (distinguished by the colors red and cyan in
Fig. 8(a). For the phase in cyan, which we name the localized
phase, the MFAT presents a well-localized minimum in the
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FIG. 8. (a) Phase diagram of the behavior of MFAT in (x0, r)
space for the diffusive initial condition (case I). (b), (c), and (d)
are representative examples of the MFAT in each phase and the
interphase in (τD, τv ) space for a given x0 and r. The Roman number
shows their corresponding position in the phase diagram. In (b)
x0 = 50, r = 0.05; in (c) x0 = 7.9, r = 0.05; and in (d) x0 = 0.05,
r = 0.05. For all plots D = 1 and v = 1.

(τD, τv ) phase space. This can be better identified in Fig. 8(b),
where we directly show for a specific choice of (x0, r) values
that the minimum value lies in a confined region of the space
(τD, τv). On the other hand, for x0 small we obtain the red
(non-localized) phase, for which the MFAT does not have a
well-defined minimum but rather there exists a plateau region
of (τD, τv ) values for which the MFAT becomes minimum.
In particular, any combination of (τD, τv ) out of the region
τv � τD will suffice to optimize the MFAT, as can be seen for
the case depicted in Fig. 8(d). For the sake of completeness, in
Fig. 8(c) we show the behavior of the MFAT for the interface
between both (localized and non-localized) phases, where we
observe the transition from one behavior to the other.

In Fig. 9 we present the same analysis for the relocation
initial condition, case II. In this case, we observe three differ-
ent phases. Apart from the localized and non-localized phases
above, we observe an intermediate situation (which we name
ballistic localization, in light yellow in Fig. 9(a). For this
region, the minimum of the MFAT is confined to a fine line
of (τD, τv ) values where τv is (regardless of the value of τD) at
least of the order of the timescale x0/v, which corresponds to
the case where the target can be reached on average in a single
relocation. Similarly to case I, in panels (b)–(d) of Fig. 9
we show the behavior of the MFAT for the three different
phases. Remarkably, the behavior for the non-localized phase
is slightly different in that now the region where the minimum
MFAT occurs does not include the region where τv is large.
This is because for x0 small a very large value of τv now
implies that the walker will depart on average much from the
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FIG. 9. (a) Phase diagram of the behavior of MFAT in (x0, r)
space for the relocation initial condition (case I). (b), (c), and (d) are
representative examples of the MFAT in each phase in (τD, τv ) space
for a given x0 and r. The Roman number shows their corresponding
position in the phase diagram. In (b) x0 = 50, r = 0.002; in (c)
x0 = 50, r = 0.3; and in (d) x0 = 0.02, r = 0.03. For all plots D = 1
and v = 1.

target position before switching to diffusive motion when the
target can be detected.

In parallel, we have studied how the values τD, τv which
minimize the MFAT depend on the model parameters x0, r
in the localized phase for both initial conditions. The corre-
sponding numerical results are presented in Figs. 10 and 11
as a function of x0 and r. While we have tried, it has not been
possible to detect any straightforward scaling relation that is
satisfied in the region of interest apart from the conditions
stated in the discussion above. This is due to the several
timescales (resetting, relocation, diffusive), all of them of a
similar order, directly competing in the process.

IV. CONCLUSIONS

We analyzed a two-state model for a one-dimensional
intermittent random walk subject to stochastic resetting at
a constant rate. One state corresponds to diffusive motion,
while the other represents a relocating phase where the walker
moves ballistically with a constant velocity in either the right
or left direction. We consider the possibility that the walker
may be initially diffusing (case I) or relocating (case II). We
studied the MSD and the FAT for this process first without
resetting and observed that, in the unbounded domain, the
MFAT diverges.

We then studied the system with resetting and demon-
strated the existence of a NESS. In addition, we computed
the FATD and we proved that its mean is finite in the system
with resetting and that there exists a value of the reset rate
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FIG. 10. Plots of τD and τv that minimize the MFAT for the lo-
calized phase of case I. The MFAT has been computed with Eq. (37).
(a) and (b) represent τD and τv , respectively, as a function of r,
the different curves for different values of x0 = 9.1, 11.4, 14.4, 18.2,

23.0, 29.0, 36.6, 46.1, 58.2, 73.4, and 92.5 from purple to yellow.
(c) and (d) represent τD and τv , respectively, as a function of x0,
the different curves being for different values of r, again, the purple
is for smaller values of r and yellow for larger ones. The r repre-
sented are r = 0.001, 0.0018, 0.0035, 0.0068, 0.012, 0.024, 0.046,

0.088, 0.16, 0.31, and 0.6. The dotted line on all panels signals the
transition to the other phase. All axes are on a logarithmic scale.
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FIG. 11. Plots of τD and τv that minimize the MFAT for the
localized phase of case II. The MFAT has been computed with
Eq. (38). (a) and (b) represent τD and τv , respectively, as a function
of r, the different curves for different values of x0 = 9.1, 11.4, 14.4,

18.2, 23.0, 29.0, 36.6, 46.1, 58.2, 73.4, and 92.5 from purple to yel-
low. (c) and (d) represent τD and τv , respectively, as a function of x0,
the different curves being for different values of r, again, the purple is
for smaller values of r and yellow for larger ones. The r represented
are 0.001, 0.0014, 0.002, 0.003, 0.0043, 0.0063, 0.0091, 0.013,

0.019, 0.027, and 0.04. The dotted line on all panels signals the
transition to the other phase. All axes are on a logarithmic scale.

that, given all the other parameters of the model, minimizes
the MFAT. Our study of the NESS, FATD, and MFAT for both
cases I and II shows that they differ depending on the initial
condition of the walker.

We argue that this behavior occurs because, in the pres-
ence of resetting, the initial condition is consistently revisited,
which prevents the smoothing out of its effect even in the
long-term limit. Thus, our results demonstrate the importance
of the initial condition (whether the individual starts diffusing
or relocating) for the search dynamics.

Next, we conducted a numerical analysis of the MFAT,
focusing on determining the parameter combination that max-
imizes its global optimization in the regime where ballistic
and diffusive movements directly compete. For case I, we
observed two distinct behaviors. There is a localized phase
in which the MFAT exhibits a well-localized minimum in
(τD, τv ) phase space. On the other hand, for small x0 or large
r there is a non-localized phase in which a plateau region
of values (τD, τv ) optimizes the MFAT. In this phase, the
specific combination of (τD, τv ) is not relevant for optimizing
the search. In the localized phase, however, it is. For case II
a third intermediate phase arises, ballistic localization. Here,
the minimum of the MFAT is restricted to a fine line region of
(τD, τv ) values, corresponding to the situation where the target
can be reached on average in a single relocation. The existence
of the localized phase for a non-trivial combination of (τD, τv )
reveals that having an unresponsive relocation phase is benefi-
cial for the optimization of the MFAT of the search process for
1D IRW in unbounded domains in the presence of resetting in
agreement with [22,24,25,27].

The analysis presented in this work contributes to the ex-
isting literature on search strategies and provides a foundation
for future research. Recently, it has been observed that some
kinds of birds combine the relocating mode with a subdif-
fusive detection mode [32]. Therefore, extending our IRW
model in this direction in the future would be of great value.
Other recent studies have focused on the energetic cost of
resetting [33–36], in these lines a worthwhile study of our
model is to consider not only the cost of resetting but also
the cost of switching phases or considering a phase more
energetic than the other. In this case, the optimization of the
MFAT would not suffice to characterize the efficiency of the
search strategy, but what has to be optimized is the total
cost of the exploration. Moreover, we note that we have pre-
sented a model with instantaneous resetting, while, for many
physical and biological systems, it would be more realistic
to consider it non-instantaneous such as in [37–42]. In the
present work we wanted to highlight the role of the trade-off
between the timescales diffusion and relocation and its inter-
play with resetting. Thus, we chose the instantaneous resetting
framework, which is more understood in the literature to put
forward these results as we considered that adding a non-
instantaneous reset would also introduce an extra timescale
which could obscure the role of the other timescales. For
future works, we aim to consider it non-instantaneous and see
how these results may change, we expect a similar qualitative
behavior for walkers resetting at constant speed. In a similar
line, in our study we considered both the diffusive phase and
the ballistic phase as part of the search process, following
the approach of Bénichou et al. in [9]. Hence, resetting can
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occur in either phase, restarting the search process as a whole.
However, for some applications, it may be useful to modify
this model so that resetting only occurs during the diffusive
state and see how the optimization of the MFAT changes.
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APPENDIX A: RANDOM INITIAL CONDITION

If one considers that the walker can start in either state,
diffusion or relocation, randomly then ρ̄0(k, 0) = e−ikx0/2 and
ρ̄+(k, 0) = ρ̄−(k, 0) = e−ikx0/4. From Eq. (4) the propagator
for the diffusing phase, ρ̂R

0 (k, s), reads

ρ̂R
0 (k, s) = ρ̂D

0 (k, s)

2
+ ρ̂v

0 (k, s)

2
, (A1)

where the superscript R means random initial condition. Sim-
ilarly the propagator for the complete process

ρ̂R(k, s) = ρ̂D(k, s)

2
+ ρ̂v (k, s)

2
. (A2)

Therefore, the MSD, FAT PDF with and without resets, and
steady state are simply linear combinations of cases I and II:

〈x2(t )〉R = 〈x2(t )〉D

2
+ 〈x2(t )〉v

2
, (A3)

f̃ R(x0, s) = f̃ D(x0, s)

2
+ f̃ v (x0, s)

2
(A4)

ρ (s),R
r (x) = ρ (s),D

r (x)

2
+ ρ (s),v

r (x)

2
. (A5)

On the other hand, from Eqs. (36) and (A4) the MFAT

〈T R(x0)〉r = 1

r

[
2(φ− − φ+)

σ−e−|x0|λ− − σ+e−|x0|λ+
− 1

]
, (A6)

where σ± = (1+rτv )(2+rτv )
(vτv )2λ±

− λ±. Then, we can see that the
MFAT cannot be written as a linear combination of cases I
and II. For this case, we have performed a similar parameter
exploration to the one done in Sec. III E and we have found
the same qualitative behavior of the MFAT to the one of
case II.

APPENDIX B: COEFFICIENTS FOR THE MSD

If the walker starts at the diffusive state (case I), the coeffi-
cients of the mean squared displacement, Eq. (9),

A1 = 2
τ 2
v

τD

D − 2τvv
2 − (τvv)2

τD(
1 + τv

τD

)2 , (B1)

A2 = 2(τvv)2, (B2)

A3 = −2
τ 2
v

τD

(D + τDv2)(
1 + τv

τD

)2 , (B3)

and if it is initially at the relocation state (case II),

A1 = 2
τv

2
(
v2 − D

τv

) − τv
3v2

τD

(
1 + τv

τD

)
(
1 + τv

τD

)2 , (B4)

A2 = 2τvv
2(τv − τD), (B5)

A3 = 2τv

(D + τDv2)(
1 + τv

τD

)2 . (B6)
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