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Dynamic redundancy as a mechanism to optimize collective random searches
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We explore the case of a group of random walkers looking for a target randomly located in space, such that the
number of walkers is not constant but new ones can join the search, or those that are active can abandon it, with
constant rates rb and rd , respectively. Exact analytical solutions are provided both for the fastest-first-passage
time and for the collective time cost required to reach the target, for the exemplifying case of Brownian walkers
with rd = 0. We prove that even for such a simple situation there exists an optimal rate rb at which walkers
should join the search to minimize the collective search costs. We discuss how these results open a new line to
understand the optimal regulation in searches conducted through multiparticle random walks, e.g., in chemical
or biological processes.
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I. INTRODUCTION

In recent years, there has been an increasing interest about
the so-called redundancy principle and its role in biochemical
and biological processes [1–10]. This principle is based on the
notion that “many copies of a single object such as molecules,
cells, etc... is not a waste, but it has a specific function in living
systems” [11]. This has been seen as a facilitation mechanism
to activation rates at the cellular level through the presence and
creation of a large (redundant) number of activators. The cor-
responding statistical properties of the activation process will
be then governed by the fastest activator to reach the receptor,
providing an attractive link to extreme value statistics [11–17].

There is actually a rich literature on the problem of the
fastest-first-passage time (FFPT) of a group of N random
particles to a target located at a distance x0 from their initial
position (see, e.g., Refs. [18–36]). For Brownian particles
in one-dimensional (1D) infinite domains, for example, it
is known that the mean fastest-first-passage time (MFFPT)
becomes finite for N � 3 [24] (while the classical case N = 1
yields a divergent mean first-passage time), and its distribution
has a leading term 〈T 〉 = x2

0/(4D ln N ) for N → ∞ [19,23],
with D the diffusion coefficient. In two and higher dimen-
sions, instead, the MFFPT remains infinite for any value of N
[18,24]. While some approximations have been proposed for
the corresponding FFPT distribution [23,37,38], exact results
are extremely difficult to obtain.

The fact that redundant walkers/trajectories can modify the
first-passage statistics of a process is reminiscent of the case of
random walks with stochastic resetting and similar processes
[39–43]. There, the possibility to restart the trajectory anew
gives the walker the option to rectify strong departures from
the target location. This has been applied to different fields
including molecular biophysics [44,45], stochastic thermo-
dynamics [46,47], Brownian gases [48], quantum computing
[49,50], optimal control [51], or photon dynamics [52], to
name a few. Likewise, stochastic resetting has also been
studied for the multiparticle case (the corresponding survival

probability was actually explored in the seminal work in
Ref. [39]), but most previous approaches have been limited to
simplified or approximated results (see Refs. [41,53] and ref-
erences therein). Also, a particular case of interest is that given
in Ref. [54], where a process of random searchers disappear-
ing and being replaced by new ones (so N is kept constant)
was explored both analytically and numerically, reaching a
formal expression for the mean search time given in terms of
the probability density function of the searcher position.

In this article we explore an extended version of this
problem through the notion of dynamic redundancy, which
denotes the case where the number of searchers N is not
fixed, so searchers can join/abandon the foraging process.
This is inspired in the case of eusocial biological species,
like honeybees or ants, where the rate at which foragers
emerge out of the nest is regulated internally by the colony
according to some communication rules, but it extends to
other situations of interest like signal transduction [55], cell
selection/recognition [56,57], and the dynamics of deformable
mediums [58] or quantum particles [59]. Surprisingly, the case
of a variable number of searchers has received low attention
in the literature, with a few exceptions in which random
walkers are assumed to become inactivated and vanished af-
ter some time, see, e.g., Refs. [17,30,35,54], or aggregate
[60]. However, considering a continuous release of particles
and/or a decay of particles represent natural extensions of
these problems. For the cases of signal transduction and cell
selection and recognition, for example, where activation and
deactivation of certain processes is governed by the arrival
of the fastest particle to an activation and recognition site,
a birth-death dynamics can be a natural way of considering
a continuous release of particles and/or an absorption pro-
cess which removes the particles during their transit from
the release point to the activation site, respectively. The case
of multiparticle processes in deformable mediums would be
another useful example, though this corresponds to the more
difficult situation where explicit interactions between particles
and the surrounding media are at play. Finally, the multiparti-
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FIG. 1. Schematic representation of the dynamic redundancy
problem, where the number of walkers searching for a random target,
n(t ), evolves in time according to a birth-death dynamics between a
quiescent (where the individual stays quiet in the nest) and an active
(random-walk) state.

cle quantum random-walk has been traditionally employed as
a search algorithm in different contexts [59], so it would be
reasonable to explore whether creation-annihilation operators
representing a birth-death dynamics may have some signifi-
cant influence on the search efficiency within this context.

II. DYNAMIC REDUNDANCY PROBLEM

We consider a group of walkers initially located at position
x0 (which represents their “nest”) in a quiescent state, so
they cannot move from there. At t = 0 one walker suddenly
switches to the active state, which means that it starts a
random walk trajectory from x0. From then on, the number
of walkers in the active state, n(t ), is assumed to follow
a birth-death stochastic dynamics so new active individual
can emerge from the nest with a certain probability, or those
active can become quiescent again (and then its position is
instantaneously reset to x0). For simplicity, we will assume
that the transition between the two states is Markovian, so the
birth-death process is governed by constant rates rb and rd (see
Fig. 1 for a schematic visualization of the idea).

Our specific aim in the present work is twofold. First, we
want to understand the properties of the FFPT (denoted by T )
that it takes for the group to reach a target located at x = 0,
as a function of the birth-death dynamics described above.
Second, we want to check whether there is an optimal shape
of n(t ) (that is, optimal rates rb and rd ) that can be used to
reach the target with a minimum cost. For this, we introduce
the concept of collective time cost (CTC) as

Tc(t ) =
∫ t

0
n(t ′) dt ′. (1)

This can be interpreted as the sum of the individual search
times spent by every active walker up to time t . Then, Tc(t =
T ) represents a first-passage functional the CTC up to the
FFPT (formally, Tc(T ) is a first-passage functional [61,62]
subordinated to the birth-death process n(t ). Note that T itself
depends explicitly on n(t ), so this makes the computation of
Tc(T ) nontrivial. Typically, minimizing the CTC will require a
balance between keeping both T and n(t ) small; we will focus
here on understanding the properties of that balance.

A. Connection to previously studied cases

The dynamic redundancy problem for rb = rd = 0 reduces
to the classical first-passage problem for a single walker, while
the case rb = 0, rd �= 0 would correspond to the case of mortal
random walkers (see Refs. [17,28,63–66]). Also, the situation
rb � rd can be mapped into the case of stochastic resetting,
with rd representing the reset rate. In this case, the birth-death
process will satisfy most of the time n(t ) = 0, and occasion-
ally a single active walker will emerge from the nest (n(t ) > 1
being extremely unlikely). Since the quiescent periods where
n(t ) = 0 do not contribute to the integral in Eq. (1), the statis-
tics of Tc(T ) will then correspond to that of the first-passage
time for the stochastic resetting case. So, its mean value will
tend to 〈Tc〉 = (ex0

√
rd /D − 1)/rd for Brownian walkers in one

dimension [39].

III. EXACT SOLUTION FOR rd = 0

In the following we focus in an exemplifying case where
search trajectories are never terminated (rd = 0), and then
n(t ) is a strictly increasing process. As we shall see, this
particular case admits an exact analytical treatment and it
suffices to investigate the aforementioned balance necessary
for minimizing the CTC.

We define f (t ) as the probability distribution for the
FFPT, and the corresponding survival probability is denoted
as S(t ) = ∫ ∞

t f (t ′)dt ′. For convenience, we will separate all
the realizations of the stochastic process that lead to the target
detection at time t into those which correspond to n(T ) = 1,
n(T ) = 2, and so on. So that we define the survival probability
for the case n(T ) = N as S(t |N ), so this corresponds to the
probability that the target has not been reached yet at time t ,
conditioned to the fact that there are N active walkers by that
time. Note that the expression for N = 1 will satisfy S(t |1) =
Ssw(t )e−rbt , where Ssw(t ) represents the survival probability
for the classical case of a single walker (it is, for rb = rd = 0),
and the exponential factor e−rbt is the probability that no
additional active walkers have emerged in the interval (0, t ).

Through these definitions, we can then write the recurrence
relation [67]

S(t |N ) = rbe−rbt
∫ t

0
Ssw(t )S(t − t1|N − 1)dt1, (2)

where the integration variable t1 represents the random time
at which the second walker becomes active, it is, the time
at which n(t ) = 1 switches to n(t ) = 2. So that, in Eq. (2)
the term S1(t ) = Ssw(t )e−rbt is being multiplied by rb

∫ t
0 S(t −

t1|N − 1)dt1, where the latter represents the survival probabil-
ity for the remaining N − 1 active walkers integrated over all
possible values of t1. The previous relation allows us to find
recurrently the general expression for S(t |N ), which takes the
form

S(t |N ) = e−rbt Ssw(t )
[rbg(t )]N−1

(N − 1)!
, (3)

where we have introduced g(t ) ≡ ∫ t
0 Ssw(t ′)dt ′. Now, the gen-

eral expression for the survival probability in our dynamic
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redundancy problem is easily derived as

S(t ) =
∞∑

N=1

S(t |N ) = Ssw(t )e−rb(t−g(t )), (4)

and the corresponding first-passage distribution is simply
f (t ) = −dS(t )/dt [67].

One can follow a similar procedure for Tc. So, we will
define Tc(t |N ) as the contribution to the mean collective time
cost (MCTC) that comes from all the realizations of the search
process for which n(T ) = N . Hence, the overall MCTC (com-
puted over all possible values of N and all possible values of
the FFPT) is simply

〈Tc〉 =
∫ ∞

0
dT Tc(T ) =

∫ ∞

0
dT

∞∑
N=1

Tc(T |N ). (5)

It is possible to check that the expressions for Tc(t |N ) also
satisfy a recurrence relation which allows us to write them in
terms of S(t |N − 1) and Tc(t |N ). Using that recurrent relation,
one can derive again the expression for the integrand in the
MCTC (5) [67]:

Tc(T ) = e−rb[T −g(T )]{rbSsw(T )[T + g(T ) − 2T Ssw(T )]

+ r2
bh(T )Ssw(T )[1 − Ssw(T )]

+ fsw(T )[T + rbh(T )]} (6)

with h(t ) ≡ ∫ t
0 t ′Ssw(t ′)dt ′, and where we define fsw(t ) =

−dSsw/dt as the first-passage time distribution for the clas-
sical (single-walker) case.

A. Brownian walkers in one dimension

While we have reached exact expressions for the survival
probability and the CTC, it is not trivial in general to compute
their average properties. Let us consider that active walkers
behave as Brownian particles in a 1D domain with diffu-
sion coefficient D. For this, it is well-known that Ssw(t ) =
erf ( x0

2
√

Dt
), with erf (·) representing the error function [68].

However, introducing this expression into (4) or (6) does not
allow to reach an exact expression neither for the mean-first
passage time 〈T 〉 = ∫ ∞

0 S(t )dt nor for the MCTC (5). So, we
will take the two timescales driving the search process, i.e. the
diffusive scale x2

0/4D and the birth scale r−1
b , and will focus

on the behavior for the limit cases where the dimensionless
parameter χ ≡ x2

0rb/4D becomes either small or large.
Integrating by parts and using Eq. (4), the MFFPT 〈T 〉 can

be written in the form 〈T 〉 = x2
0φ(χ )/2D, where the scaling

function φ(χ ) is defined in the Supplemental Material [67].
Using this scaling, the leading term of 〈T 〉 can be properly
computed in the limits χ � 1 and χ � 1 (the corresponding
derivation is also provided in the SI file). This leads to

〈T 〉 �

⎧⎪⎨
⎪⎩

x0√
Drb

, rb � 4D/x2
0,

x2
0

4D ln
(√

2
243π

x2
0 rb
D

) , rb � 4D/x2
0 .

(7)

Similarly, the CTC also admits a scaling form 〈Tc〉 =
x2

0φc(χ )/2D, where φc(χ ) is also defined in the SI file. Its
leading order behavior in the two limits χ � 1 and χ � 1

FIG. 2. MFFPT (in blue) and the MCTC (in orange) as a function
of the birth timescale r−1

b . Solid lines correspond to the exact values
computed from numerical integration, and symbols correspond to
random-walk simulations. Dotted and dotted-dashed lines represent
the analytical asymptotic behavior predicted in Eqs. (7) and (8). All
the results shown correspond to the case x0 = 5, D = 1.

above reads

〈Tc〉 ∼
{ x0√

Drb
, rb � 4D/x2

0,
χ

(ln χ )2 , rb � 4D/x2
0 .

(8)

Equations (7) and (8), together with the general expressions
(4) and (6) from which they are derived, represent the main
results of our work. To visualize these results, in Fig. 2 we
plot both the MFFPT and the MCTC as a function of the birth
scale. There, the solid lines correspond to the exact values of
these two quantities obtained from numerical integration of
our exact expressions above, and the symbols correspond to
random-walk simulations that we have carried out (averaging
over 104–105 realizations of the collective search process)
to confirm the validity of our derivations. From the plots
obtained, we see how the asymptotic results indicated above
for the limits χ � 1 and χ � 1 (represented through dotted
and dashed-dotted lines, respectively) are recovered in the
appropriate regimes.

It is interesting to note that in the regime χ � 1 one finds
〈T 〉 ≈ 〈Tc〉. This is because in most of the realizations the tar-
get will be reached by the first active walker before the second
one becomes active. There is still a relatively small probability
that the first active walker departs from the target as time goes
by. For rb = 0 this would lead to the divergence of both 〈T 〉
and 〈Tc〉, while for rb small the target is found in a finite time
thanks to the new active walkers eventually appearing. From
the properties of a diffusive flux to an absorbing boundary in
a 1D semi-infinite domain (see, e.g., Ref. [69]), we know that
the fraction of the trajectories that lead the first searcher far
away from the target decreases as ∼t−1/2, so this explains the
scaling 〈T 〉 ∼ 1/

√
rb obtained in Eq. (7).

For the situation χ � 1, a very large number of active
walkers will emerge in a time much smaller than the diffusive
scale x2

0/D. Such a situation is then reminiscent of the case of
a set of N walkers searching from the target from the same
initial position, where the MFFPT satisfies 〈T 〉 ∼ (ln N )−1 in
the limit N → ∞, as stated above. Since the average number
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FIG. 3. MCTC as a function of r−1
b for different values of the dis-

tance between nest and target x0. Full symbols denote the minimum
search intensity for each case and the dotted line provides a linear
fit between them to confirm the scaling 〈Tc〉∗ ∼ (r∗

b )−1. In all cases
D = 1 is used.

of active walkers will be proportional to rb, this explains
the scaling 〈T 〉 ∼ (ln rb)−1 we observe. Also, for this regime
we can approximate 〈Tc〉 = 〈 1

2 NT 〉 ∼ 〈N〉〈T 〉, where 〈N〉 is
the mean number of active walkers we have at t = T (the
factor 1

2 appears from the fact that any walker will be active
on average a time T/2). Then, 〈N〉 = rb〈T 〉 is satisfied. So
that, we realize that 〈Tc〉 ≈ 1

2 rb〈T 〉2, and combining this with
Eq. (7) we finally obtain 〈Tc〉 ∼ χ/(ln χ )2, which confirms
intuitively the formal result in Eq. (8).

Anyway, the most relevant feature in Fig. 2 is that while
〈T 〉 decays monotonically with rb, there is instead an optimum
rate which minimizes 〈Tc〉. To understand better this search
optimization mechanism, in Fig. 3 we show again 〈Tc〉 as a
function of r−1

b , but now for different values of x2
0/D. If we

denote by (r∗
b , 〈Tc〉∗) the coordinates of the point at which

the MCTC reaches its minimum, then we observe that (i) r∗
b

increases linearly with the diffusive timescale, such that r∗
b ≈

7.536D/x2
0, and (ii) the minimum value of the MCTC scales

as 〈Tc〉∗ ≈ 1.489x2
0/D, so this means that 〈Tc〉∗ ∼ (r∗

b )−1 (note
that additional justification for these relations can be mathe-
matically provided [67]).

B. Brownian walkers in higher dimensions

The continuous generation of new active trajectories in the
dynamic redundancy mechanism above makes that the target
will be eventually found always in a finite time even for the
case of nonrecurrent random walks, so both 〈T 〉 and 〈Tc〉 will
be finite for Brownian particles in arbitrary dimensions. In
Fig. 4 we show the results for d = 2 and d = 3 to check
whether the properties found above for the 1D case remain
valid. This confirms the existence of an optimum in 〈Tc〉 as
a function of rb. For this case a simple closed expression for
the survival probability Ssw(T ) is not available, so our efforts
to predict analytically the behavior in the limits rb � 4D/x2

0
and rb � 4D/x2

0 from Eq. (4) have been fruitless. However,
generalizing our intuitive arguments above for 1D we observe
that the former still satisfies 〈T 〉 ∼ 1/ ln N for the case of N
fixed, and so the scalings 〈T 〉 ∼ 1/ ln rb and 〈Tc〉 ∼ χ/(ln N )2

FIG. 4. MFFPT (in blue) and the MCTC (in orange) for two and
three dimensions (upper and lower panels, respectively) as a func-
tion of the birth timescale r−1

b . Symbols correspond to random-walk
simulations, and the solid lines in this case are only provided as a
visual guide. Dotted and dashed-dotted lines are the limit behavior
expected for χ � 1 and χ � 1, respectively. All results shown
correspond to the case x0 = 2, D = 1. (Insets) Minimum of the
MCTC when computed for different values of x0, as in Fig. 3. The
fitted scaling 〈Tc〉∗ ∼ (r∗

b )−β is provided, with β = 1.20 ± 0.01 and
β = 2.43 ± 0.02 for 2D and 3D, respectively.

derived for the 1D case should persist. On the other side,
for rb � 4D/x2

0 the same reasoning above should lead to
〈T 〉 ≈ 〈Tc〉 ∼ r−d/2

b (taking into account again the properties
of a diffusive flux to an absorbing trap in d dimensions [69]).

From Fig. 4 we observe that the convergence to the asymp-
totic regimes χ � 1 and χ � 1 becomes extremely slow, so
it is not possible at practice to fully observe the agreements
with the scalings above. Indeed, the scaling between 〈Tc〉∗ and
(r∗

b )−1 becomes now nontrivial; in the insets of Fig. 4 we pro-
vide a power-law fit 〈Tc〉∗ ∼ (r∗

b )−β to the numerical results,
which yield β = 1.20 ± 0.01 (for 2D) and β = 2.43 ± 0.02
(for 3D) for the region of parameters explored.

IV. DISCUSSION

While our results here are restricted to the particular
case rd = 0 for the sake of clarity, they show the potential
interest that the concept of dynamic redundancy has in terms
of optimizing collective random searches, and they pave
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the way to consider more general situations. For instance,
some preliminary work with Brownian trajectories in the
case rd > 0 we have carried out suggests that the MCTC can
reach minimum values for nontrivial combinations of rb, rd

(this will be presented in a forthcoming publication). Also,
the extension to non-Markovian birth-death mechanisms or
movement processes (e.g., persistent random-walks, Lévy
flights,...) and/or different geometries, offers a vast range of
possibilities to explore.

Furthermore, our predictions for 〈T 〉 and 〈Tc〉 could be
experimentally tested in real scenarios, e.g., in collective
animal foraging or searches through networks, where it is
reasonable to expect that regulation of n(t ) could represent
a plausible mechanism that groups of searchers could use to
minimize search costs and efforts. In group animal foraging,
for instance, it would be reasonable to ask whether the re-
cruitment of new foragers can significantly reduce the search
time, and/or increase the average energy intake for the group.
Regulation of n(t ) then seems to be a simple mechanism that

groups could use to orchestrate their searches and minimize
their search efforts, and one could hypothesize this should
actually play a role in the adaptation of such groups to their
specific environmental conditions. Similarly, optimal control
of random searches on activation processes or through phys-
ical and social networks could be carried out through these
mechanisms, all in all showing the potential interest of the
concept of dynamic redundancy.
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