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First-passage time of a Brownian searcher with stochastic resetting to random positions
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We study the effect of a resetting point randomly distributed around the origin on the mean first-passage time of
a Brownian searcher moving in one dimension. We compare the search efficiency with that corresponding to reset
to the origin and find that the mean first-passage time of the latter can be larger or smaller than the distributed
case, depending on whether the resetting points are symmetrically or asymmetrically distributed. In particular,
we prove the existence of an optimal reset rate that minimizes the mean first-passage time for distributed
resetting to a finite interval if the target is located outside this interval. When the target position belongs to the
resetting interval or it is infinite then no optimal reset rate exists, but there is an optimal resetting interval width
or resetting characteristic scale which minimizes the mean first-passage time. We also show that the first-passage
density averaged over the resetting points depends on its first moment only. As a consequence, there is an
equivalent point such that the first-passage problem with resetting to that point is statistically equivalent to the
case of distributed resetting. We end our study by analyzing the fluctuations of the first-passage times for these
cases. All our analytical results are verified through numerical simulations.
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I. INTRODUCTION

The theory of resetting processes has been developed con-
siderably in the last decade [1–10] and has allowed to gain
understanding in a variety of topics such as the optimiza-
tion of enzymatic reaction kinetics [11–13], computational
searches [14] or animal foraging [15–17]. The paradig-
matic case of Brownian motion under stochastic resetting
exhibits first-passage features different from ordinary diffu-
sion [2,8,18,19]. When the Brownian searcher is randomly
reset to a fixed position with a constant reset rate, the mean
first-passage time (MFPT) to a static target becomes finite
and can be minimized with respect to the reset rate [18].
Resetting, however, is not necessarily beneficial in all cases,
so a general criterion can be established to determine when
it can effectively reduce the MFPT of a random walker to
a static target [8,19,20]. Furthermore, the fluctuations of the
optimal first-passage time (when it exists) are found to share
remarkably simple universal properties [8,21].

Most of the current knowledge in the field strongly relies
on the case where a random searcher resets its position to a
single point. Despite their relevance, the phenomenology of
processes where the resetting point can vary from one reset to
another is far less known. Distributed resetting was discussed
formally for Brownian motion in the seminal paper [2]. Since
then, some works have gone further and have considered the
case where the resetting position is random and drawn from a
distribution. It is also highly natural to assume that in experi-
ments or nature resets cannot be performed with perfect preci-
sion. In addition, from a theoretical perspective, the resetting
distribution introduces new length scales into the problem,
which can give rise to interesting phenomena [22]. Recently, it
has been considered Poissonian resetting to multiples nodes in
a network [23], or the thermodynamical aspects of distributed
resetting [24,25]. However, studies on the fundamental prop-
erties of distributed resetting points are still scarce [26].

Here we analyze the MFPT of a Brownian searcher moving
in one dimension when it resets its position at a constant rate
to randomly distributed points x0 according to a probability
density function (PDF) f (x0). This PDF may account for a
known territory that is revisited as a consequence of spatial
memory. Resetting to this territory is a consequence of site
fidelity that many terrestrial and marine species display to
foraging and/or breeding locations [27,28]. We also compare
the efficiency (MFPT) and performance (coefficient of varia-
tion) of the search process between resetting to the origin or
resetting to randomly distributed points.

The paper is organized as follows. In Sec. II we obtain
an exact analytic expression for the two first moments of the
first-passage time PDF for the aforementioned situation. In
Sec. III we focus on the case where the resetting points are
symmetrically distributed in an interval and the target is lo-
cated outside. In Sec. IV we consider the case where the target
is located inside the resetting interval, and the case when the
resets are distributed along the whole real line; additionally,
we discuss the analogies and connections of this specific case
to search mechanisms based on intermittent random walks,
in particular, the so-called “teleportation” model [29,30]. In
Sec. V we consider the case of asymmetric resetting points.
Next, in Sec. VI we study the properties of the Equivalent
Resetting Point, for which resetting to that point results in
the same MFPT than for the case of distributed resets to an
interval. In Sec. VII we study the corresponding fluctuations
of the first-passage time for the most interesting cases above.
Finally, in Sec. VIII we conclude with a brief recapitulation of
our results.

II. MFPT

Consider a random walker such that at constant rate r its
location resets to a random position x0 drawn from the PDF
f (x0). The trajectory of the searcher is terminated whenever it
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hits the target position, xT . The first-passage problem for this
situation states that the Master equation for the probability of
finding the searcher at point x at time t is given by

∂P

∂t
= D

∂2P

∂x2
− rP + r f (x)Q(t ) − p f (t )δ(x − xT ), (1)

where D is the diffusion coefficient, Q(t ) is the survival prob-
ability up to time t and the rightmost term represents the
(absorbing) boundary condition P(x = xT , t ) = 0, with p f (t )
the first-passage time PDF. The latter is related to the survival
probability via

Q(t ) = 1 −
∫ t

0
p f (t ′)dt ′. (2)

Note that in Eq. (1) we multiply by Q(t ) the term corre-
sponding to the searchers diffusing after resetting, to ensure
explicitly that it includes only those trajectories that are
not terminated (or absorbed) by the effect of the sink term
p f (t )δ(x − xT ).

To solve Eq. (1) we perform the Fourier-Laplace (FL)
transform with the initial condition P(x, 0) = δ(x − x0),
where x0 is a random variable. The FL transform of P(x, t )
is defined by

P(k, s) =
∫ ∞

0
dse−st

∫ ∞

−∞
dxeikxP(x, t ),

so that FL transforming Eq. (1) we find

P(k, s) = eikx0 − eikxT

s + r + Dk2
+ r f (k) + seikxT

s + r + Dk2
Q(s), (3)

where we made use of the Laplace transform of Eq. (2), i.e.,
p f (s) = 1 − sQ(s), and f (k) and Q(s) are the Fourier and
Laplace transforms of the resetting positions PDF and the
survival probability, respectively. Now we need to impose the
absorbing boundary condition at the target position. Working
on the real space for the space positions and the Laplace
space for time, and using the definition of the inverse Fourier
transform we may write

P(x, s) = 1

2π

∫ ∞

−∞
e−ikxP(k, s)dk,

hence, the boundary condition P(x = xT , s) = 0 turns into∫ ∞

−∞
e−ikxT P(k, s)dk = 0.

In consequence, multiplying Eq. (3) by e−ikxT , integrating over
k, and equating to zero we find

Q(s) =
∫ ∞
−∞

1−eik(x0−xT )

s+r+Dk2 dk∫ ∞
−∞

r f (k)e−ikxT +s
s+r+Dk2 dk

. (4)

The integrals involved in Eq. (4) can be computed as follows:∫ ∞

−∞

dk

s + r + Dk2
= π√

D(s + r)
,

∫ ∞

−∞

eik(x0−xT )

s + r + Dk2
dk = πe−|x0−xT |

√
r+s
D√

D(s + r)
,

so finally through the convolution property of the Fourier
transform it follows that∫ ∞

−∞

f (k)e−ikxT

s + r + Dk2
dk

= π√
D(s + r)

∫ ∞

−∞
f (x0)e−|xT −x0|

√
r+s
D dx0. (5)

Inserting these results into Eq. (4), we get the explicit expres-
sion for the survival probability in the Laplace space:

Q(s) = 1 − e−|x0−xT |
√

r+s
D

s + r
∫ ∞
−∞ f (x0)e−|xT −x0|

√
r+s
D dx0

. (6)

Note that the small s expansion for the PDF of the MFPT is

p f (s) = 1 − sT + s2

2
T 2 + ..., (7)

where the different moments are defined as

T n =
∫ ∞

0
t n p f (t )dt (8)

and

p f (s) =
∫ ∞

0
e−st p f (t )dt . (9)

However, from the Laplace transform of Eq. (2), expanding
Q(s) for small s yields

Q(s) = Q(s = 0) + sQ′(s = 0) + s2

2!
Q′′(s = 0) + . . . (10)

Taking into account the relation

p f (s) = 1 − sQ(s) (11)

in the Laplace space and equating the coefficients of the pow-
ers of s we find the two first moments of the first-passage PDF:

T = Q(s = 0), T 2 = −2Q′(s = 0). (12)

From Eqs. (6) and (12) the MFPT is then given by

T (x0) = Q(s = 0) = 1 − e−|x0−xT |
√

r
D

r
∫ ∞
−∞ e−|x0−xT |

√
r
D f (x0)dx0

, (13)

provided that |x0 − xT | = |xT − x0|. However, x0 is a random
variable drawn from f (x0) and the averaged mean first-
passage time (AMFPT) over the possible values of x0 is

〈T 〉x0
=

∫ ∞

−∞
T (x0) f (x0)dx0 = 1

r

[
1

I (r, xT )
− 1

]
, (14)

with

I (r, xT ) ≡
∫ ∞

−∞
e−|x0−xT |

√
r
D f (x0)dx0, (15)

which corresponds to the result found by Evans and Majumdar
in Ref. [2]. Without losing generality, we will assume xT > 0
and will call by D the support of f (x0) from now on. Also, in
the Appendix we prove (for sanity) that I (r, xT ) < 1, so that
〈T 〉x0 > 0.
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A. Effect of the resetting distribution on the first-
passage time PDF

Here we are going to unveil some relevant properties of
the survival probability derived in the previous section. If we
average over the reset point PDF f (x0) (multiplying Eq. (6)
by f (x0) and integrating over x0), then we obtain

〈Q(s)〉x0
= 1 − I (s + r, xT )

s + rI (s + r, xT )
, (16)

where I (r + s, xT ) is given in Eq. (15) replacing r by r + s.
We note that since the averaged survival probability only
depends on the resetting distribution through the integral
I (s, xT ), a fixed form of this integral determines completely
the survival properties of the target (and then the first-passage
time PDF). Putting this together with the result in Eq. (14),
we find that specifying the value of the AMFPT [which is
equivalent to fix I (s, xT )] the first-passage properties become
univocally determined. This means that any resetting point
PDF f (x0) leading to the same AMFPT will follow exactly the
same first-passage statistics, revealing a somewhat universal
behavior of the averaged first-passage distribution.

Going further, we could put Eq. (16) in terms of 〈T 〉x0 by
inverting Eq. (14). While a closed expression cannot be found
in general, in the limit s � r it is easy to see that one obtains

〈Q(s)〉x0
	 〈T 〉x0

1 + s〈T 〉x0

. (17)

Similarly, the first-passage PDF (in the Laplace space) will
read

〈p f (s)〉x0 = 1 − s〈Q(s)〉x0
	 1

1 + s〈T 〉x0

. (18)

Thus, one finds that both the survival probability and the
first-passage distribution averaged over the resetting points
distribution are always exponential in the long time limit
(s � r), and its dependence on r and f (x0) is exclusively
contained within the first moment 〈T 〉x0 .

III. SYMMETRIC RESETTING POINTS PDF
IN AN INTERVAL AND xT /∈ D

In this section, we introduce some assumptions to get ana-
lytical results for the AMFPT. We consider that the resetting
process is symmetric, this is, the probability of resetting to x0

or −x0 is the same. This means that f (x0) is an even function.
Additionally, we assume xT /∈ D, so from Eq. (15) we get

I (r, xT ) = e−xT

√
r
D

∫
D

ex0

√
r
D f (x0)dx0. (19)

Then Eq. (14) becomes

〈T 〉x0
= 1

r

⎡
⎣ exT

√
r
D∫

D f (x0) exp
(
x0

√ r
D

)
dx0

− 1

⎤
⎦. (20)

Using for instance D = [−L, L], then

〈T 〉x0
(r, L) = 1

r

⎡
⎣ exT

√
r
D∫ L

−L f (x0)e−x0

√
r
D dx0

− 1

⎤
⎦. (21)

In the limit r → 0+ the integral in Eq. (21) tends to 1 so that
〈T 〉x0 ∼ r−1; this means that the AMFPT diverges to +∞ in
this limit. However, for the limit r → ∞ we can find a lower
bound for 〈T 〉x0 , so if we prove that the lower bound diverges
as r → ∞, then 〈T 〉x0 will do. If we consider then∫ L

−L
f (x0)e−x0

√
r
D dx0 < max

x0

(
e−x0

√
r
D
) ∫ L

−L
f (x0)dx0

= eL
√

r
D ,

then we see that

〈T 〉x0
(r, L) >

1

r

[
e(xT −L)

√
r
D − 1

]
is satisfied. Since xT > L, in the limit r → ∞ the lower bound
tends to infinity and thus 〈T 〉x0 → ∞. Therefore, we conclude
that there exists a value of r which optimizes the AMFPT
when the resetting points are symmetrically distributed in a
finite interval. This is the first main result of this work. Next,
we study how the AMFPT depends on L and find the optimal
reset rate r in the cases where it exists; to this end, we need to
consider specific choices for f (x0).

A. Example: Uniformly distributed reset points in an interval

We assume first that the reset points x0 are uniformly
distributed in the interval [−L, L]. That is, f (x0) = 1/2L if
x0 ∈ [−L, L], and zero otherwise. Therefore, from Eq. (15),

I (r, xT , L) = 1

L

√
D

r
e−xT

√
r
D sinh

(
L

√
r

D

)
, (22)

so Eq. (20) reduces to

〈T 〉x0
(r, L) = 1

r

⎡
⎣L

√
r

D

exT

√
r
D

sinh
(
L
√ r

D

) − 1

⎤
⎦. (23)

When L → 0, the PDF of resetting points tends to a Dirac
delta function and Eq. (23) reduces to the Evans and Majum-
dar (EM) result in Ref. [18], that is, when the searcher resets
to x0 = 0,

〈T 〉x0
(r, L → 0) = 1

r

(
exT

√
r
D − 1

)
. (24)

However, when xT → L, Eq. (23) becomes

〈T 〉x0
(r, L = xT ) = 1

r

[
L

√
r

D

2

1 − e−2L
√

r
D

− 1

]
. (25)

In Fig. 1 we plot 〈T 〉x0 (r, L) with respect to L for fixed val-
ues of the rest of parameters. The agreement between the
simulations (circles) and Eq. (23) is excellent. The particular
cases of Eqs. (24) and (25) are also shown in the figure (blue
and green symbols). As can be seen, the AMFPT decreases
monotonically with the width of the resetting points interval,
i.e., resetting to a point (this is the case L = 0) is less effective
(the AMFPT is higher) than resetting to uniformly distributed
points.

We are also interested in finding the optimal reset rate
that minimizes the AMFPT, namely ropt. Let us introduce the
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〉 x 0

〈T 〉x0
(L)

Data

L = xT

EM

FIG. 1. AMFPT for uniformly distributed reset points PDF in
an interval [−L, L] for xT /∈ D. The solid line represents Eq. (23).
The data points are obtained from numerical simulations. In blue
(triangle) we present the Evans and Majumdar result, Eq. (24), and
in green (square) the case L → xT , Eq. (25). The parameters used for
the numerical simulations are D = 1, r = 0.1, and xT = 10. We have
used N = 105 trajectories.

following dimensionless quantities:

ε = L/xT , z = xT

√
r/D. (26)

Since xT > L, then 0 < ε < 1 and from Eq. (23),

D

x2
T

〈T 〉x0
= εez

z sinh(εz)
− 1

z2
. (27)

Note that the case ε = 0 reduces to the EM case. In Fig. 2 we
observe the existence of an optimal reset rate, ropt, for different
values of L and compare the result given in Eq. (27) with
numerical simulations. In agreement with Fig. 1 we observe
that curves with large L lead to lower values of the AMFPT.

1.0 1.5 2.0 2.5 3.0
z

1.4

1.6

1.8

2.0

〈T
〉 x 0

D
/x

2 T

L = 1.50

L = 2.00

L = 2.50

FIG. 2. D
x2

T
〈T 〉x0 as function of the parameter z = xT

√
r/D for

three values of L, L = 1.50 (red), L = 2.00 (green), and L = 2.50
(blue). The lines represent Eq. (27) while the points (circles, tri-
angles, and squares) are data from numerical simulations. The
parameters used are D = 1, r = 0.1, and xT is computed given a fixed
value of z. For the simulations we have used N = 105 trajectories.

0.2 0.4 0.6 0.8
ε

0

20

40

60

80

r o
pt
x

2 T
/D

roptx
2
T/D

Numeric

FIG. 3. roptx2
T /D vs ε. The solid line is computed using Eq. (29)

while the data points are obtained by numerically computing
d〈T 〉x0/dz = 0.

Computing d〈T 〉x0/dz = 0 we obtain a transcendent equa-
tion for z whose solution, namely zopt, allows us to compute
the optimal reset rate as

ropt = D

x2
T

z2
opt. (28)

We can obtain approximated analytic results for the op-
timal reset rate by introducing the perturbative expansion
z = z0 + z1ε + z2ε

2 + ... into the equation for d〈T 〉x0/dz = 0.
Equating the coefficients of the powers of ε we can calculate
z0, z1,... The O(0) coefficient is 2 + (z0 − 2)ez0 = 0 whose
solution is z0 = 1.5936 and corresponds to the value found in
Ref. [18]. The next order, O(1) gives z1 = 0 while the second
order gives

z2 = − z3
0(z0ez0 − 4ez0 + 4)

6
(
z2

0ez0 + 4 − 4ez0 + z0ez0
) = 1.1363.

Finally, from Eq. (26),

ropt = 2.5396
D

x2
T

[
1 + 0.713

(
L

xT

)2

+ ...

]2

, (29)

where the prefactor corresponds to the value of the optimal
reset rate found by EM, and we have found the lowest order
correction term due to the uniform resetting in the interval
[−L, L]. We compare in Fig. 3 the numerical solution to the
equation d〈T 〉x0/dz = 0 (circles) with the approximation pro-
vided by Eq. (29) (curve). We note that when the target is far
from the resetting interval, xT  L that is ε → 0, the optimal
situation takes place when the reset rate is low and so the
searcher has enough time to reach the target. Then, as ε → 0
we expect ropt → 0. This is observed in Fig. 3. Contrarily, as
xT → L, i.e., ε → 1, to increase the chance of reaching the
target, the optimal strategy is to avoid large excursions which
implies increasing the reset rate. This is also observed in Fig. 3
where ropt increases with ε.
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FIG. 4. AMFPT for uniformly distributed reset points PDF in an
interval [−L, L] for xT ∈ D. The solid line represents Eq. (32). The
data points are obtained from numerical simulations. The parameters
used for the numerical simulations are D = 1, r = 0.1, and xT = 10.
We have used N = 105 trajectories. In the inset, the solid line rep-
resents the AMFPT as a function of the resetting rate r for L = 15
from Eq. (32). The dashed line shows the predicted scaling as r−1/2.

IV. SYMMETRIC RESETTING POINTS PDF AND xT ∈ D

In this section we consider the case xT ∈ D when the reset-
ting points are symmetrically distributed in an interval [i.e.,
f (x0) has finite support] or in the real line [ f (x0) has infinite
support].

A. Finite support

Let us assume first D = [−L, L], and so −L < xT < L;
then the value of L ranges from xT to ∞. From the first
equality in Eq. (A2) and considering that f (x0) is an even
function we get

I (r, xT , L) = e−xT

√
r
D

∫ xT

−L
f (x0)ex0

√
r
D dx0

+ exT

√
r
D

∫ L

xT

f (x0)e−x0

√
r
D dx0. (30)

If the resetting point PDF f (x0) is uniform in [−L, L], then

I (r, xT , L) = 1

L

√
D

r

[
1 − e−L

√
r
D cosh

(
xT

√
r

D

)]
, (31)

and from Eq. (14) the AMFPT reads

〈T 〉x0
(r, L) = 1

r

⎡
⎣ L

√ r
D

1 − e−L
√

r
D cosh

(
xT

√ r
D

) − 1

⎤
⎦. (32)

In Fig. 4 we check Eq. (32) with numerical simulations, for
both the behavior of the AMFPT with respect to r and with
respect to L, showing an excellent agreement. To prove that
there exists always an optimal L which minimizes the AMFPT
we study its behavior both for L → xT and for large L. On
the one hand, it can be shown that [∂〈T 〉x0 (L)/∂L]L=xT <

0. On the other hand, from Eq. (32) it is easy to see
that 〈T 〉x0 (L) ∼ L as L → ∞. The optimal resetting domain

width, say Lopt, can be found from Eq. (32) by solving the
equation ∂〈T 〉x0/∂L = 0 to get

Lopt =
√

D

r

[
−1 − W−1

(
− 1

e cosh
(
xT

√ r
D

)
)]

, (33)

where W−1(·) is the lower branch of the Lambert function.
For example, for the data used in Fig. 4 from Eq. (33) we find
Lopt = 12.97, which seems to agree with the location of the
minimum observed in Fig. 4. At L = xT the target is located at
the right limit on the resetting interval and the AMFPT reaches
the value

〈T 〉x0
(r, L = xT ) = 2xT /

√
rD

1 − e−2xT

√
r
D

.

As L departs from xT and increases, to reach the target is
more likely and the AMFPT decreases. On the other side,
if L is large enough then an increase of L yields a larger
AMFPT. Then, there must be an optimal L which minimizes
the AMFPT as shown in Fig. 4.

Finally, we are also interested in finding if there exists an
optimal reset rate as in the previous example. In the limit
where r approaches to 0 from the left we find the behavior
〈T 〉x0 ∼ r−1/2, so that Eq. (32) diverges in this limit. In the
limit r → ∞ then it is shown that 〈T 〉x0 ∼ r−1/2 as well. Al-
together, no optimal reset rate exists and the scaling behavior
〈T 〉x0 ∼ r−1/2 is observed both for small and large r. This is
shown in the inset of Fig. 4 where the scaling r−1/2 is observed
within some orders of magnitude.

We also note that in this case of bounded domains with
the resetting distribution including the target location, the
model can be seen as a special case of the “teleportation”
model [29,30] which has been studied in the context of pro-
teins searching for a target site on DNA substrates. In that
model, the authors examine a two-state search process that
combines a diffusive search phase with relocation to any point
in the domain. The time the searcher spends in each phase
follows an exponential distribution, with a characteristic rate
for each phase. Therefore, to account for the time the walker
spends in the relocation phase, a residence time after the reset
(as was done for instance in Refs. [31,32]) must be considered.

B. Infinite support

The second situation consists in considering D = R. Let
us assume for example that the resetting point is exponentially
distributed. If we consider

f (x0) = α

2
e−α|x0|, α > 0, (34)

into Eq. (14), then we get

I (r, xT , L) = α

α2 − r
D

(
αe−xT

√
r
D −

√
r

D
e−xT α

)
.

The AMFPT finally reads from Eq. (14)

〈T 〉x0
(r, α) = 1

r

⎛
⎝ α2 − r

D

α2e−xT

√
r
D − α

√ r
D e−xT α

− 1

⎞
⎠. (35)
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FIG. 5. AMFPT for exponentially distributed reset points as a
function of α. The solid line represents Eq. (35), the data points are
obtained from numerical simulations and the dotted line represents
the value of 〈T 〉x0 for the EM case [Eq. (24)]. The parameters used
for the simulations are D = 1, r = 0.1, and xT = 5. We have used
N = 5 × 105 trajectories. In the inset, the solid line represents the
AMFPT as a function of the resetting rate r for α = 1 from Eq. (35).
The dashed line shows the decaying as r−1/2. Both axes are on a
logarithmic scale.

Taking the limit r → 0+ to Eq. (35) we find 〈T 〉x0 ∼ r−1/2.
Taking the limit r → ∞ to (35) one has 〈T 〉x0 ∼ r−1/2 as well,
and then no optimal reset rate exists. This scaling can be seen
in the inset of Fig. 5.

From Eq. (35) it results that 〈T 〉x0 ∼ α−1 as α → 0+, while
in the limit α → ∞ the exponential function in Eq. (34)
tends to a delta function so 〈T 〉x0 tends to a constant value
corresponding to the EM result in Eq. (24). For example, con-
sidering the specific case shown in Fig. 5 and using Eq. (24),
the AMFPT in the limit of large α is 38.6.

V. RESETTING TO TWO POINTS

Next, we consider the situation in which the resetting pro-
cess is not symmetric. Recall that Eq. (20) holds only for
symmetric f (x0), so here we need to make use of the general
expression (15) to compute the AMFPT. Let us consider for
the sake of simplicity the resetting points PDF given by

f (x0) = pδ(x0 − L) + (1 − p)δ(x0 + L), (36)

which means that the searcher either resets to the point x0 =
+L with probability p, or to the point x0 = −L with probabil-
ity 1 − p.

If xT > L, then from Eqs. (14) and (36),

〈T 〉x0
(r, L) = 1

r

⎡
⎣ exT

√
r
D

(1 − p)e−L
√

r
D + peL

√
r
D

− 1

⎤
⎦. (37)

It can be shown that 〈T 〉x0 approaches EM result Eq. (24) in
the limit L → 0. For L > 0, 〈T 〉x0 reaches a maximum value
at

L = Lc =
√

D

r
ln

(√
p(1 − p)

p

)
,
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(c)
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FIG. 6. Diagram L
√

r/D vs p for asymmetric resetting points
in an interval with xT > L. The parameter ξ is defined as ξ =
〈T 〉x0 (L = 0)/〈T 〉x0 (L). We have obtained the value of ξ numerically
from Eqs. (24) and (37). The green region (ξ > 1) corresponds to the
case where the asymmetric resetting strategy is more efficient, while
in the gray region the most efficient strategy is to reset to x0 = 0. The
blue line, computed through Eq. (38), represents L∗√r/D vs p. Panel
(a) is for a reset rate r = 0.01, panel (b) for r = 0.1, and panel (c) for
r = 1.

provided that 0 < p < 1/2. For 1/2 < p < 1, Lc does not
exist and the maximum of 〈T 〉x0 is attained at L = 0. How-
ever, when 0 < p < 1/2 it can be shown that 〈T 〉x0 (L = 0) <

〈T 〉x0 (L) for 0 < L < L∗ and 〈T 〉x0 (L = 0) > 〈T 〉x0 (L) for
L∗ < L < xT , where we have defined

L∗ =
√

D

r
ln

(
1 − p

p

)
. (38)

In Fig. 6 we summarize these results graphically. For xT <

L and using Eqs. (14) and (36),

〈T 〉x0
(r, L) = 1

r

⎡
⎣ eL

√
r
D

(1 − p)e−xT

√
r
D + pexT

√
r
D

− 1

⎤
⎦, (39)

i.e., the AMFPT is monotonically increasing with L for L ∈
(xT ,∞). Note that this expression is the same as Eq. (37) but
exchanging xT and L.

To study the optimal reset rate that minimizes the AMFPT
we proceed as above. It is easy to show that in the limit
r → 0+ the AMFPTs given by Eqs. (37) and (39) go as r−1 as
in the previous examples. Hence, the AMFPT diverges when
r approaches to 0. In the limit r → ∞ from Eq. (37) we
have 〈T 〉x0 ∼ e(xT −L)

√
r/D

r , and this goes to infinity provided that

xT > L. For xT < L, using Eq. (39) we have 〈T 〉x0 ∼ e(L−xT )
√

r/D

r
as r → ∞, so the existence of an optimal reset rate is proven
if xT �= L. However, for the specific case xT = L we have
〈T 〉x0 ∼ r−1 and no optimal reset rate exists; the minimum
value of the AMFPT is zero and it is attained as r → ∞. This
means that the optimal reset rate diverges as L tends to xT . By
proposing the ansatz

ropt ∼ |ε − 1|−β, as ε → 1, (40)

one can compute the exponent β. We proceed numerically as
in the previous section. Considering Eq. (26) into Eqs. (37)
and (39) we find

D

x2
T

〈T 〉x0
=

{
1
z2

[
ez

(1−p)e−εz+peεz − 1
]
, 0 < ε < 1,

1
z2

[
eεz

(1−p)e−z+pez − 1
]
, ε > 1.

(41)

In Fig. 7 we compare this result against numerical simulations.
The agreement is excellent for both cases ε < 1 and ε > 1.
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FIG. 7. D
x2

T
〈T 〉x0 as function of the parameter z = xT

√
r/D for

p = 0.25 (red) and p = 0.75 (blue). The lines represent Eq. (41)
while the points (circles and triangles) are data from numerical simu-
lations. The parameters used for obtaining the data are D = 1, xT = 2
and r is computed given a fixed value of z. In panel (a) ε = 0.2 thus
L = 0.2. In panel (b) ε = 1.8 thus L = 3.6. For the simulations we
have used N = 105 trajectories.

In agreement with our reasoning, in both cases there is an
optimal reset rate that minimizes the AMFPT. In the case
ε → 1 we observe (see Fig. 8) that

ropt ∼ D/x2
T

|ε − 1|2 , (42)

so that the exponent β = 2 ± 10−7. To show this analytically
we make use of Eqs. (28) and (40) and write zopt ∼ |δ|−β ,
where δ = ε ± 1. It is important to note that there will appear
terms proportional to z and to zδ and in the limit ε → 1±, i.e.,
δ → 0 we have z → ∞ and z  zδ.

Let us deal with the cases ε > 1 and ε < 1 separately. By
taking the derivative of Eq. (41) with respect to z for ε < 1 we
find that the zopt is solution to

p(δz − 2)e4ze−3zδ + (1 − p)(−2 + 2z − δz)e2ze−zδ

= 2(pe2ze−2zδ + 1 − p)2. (43)

It is not difficult to see that the first term on the left-hand side
of Eq. (43) is much higher than the second term in the limit
δ → 0 (z → ∞), where δ = 1 − ε. The term of the right-hand
side of Eq. (43) approaches 2p2e4z. Equation (43) reduces then

−2.0 −1.5 −1.0

log(|ε − 1|)

3

4

5

lo
g(

r o
pt
D

/x
2 T
)

ε → 1−

(a) -2.00x + 0.57, p=0.25

-2.00x + 0.48, p=0.75
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r o
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D

/x
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ε → 1+

(b) -2.00x + 0.57, p=0.25

-2.00x + 0.48, p=0.75

FIG. 8. ropt (ε) for ε → 1 for p = 0.25 (red circles) and p = 0.75
(blue triangles). The dots are obtained by numerically minimizing
Eq. (41) and the lines are linear regressions to the data, for each
curve the correlation coefficient R2 = 0.9999. In panel (a) ε → 1−.
In panel (b) ε → 1+. The log in the axes stands for the decimal
logarithm.
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f (x0) = U[−L,L]
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FIG. 9. First-passage PDFs. We simulate the resetting process to
a point x0 randomly sampled from the symmetric resetting points
PDF in the interval [−L, L] and we compute the first-passage PDF,
represented in red triangles. We then simulate the resetting process to
the ERP and compute the first-passage PDF, represented in blue cir-
cles. The y axis is in logarithmic scale, so we can see the exponential
behavior of the PDF at long times, as expected from Sec. II A. The
parameters used for the numerical simulations are xT = 5, D = 1,
r = 0.1, L = 2 and N = 107 trajectories.

to δzopt ∼ 2p(1 + p), so that δ1−β/2 ∼ O(δ0), leading to β =
2.

We can proceed analogously for ε > 1. Taking the deriva-
tive of Eq. (41) with respect to z we find

(1 − p)(2 − 2z − zδ)e2zezδ + p(2 − δz)e4zeδz

= 2(pe2z + 1 − p)2 (44)

for ε > 1, where now δ = ε − 1. In the limit δ → 0 we see
that the second term of the left-hand side of Eq. (44) is larger
than the first one. So that, p(2 − δzopt ) ∼ 2p2, i.e., δzopt ∼
2(1 − p), which leads to δ1−β/2 ∼ O(δ0) and then to β = 2
again.

VI. EQUIVALENT RESETTING POINT

We address now the following question: Given a specific
resetting point PDF f (x0), what is the specific value of a
single reset point xe such that the resulting MFPT is the same
as the AMFPT obtained for the distributed case with f (x0)?
The value of xe can be denoted as an Equivalent Resetting
Point (ERP) with respect to the PDF f (x0). As we have
seen in Sec. II A, any choice of f (x0) which shares the same
MFPT will lead to the same first-passage PDF, so we expect
that the first-passage statistics of resetting to the ERP will
be completely equivalent to the case of distributed resetting,
independent of f (x0). In Fig. 9 we confirm this with with
numerical simulations for the case where f (x0) is taken as an
uniform distribution in the interval (−L, L).

Considering Eqs. (14) and (15) with f (x0) = δ(x0 − xe) the
MFPT for the ERP will be of the general form

〈Te〉x0
= 1

r

(
e|xe−xT |

√
r
D − 1

)
. (45)
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In consequence, by the definition of xe, equating Eq. (45) to
Eq. (14) the following relation has to be satisfied:

|xe − xT | = −
√

D

r
ln [I (r, xT )]. (46)

As we have proven in the Appendix, I (r, xT ) < 1 so that the
sign of the right-hand side of Eq. (46) is positive. Solving
Eq. (46) for xe we find two possible solutions:

x±
e = xT ∓

√
D

r
ln [I (r, xT )]. (47)

Both solutions for the ERP are at the same distance from the
target, the positive (negative) solution corresponding to the
ERP at the right (left) side of the target, respectively.

Let us consider now some particular cases. The ERP corre-
sponding to the symmetric resetting points PDF in the interval
[−L, L] with xT /∈ D, is from Eqs. (19) and (47)

x+
e = 2xT −

√
D

r
ln

[∫ L

−L
f (x0)ex0

√
r
D dx0

]
,

x−
e =

√
D

r
ln

[∫ L

−L
f (x0)ex0

√
r
D dx0

]
. (48)

For an uniform resetting points PDF in [−L, L] with xT > L,
and using Eq. (48), we obtain

x+
e = 2xT −

√
D

r
ln

[
1

L

√
D

r
sinh

(
L

√
r

D

)]
,

x−
e =

√
D

r
ln

[
1

L

√
D

r
sinh

(
L

√
r

D

)]
. (49)

Alternatively, for the case in Eq. (36) where the searcher
resets to −L or to L with probabilities 1 − p and p, with xT >

L, using Eq. (47) we get

x+
e = 2xT −

√
D

r
ln

[
peL

√
r
D + (1 − p)e−L

√
r
D
]
,

x−
e =

√
D

r
ln

[
peL

√
r
D + (1 − p)e−L

√
r
D
]
. (50)

When xT ∈ D the solutions given by Eq. (47) can be
written as

x+
e = xT − 	(xT ),

x−
e = xT + 	(xT ), (51)

where 	(xT ) = √
D/r ln[I (r, xT )]. If we consider the uniform

resetting points PDF in [−L, L] with −L < xT < L, then the
integral I (r, xT ) is given by Eq. (31) and

	(xT ) =
√

D

r
ln

{
1

L

√
D

r

[
1 − e−L

√
r
D cosh

(
xT

√
r

D

)]}
.

(52)

When the PDF of resetting points is given by Eq. (34), then

	(xT ) =
√

D

r
ln

{
α

α2 − r
D

(
αe−xT

√
r
D −

√
r

D
e−xT α

)}
. (53)
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FIG. 10. Diagram xr/xT vs L/xT for the equivalent resetting
point with xT /∈ D. We have obtained the value of 
, defined in
Eq. (55), numerically using Eqs. (24) and (23) in panel (a) and
Eqs. (24) and (37) in panels (b) and (c). In the gray region (
 > 1),
it is more efficient to reset to distributed random points. However,
in the green region, the efficient strategy is to reset to xr . The red
solid line represents x+

e while the blue dashed line represents x−
e .

Panel (a) corresponds to a uniform resetting points PDF in [−L, L]
the red and blue lines being computed with Eq. (49). Panels (b) and
(c) the searcher resets to −L or L with probabilities 1 − p and p,
respectively. Then the red and blue lines are computed with Eq. (50).
Panel (b) is for p = 0.25 and panel (c) is for p = 0.75.

Finally, for the asymmetric case given by Eq. (36) with
xT < L, we get

	(xT ) =
√

D

r
ln

[
e−L

√
r
D
(
pexT

√
r
D + (1 − p)e−xT

√
r
D
)]

.

(54)

We are now interested in comparing the AMFPT of reset-
ting to distributed points 〈T 〉x0 with the AMFPT of resetting
to a fixed point, say xr , 〈Tr〉x0 . To this end, we define the
dimensionless quantity


 = 〈T 〉x0

〈Tr〉x0

, (55)

where 〈Tr〉x0 = (e|xr−xT |
√

r
D − 1)/r. Obviously, using the defi-

nition of the ERP, we have that xr = xe leads immediately to

 = 1.

In Figs. 10 and 11 we illustrate a comparison between both
resetting protocols. In the former we plot the diagram xr/xT

versus L/xT for the equivalent resetting point when xT /∈ D
[these curves have been plotted from Eq. (50)]. In the latter we
show a diagram for xr/xT versus L/xT s when xT ∈ D [these
curves correspond to the results found in Eq. (51) together
with Eqs. (52), (53), and (54)].

VII. FLUCTUATIONS OF THE MFPT

To complete our discussion about the AMFPT, in this sec-
tion we will study the corresponding fluctuations for the case
of a Brownian searcher with distributed resetting.

Averaging Eqs. (7), (10), and (11) over the resetting points,
we have

〈T n〉x0
= (−1)n+1n

[
∂n−1〈Q(s)〉x0

∂sn−1

]
s=0

, n � 1. (56)
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FIG. 11. Diagram xr/L vs xT /L for the equivalent resetting point
when xT ∈ D. We have obtained the value of 
, defined in Eq. (55),
numerically using Eqs. (24) and (32) in panel (a), Eqs. (24) and (35)
in panel (b), and Eqs. (24) and (39) in panels (c) and (d). In the gray
region (
 > 1), it is more efficient to reset to distributed random
points. However, in the green region, the efficient strategy is to reset
to xr . The red solid line represents x+

e while the blue dashed line
represents x−

e computed with Eq. (51). We make use of Eq. (52) in
panel (a), Eq. (53) in panel (b), and Eq. (54) in panels (c) and (d).

Hence, for n = 2 the second moment 〈T 2〉x0 is given by

〈T 2〉x0 = 2

rI (r, xT )

{
∂rI (r, xT )

+ 1 + r∂rI (r, xT )

rI (r, xT )
[1 − I (r, xT )]

}
. (57)

Accordingly, the variance of the first-passage time is

σ 2 = 〈T 2〉x0 − 〈T 〉2
x0

= 1

r2

[
1 + 2r∂rI (r, xT )

I (r, xT )2
− 1

]
, (58)

and the coefficient of variation (CV), defined as the quotient
between the standard deviation and the AMFPT, can be ex-
pressed as

CV = σ

〈T 〉x0

=
√

1 − I (r, xT )2 + 2r∂rI (r, xT )

1 − I (r, xT )
. (59)

First of all we note that the condition for the optimal resetting
rate, i.e., ∂〈T 〉x0/∂r = 0 can be combined with Eq. (59) to find
CV = 1, in agreement with Ref. [8], this is, CV is universally
equal to 1 at the optimal resetting rate. For the examples
studied above we want to study the behavior of CV with the
width of the resetting interval L and also with the resetting
rate r.

A. Example: Uniform resetting PDF with xT > L

We consider first the case when f (x0) is uniform in,
(−L, L), with xT > L. From the definitions in Eq. (26),

together with Eq. (22), we get

I (ε, z) = sinh(εz)

εzez
, 2r

∂I (r, xT )

∂r
= z

∂I (ε, z)

∂z

= e−z

[
cosh(εz) − 1 + z

εz
sinh(εz)

]
. (60)

Introducing these results into Eq. (59) we get the expression
for the CV corresponding to the uniform resetting PDF with
0 < L < xT (or 0 < ε < 1), namely CV(ε, z). For fixed xT the
limit L → 0, that is, ε → 0 we find

CVEM = CV(ε = 0, z) =
√

e2z − zez − 1

ez − 1
, (61)

which corresponds to the EM limit found in Eq. (3) in Ref. [8].
However, in the opposite limit L → xT one has ε → 1 so that

CV(ε = 1, z) = �(z)

1 + (2 z − 1)e2 z
,

where we have defined

�(z) ≡
√

(4z2 + 2z + 2)e2z − 1 + (4z2 − 2z − 1)e4z.

Although it can be numerically proven that CV(ε = 1, z) >

CV(ε = 0, z) for any z ∈ (0,∞) and ε ∈ [0, 1] using the
results above, it does not prove in general that a min-
imum value for CV(ε, z) exists, for a given ε, in this
case. However, analyzing the behavior of CV(ε, z) near
ε = 0, it can be shown that [∂CV(ε, z)/∂ε]ε=0 = 0 but
the second derivative [∂2CV(ε, z)/∂ε2]ε=0 > 0 if z ∈ (0, z∗)
and [∂2CV(ε, z)/∂ε2]ε=0 < 0 if z ∈ (z∗, 0), where z∗ = 3.83.
Therefore, there is an optimal value Lopt for L which mini-
mizes CV(ε, z) if and only if r > rc, where rc = 14.67D/x2

T .
We conclude that if r > rc the fluctuations of the FPT when
the searcher resets to points uniformly distributed with L =
Lopt are smaller than when resetting to a point (L = 0). Other-
wise, when r < rc the resetting process to a point has smaller
fluctuations than resetting to points uniformly distributed
regardless of the value of L. In Fig. 12 we compare CV com-
puted from Eqs. (59) and (60) (solid curves) with numerical
simulations (symbols), showing an excellent agreement. It is
shown that for r > rc (in blue) the CV reaches a minimum
value, while for r < rc (in red) such minimum does not exist.
We also plot (green lines) the CV corresponding to the EM
case, i.e., where the searcher resets to the origin (L = 0),
computed from Eq. (61). When r < rc we have CV > CVEM

while if r > rc then this condition depends on L.
Now we want to explore how the CV depends on the reset

rate r. To do this, we do z → 0 (with the rest of values fixed)
and obtain from Eq. (60) that CV 	 z−1/2 ∼ r−1/4, so that CV
diverges as r tends to 0. This is equivalent to z → ∞, and from
Eq. (60) we find that CV tends to 1. In this case, although we
have numerically observed that there is always a minimum for
CV, we are not able to prove rigorously its existence.

In Fig. 13 we plot CV as a function of r for two values of
L. We show in green the case CVEM, which allows us to see
that depending on the values of r, CV can be higher or lower
than CVEM.
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FIG. 12. Coefficient of variation CV as a function of L for r =
0.15, r < rc, (red solid line and triangles) and r = 0.60, r > rc (blue
dashed line and circles). The lines represent Eq. (59) while the points
are data obtained from numerical simulations. The green horizontal
lines represent the EM case. The parameters used are xT = 8, D = 1
and N = 106 trajectories. rc = 0.23.

B. Example: Uniform resetting PDF with xT ∈ D
Let us consider now the case xT > 0 for simplicity. Intro-

ducing the dimensionless parameters (26) into Eq. (31) it turns
into

I (ε, z) = 1

εz
[1 − e−εz cosh(z)].

Since xT > 0 and −L < xT � L, then ε ∈ [1,∞) holds. This
can be used to compute CV from Eq. (59). To analyze the
behavior of CV with L we fix a value of z and vary ε.
We note that CV(ε → 1+, z) > 1 and CV(ε → ∞, z) ∼ 1 +
1/2zε + .... Since [∂CV(ε, z)/∂ε]ε=1 > 0, we conclude that
CV reaches a maximum value for a specific value of L.

In Fig. 14 we compare the CV for the uniform reset points
PDF computed from Eq. (59) with numerical simulations for
two different values of r. It confirms the decay CV ∼ L−1
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r
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C
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EM

FIG. 13. Coefficient of variation CV as a function of r for L = 5
(red solid line and triangles) and L = 7 (blue dashed line and circles).
The lines represent Eq. (59) while the points are data obtained from
numerical simulations. The parameters used are xT = 8, D = 1, and
N = 106 trajectories. The value of r at which CV = 1 is ropt = 0.044.
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FIG. 14. Coefficient of variation CV as a function of L for r =
0.1 (red solid line and triangles) and r = 0.50 (blue dashed line and
circles). The lines represent Eq. (59) while the points are data ob-
tained from numerical simulations. The parameters used are xT = 5,
D = 1 and N = 106 trajectories.

towards CV = 1. However, if we fix L and vary r, then we see
that CV ∼ r−1/4 as r → 0 and CV ∼ 1 as r → ∞. Moreover,
we have numerically checked that [∂CV/∂r] < 0, so that CV
decreases monotonically with r towards CV = 1. So, there
is no value for r such that CV = 1, which is in agreement
with the fact that there is no optimal reset rate that minimizes
the AMFPT. In Fig. 15 we compare the CV computed from
Eq. (59) for the uniform reset points PDF with numerical
simulations, confirming the scaling of CV with r.

VIII. CONCLUSIONS

We have studied the effect of distributed resetting points
PDF on the AMFPT of a Brownian searcher moving in one di-
mension. We have compared the search efficiency of resetting
to the origin with the efficiency of resetting to randomly, both
symmetrically or asymmetrically, distributed points around
the origin.
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FIG. 15. Coefficient of variation CV as a function of r for L = 10
(red solid line and triangles) and L = 25 (blue dashed line and cir-
cles). The lines represent Eq. (59) while the points are data obtained
from numerical simulations. The parameters used are xT = 5, D = 1,
and N = 106 trajectories.
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We have proved the existence of an optimal reset rate,
which minimizes the AMFPT, when the resetting points are
symmetrically distributed in an interval if the target position is
outside the interval. In this case, we have shown that resetting
to the origin is always less efficient than resetting uniformly
on an interval. When the resetting points are symmetrically
distributed but the target is located inside the domain of the
resetting points PDF, then we prove that there is no optimal
reset rate but there is still an optimal interval width or an
optimal characteristic resetting length which minimizes the
AMFPT.

We have also considered an asymmetric resetting mecha-
nism with different probabilities to two reset points located
at the same distance to the left and right from the origin. For
this case we have proved the existence of an optimal reset rate,
except when the target is located on one of the resetting points.
In addition, we show that the optimal reset rate diverges as
a power law as the target position approaches the position
of a resetting point. Additionally, we have shown that the
first-passage PDF averaged over the resetting points depends
on the AMFPT only, revealing a somewhat universal behavior.

Finally, we have studied the fluctuations of the MFPT as
a consequence of resetting to randomly distributed points and
observed that they can be higher or lower than the fluctuations
of the FPT of resetting to the origin depending on the reset rate
and the resetting interval width. In all cases, our theoretical
predictions have been successfully compared to numerical
simulations.
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APPENDIX

We consider two different situations: first, x0 ∈ D, with
xT /∈ D but xT > 0; second, xT ∈ D. In the former case, since
xT > x0, ∀x0 ∈ D, we have |x0 − xT | = |xT − x0| = xT − x0

so that

I (r, xT ) = e−xT

√
r
D

∫
D

ex0

√
r
D f (x0)dx0

< e−xT

√
r
D max

x0∈D
(
ex0

√
r
D
) ∫

D
f (x0)dx0

= e−xT

√
r
D max

x0∈D
(
ex0

√
r
D
)

< 1. (A1)

In the latter case, let us say D = [a, b] and so a < xT < b.
Hence,

I (r, xT ) =
∫ xT

a
e(x0−xT )

√
r
D f (x0)dx0

+
∫ b

xT

e−(x0−xT )
√

r
D f (x0)dx0

< e−xT

√
r
D max

x0∈(a,xT )

(
ex0

√
r
D
) ∫ xT

a
f (x0)dx0

+ exT

√
r
D max

x0∈(xT ,b)

(
e−x0

√
r
D
) ∫ b

xT

f (x0)dx0

=
∫ xT

a
f (x0)dx0 +

∫ b

xT

f (x0)dx0 = 1. (A2)

If the support of f (x0) is the real line, then the above proof
still holds by doing a = −∞ and b = +∞.
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